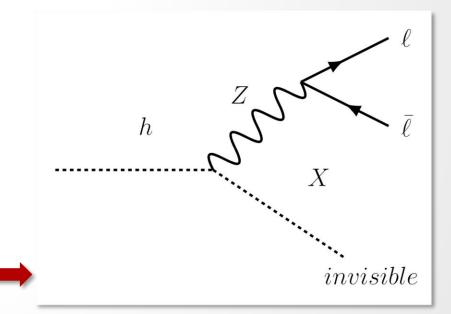


Semi-dark Higgs decays: sweeping the Higgs neutrino floor

Jose Manuel Cano IFT UAM/CSIC Madrid

> Based on work in collaboration with: J. A. Aguilar-Saavedra, D. G. Cerdeño, J. M. No 2206.01214

Motivation


Highly theoretically motivated probe of new physics! The Higgs as the portal to a hidden "dark" sector?

Target of an intense experimental program at the LHC (also on the theory side). But mainly fully visible or invisible decays...

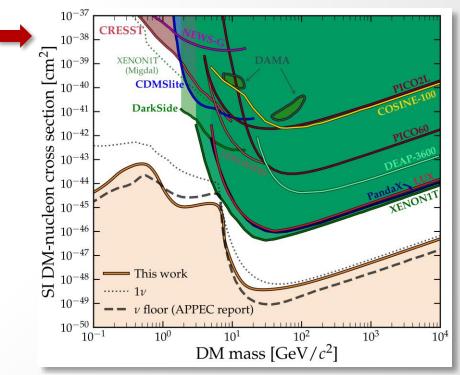
Semi-invisible Higgs decays remain poorly explored on both grounds (with notable exceptions, e.g. $h \rightarrow \gamma, b\bar{b} + invisible$, for a complete list see ¹)

In particular there is a promising candidate which has **NOT*** been explored so far...

*Davoudiasl, Lee, Marciano, PRD **85** (2012) 115019 briefly discussed this possibility in the context of dark photons

Englert, Spannowsky, Wymant PLB 718 (2012), 538; Petersson, Romagnoni, Torre JHEP 10 (2012), 016; Curtin et al. PRD 90, 075004; Cepeda, Gori, Outschoorn, Shelton 2111.12751; CMS: PLB 753 (2016) 363, JHEP 10 (2019) 139, JHEP 03 (2021) 011; ATLAS: 2109.00925, JHEP 01 (2022) 063

 $h \rightarrow ZX(\rightarrow invisible)$


Note this topology is already present in the SM

In analogy to what happens in DM direct detection experiments! Where coherent elastic neutrino-nucleus scattering can pose an irreducible background.

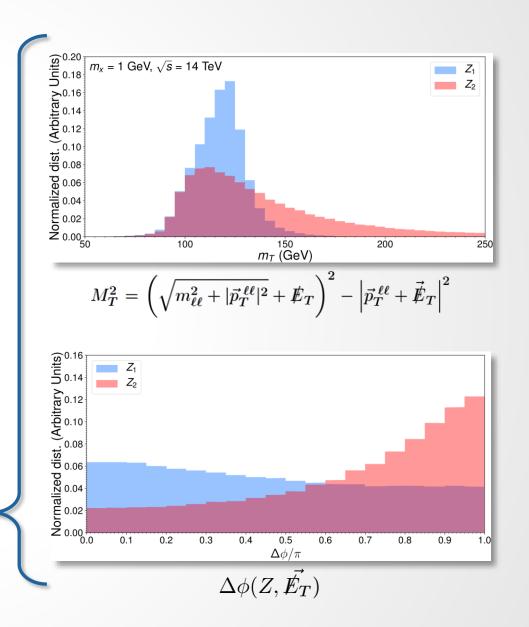
We refer to the above as the *"Higgs neutrino floor"* and like its analogue, it provides a sensitivity target for experiments:

 $BR(h \to Z v \bar{v})_{SM} = 5.4 \cdot 10^{-3}$

$$\begin{array}{l} h \to \mathbf{Z} Z^* \to \ell \overline{\ell} v \overline{v} \\ (\text{and } h \to W W^* \to \ell \overline{\ell} v \overline{v} \end{array} \end{array}$$

O'Hare PRL 127 251802 (2021)

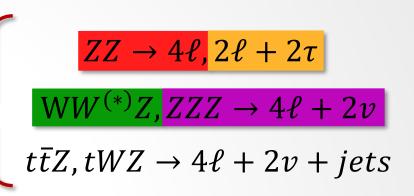
Collider search

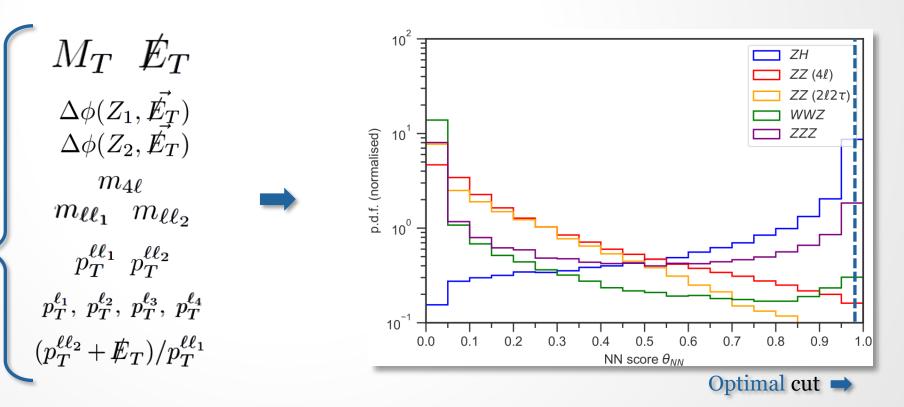

Best production channel to study this decay at the LHC?

ggF $(2\ell + MET)$ *? **VBF** $(2\ell + 2j + MET)$? large backgrounds and difficulties with MET...

 $pp \rightarrow Zh \rightarrow 4\ell + MET \checkmark$

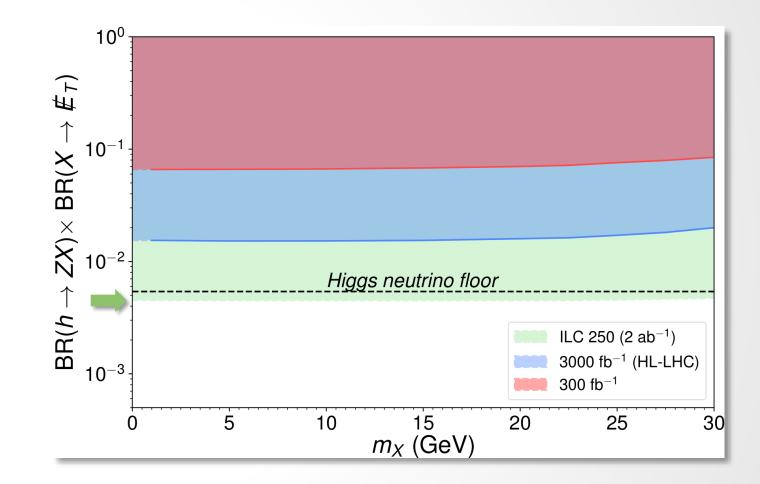
But note this poses a problem... how to identify the Z coming from the Higgs?


We build a **NN** taking as input:


Z + MET, mono-Z searches? not sensitive... (backup slides, ask me at the end!)

Collider search

Dominant SM backgrounds include:


We train another **NN** to separate signal from backgrounds, taking as inputs:

Collider search

On the other hand, a **lepton** collider (like the **ILC**) would be particularly suited for the task:

- ✓ e^+e^- → *Zh* dominant Higgs production mechanism
- ✓ Full missing energy reconstruction
- ✓ Higgs recoil mass allows straightforward identification of the Z's
- ✓ Cleaner environment

2HDM + a

Two Higgs doublet models extended by a singlet pseudoscalar mediator and a fermionic singlet DM particle constitute the minimal renormalizable realization of a pseudoscalar portal to DM²:

$$V = V_{2\text{HDM}} + \frac{\mu_{a_0}^2}{2} a_0^2 + m_{\chi} \bar{\chi} \chi + \frac{\lambda_a}{4} a_0^4 + \lambda_{a1} a_0^2 |H_1|^2 + \lambda_{a2} a_0^2 |H_2|^2 + i \kappa a_0 H_1^{\dagger} H_2 + y_{\chi} a_0 \bar{\chi} i \gamma^5 \chi + \text{h.c.}$$

χ	
DM candidate	
via freeze-out	

The $h \rightarrow Za$ decay is generically present away from the alignment limit with: $\Gamma(h \to Za) = \frac{1}{16\pi} \sin^2 \theta \cos^2 (\beta - \alpha) \frac{m_h^3}{v^2} \lambda^{3/2}$

$$16\pi$$

BR $(a \rightarrow \chi \bar{\chi}) \simeq 1$

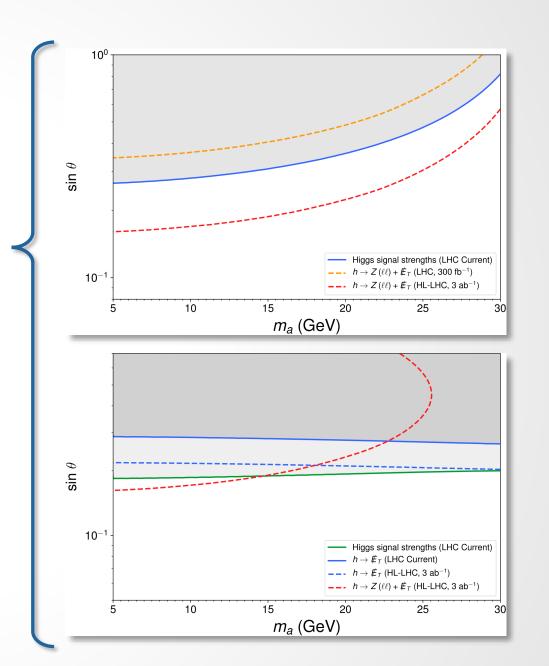
Note this model is further constrained by current (and future) Higgs signal strengths and fully invisible Higgs decays:

 $h \rightarrow aa \rightarrow invisible$

Ipek, McKeen, Nelson PRD 90 (2014), 055021 No PRD 93 (2016), 031701 Goncalves, Machado, No PRD 95 (2017), 055027 Bauer, Haisch, Kahlhoefer JHEP 05 (2017), 138 Robens Symmetry 13 (2021) 2341

2

2HDM + a


Two benchmarks:

The $h \rightarrow Za$ decay is generically present away from the alignment limit with:

$$\begin{cases} \Gamma(h \to Za) = \frac{1}{16\pi} \sin^2 \theta \cos^2 (\beta - \alpha) \frac{m_h^3}{v^2} \lambda^{3/2} \\ BR(a \to \chi \bar{\chi}) \simeq 1 \end{cases}$$

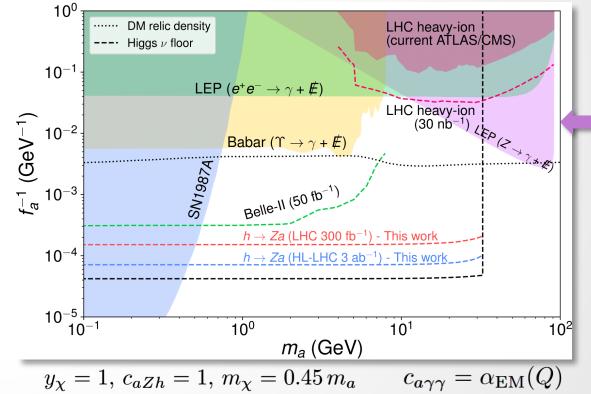
Note this model is further constrained by current (and future) Higgs signal strengths and fully invisible Higgs decays:

 $h \rightarrow aa \rightarrow invisible$

Axion-like particles

Interactions between the **SM** Higgs and light axion-like particles (**ALPs**) are a well-motivated BSM possibility 5, with exotic Higgs decays representing a key experimental signature for these scenarios...

 $c_{a\gamma\gamma}/f_{a} a F^{\mu\nu} \tilde{F}_{\mu\nu} + c_{aBB}/f_{a} a B^{\mu\nu} \tilde{B}_{\mu\nu}$ $+ y_{\chi} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \partial_{\mu} a/f_{a}$


If *a* couples to some hidden sector particle(s) (see e.g. ⁶), its dominant decay mode(s) may be into the **dark sector**, thus invisible at colliders. This encompasses the intriguing possibility that the **ALP** may be a mediator between the **SM** and the **DM** candidate.

5

Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz, EJPC 77 (2017) 8, 572 Bauer, Neubert, Thamm, JHEP 12 (2017), 044

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, JHEP **12** (2017) 094 Alves, Dias and Lopes, JHEP **08** (2020) 074

$$\Gamma(h \to Za) = (m_h^3/16\pi f_a^2) c_{aZh}^2 \lambda^{3/2}$$

A comment on dark photons...

Light dark photons Z_D which interact with the SM via kinetic mixing (see e.g. 3)

 $\frac{1}{2}\epsilon F'_{\mu\nu}B^{\mu\nu}$

give rise to the $h \rightarrow ZZ_D$ decay...

However, current 95% C.L. bounds on the kinetic mixing parameter from EW precision observables set $\epsilon \leq 0.02$ for dark photon masses $m_{Z_D} < 30$ GeV 4.

The corresponding branching fraction is then BR $(h \rightarrow ZZ_D) < 10^{-3}$, well below the Higgs neutrino floor.

Nevertheless, there could be additional sources of $Z - Z_D$ mass mixing contributing to the decay...

Davoudiasl, Lee, Marciano PRD **85** (2012) 115019

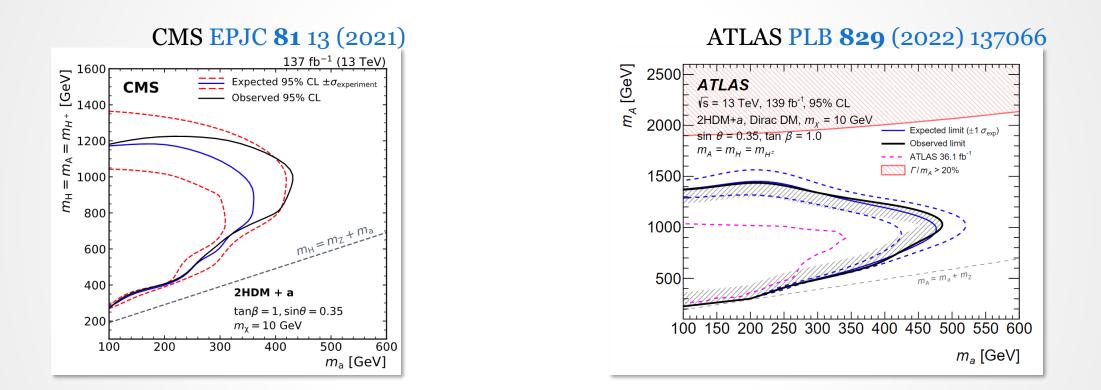
³Jaeckel, Jankowiak, Spannowsky Phys.Dark Univ. 2 (2013) 111-117; Fabbrichesi, Gabrielli, Lanfranchi Springer Briefs in Physics 2020; ...

Hook, Izaguirre, Wacker Adv. High Energy Phys. 2011 859762; Curtin et al. PRD 90, 075004

Key points

- Exotic Higgs decays $h \rightarrow ZX$ remain unexplored at large...
- The SM process h → Zvv represents an irreducible *neutrino floor* background to these searches, providing also a target experimental sensitivity.
- Despite being a highly theoretically motivated place to look for new physics!
- Constraints provided both by the **LHC** and the **ILC** cover otherwise unexplored parameter space, the latter being able to reach the Higgs neutrino floor.
- This is true for the 2HDMa (and dark photons?) but particularly for ALPs, even at present luminosities!

Thank you come chat for more details!



Backup

josem.cano@uam.es

Mono-Z searches

Ultimately neither is sensitive when considering the phase space for the 125 GeV Higgs decay... owing to both hard cuts on missing energy (requiring a hard jet on **ggF**) and transverse mass (expected to be $m_T \le m_h$).

2HDM+a relic abundance

Annihilation cross-section:

$$\langle \sigma \mathbf{v} \rangle = \frac{y_{\chi}^2}{2\pi} \frac{m_{\chi}^2}{m_a^4 t_{\beta}^2} s_{\theta}^2 c_{\theta}^2 \left[\left(1 - \frac{4m_{\chi}^2}{m_a^2} \right)^2 + \frac{\Gamma_a^2}{m_a^2} \right]^{-1} \times \sum_f N_C \frac{m_f^2}{v^2} \sqrt{1 - \frac{m_f^2}{m_a^2}}.$$