Rare Higgs and Z Boson Decays to a Meson and a Photon at the ATLAS experiment

R. Ward¹, on behalf of the ATLAS Collaboration

¹University of Birmingham

LHC Higgs Working Group Meeting 2022

28th November 2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

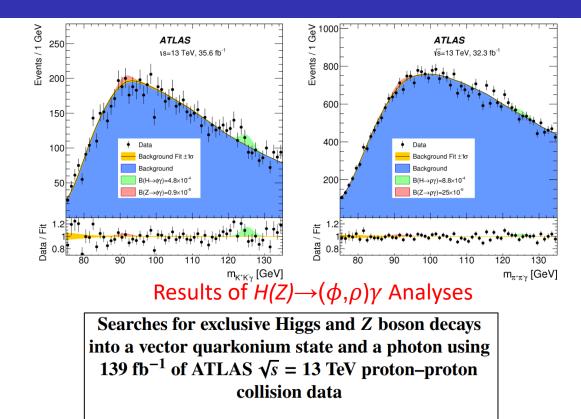
28th November 2022 1/15

R. Ward (University of Birmingham) - LHC Higgs WG 2022 Higgs and Z Boson Decays to a Meson and a Photon at ATLAS

Decays of the Higgs and Z Bosons to a Meson and a Photon

\succ ATLAS has conducted a sweep of $H(Z) \rightarrow \mathcal{M}\gamma$ searches

- \circ Published 14 limits with 36.1 fb⁻¹ of $\sqrt{s} = 13$ TeV data
 - Heavy mesons: $H(Z) \rightarrow Q\gamma$; $Q = J/\psi, \psi(2S), \Upsilon(1S, 2S, 3S)$
 - Light mesons: $H(Z) \rightarrow \phi \gamma$ and $H(Z) \rightarrow \rho \gamma$


Published results:

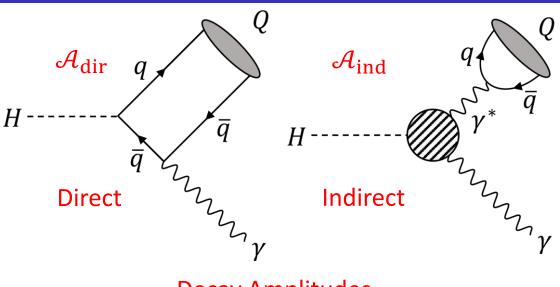
 $\begin{array}{l} H(Z) \to (J/\psi, \psi(2S), Y)\gamma \text{ Partial Run 2: } \underline{Phys.Lett.B 786 (2018) 134-155} \\ H(Z) \to (\phi, \rho)\gamma \text{ Partial Run 2: } \underline{JHEP 07 (2018) 127} \\ H(Z) \to \phi\gamma \text{ Run 1: } \underline{Phys.Rev.Lett. 117 (2016) 11, 111802} \\ H(Z) \to (J/\psi, Y)\gamma \text{ Run 1: } \underline{Phys.Rev.Lett. 114 (2015) 12, 121801} \end{array}$

 Operate **dedicated** triggers and developed novel methods to model the backgrounds

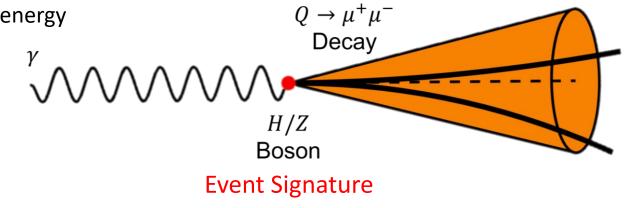
\succ Today I will showcase the latest $H(Z) \rightarrow Q\gamma$ search

- \circ Use full 139 fb⁻¹ of 13 TeV dataset
 - Results were public for ICHEP2022
 - Recently accepted by EPJC

The ATLAS Collaboration


Searches for the exclusive decays of Higgs and Z bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^-\gamma$ final state with a proton–proton collision data sample corresponding to an integrated luminosity of 139 fb⁻¹ collected at $\sqrt{s} = 13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% CL_s upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S, 2S, 3S) \gamma$ are found to be 2.1×10^{-4} , 10.9×10^{-4} , and $(2.6, 4.4, 3.5) \times 10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL_s upper limits on the branching fractions of the Z boson decays are 1.2×10^{-6} , 2.3×10^{-6} , and $(1.0, 1.2, 2.3) \times 10^{-6}$.

New 139 fb⁻¹ $H(Z) \rightarrow Q\gamma$ results: <u>arXiv:2208.03122</u>


$H(Z) \rightarrow Q\gamma$: Motivation

\succ Search for $H(Z) \rightarrow Q\gamma \rightarrow \mu^+\mu^-\gamma$

- $Q = J/\psi, \psi(2S)$ (charmonium) or $\Upsilon(1S, 2S, 3S)$ (bottomonium)
- $\,\circ\,$ Two contributions to decay amplitude, ${\cal A}_{dir}$ and ${\cal A}_{ind},$ which destructively interfere
- Distinct signature avoids large QCD backgrounds seen in inclusive searches
- \succ Higgs boson decays probe b- and c-quark Yukawa couplings
 - $\,\circ\,$ Sensitive to both the magnitude and the sign
- > Z boson decays provide a test of QCD factorisation
 - Small power corrections in terms of the ratio of the QCD energy scale over Z mass
 - Clean probe of meson light cone distribution amplitudes from a theory perspective

Decay Amplitudes

$H(Z) \rightarrow Q\gamma$: Branching Ratio Predictions and Previous Results

Vector	SM bra	Vector		
quarkonium state	Ref. [31] (2015)	Refs. [33, 34] (2017)	Ref. [36] (2019)	quarkonium state
J/ψ	$2.95^{+0.17}_{-0.17} \times 10^{-6}$	$2.99^{+0.16}_{-0.15} \times 10^{-6}$	$3.01^{+0.15}_{-0.15} \times 10^{-6}$	J/ψ
$\Upsilon(1S)$	$4.61^{+1.76}_{-1.23} \times 10^{-9}$	$5.22^{+2.02}_{-1.70} \times 10^{-9}$	$9.97^{+4.04}_{-3.03} \times 10^{-9}$	$\Upsilon(1S)$
$\Upsilon(2S)$	$2.34^{+0.76}_{-1.00} \times 10^{-9}$	$1.42^{+0.72}_{-0.57} \times 10^{-9}$	$2.62^{+1.39}_{-0.91} \times 10^{-9}$	$\Upsilon(2S)$
$\Upsilon(3S)$	$2.13^{+0.76}_{-1.13} \times 10^{-9}$	$0.91^{+0.48}_{-0.38} \times 10^{-9}$	$1.87^{+1.05}_{-0.69} \times 10^{-9}$	$\Upsilon(3S)$

$\Upsilon(1S)$	$5.39^{+0.17}_{-0.15} \times 10^{-8}$	$4.93^{+0.51}_{-0.51} \times 10^{-8}$	$4.80^{+0.26}_{-0.25} \times 10^{-8}$					
$\Upsilon(2S)$	-	-	$2.44^{+0.14}_{-0.13} \times 10^{-8}$					
$\Upsilon(3S)$	-	-	$1.88^{+0.11}_{-0.10} \times 10^{-8}$					
Z boson decays								

(Refs: 46, 47, 48)

Ref. [46] (2015)

 $8.02^{+0.46}_{-0.44} \times 10^{-8}$

SM branching fraction, $\mathcal{B}(Z \to Q\gamma)$ Ref. [47] (2015)

 $9.96^{+1.86}_{-1.86} \times 10^{-8}$

Higgs boson decays (Refs: 31, 33, 34, 36)

- $J/\psi, \psi(2S)$: $\Upsilon(1S, 2S, 3S)$:• $|\mathcal{A}_{ind}| \approx 20 \times |\mathcal{A}_{dir}|$ $\mathcal{A}_{ind}, \mathcal{A}_{dir}$ almost cancel in SM

 \triangleright Previous ATLAS $Q\gamma$ result used 36.1 fb⁻¹ of 13 TeV dataset \circ Updated results use full available 139 fb⁻¹

 \succ CMS searched for $H(Z) \rightarrow J/\psi \gamma$ with 35.9 fb⁻¹ at 13 TeV $\circ \mathcal{B}(H \to I/\psi \gamma) < 7.6 \times 10^{-4}; \mathcal{B}(Z \to I/\psi \gamma) < 1.4 \times 10^{-6}$ • Eur. Phys. J. C 79 (2019) 94

 \triangleright CMS also searched for $H(Z) \rightarrow QQ$ with 37.5 fb⁻¹ at 13 TeV

Phys. Lett. B 797 (2019) 134811

Branching fraction limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H \to J/\psi\gamma\right)\left[\ 10^{-4}\ \right]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[10^{-4}\right]$	$15.6_{-4.4}^{+7.7}$	19.8
$\mathcal{B}\left(Z \to J/\psi\gamma\right)\left[\;10^{-6}\;\right]$	$1.1_{-0.3}^{+0.5}$	2.3
$\mathcal{B}\left(Z \to \psi\left(2S\right) \gamma\right) \left[\ 10^{-6} \ \right]$	$6.0^{+2.7}_{-1.7}$	4.5
$\mathcal{B}\left(H \to \Upsilon(1S) \gamma\right) \left[\ 10^{-4} \ \right]$	$5.0^{+2.4}_{-1.4}$	4.9
$\mathcal{B}(H \to \Upsilon(2S) \gamma) [10^{-4}]$	$6.2^{+3.0}_{-1.7}$	5.9
$\mathcal{B}\left(H \to \Upsilon(3S)\gamma\right)\left[10^{-4}\right]$	$5.0^{+2.5}_{-1.4}$	5.7
$\mathcal{B}\left(Z \to \Upsilon(1S)\gamma\right) \left[\ 10^{-6} \ ight]$	$2.8^{+1.2}_{-0.8}$	2.8
$\mathcal{B}\left(Z \to \Upsilon(2S) \gamma\right) \left[\ 10^{-6} \ \right]$	$3.8^{+1.6}_{-1.1}$	1.7
$\mathcal{B}\left(Z \to \Upsilon(3S)\gamma\right) \left[\ 10^{-6} \ \right]$	$3.0^{+1.3}_{-0.8}$	4.8

Results of 36.1 fb⁻¹ $H(Z) \rightarrow Q\gamma$: Phys. Lett. B 786 (2018) 134-155

Ref. [48] (2018)

 $8.96^{+1.51}_{-1.38} \times 10^{-8}$

$H(Z) \rightarrow Q\gamma$: Event Selection

> Unique signature provides handle for triggering

- Operated **dedicated** photon + muon triggers during Run 2, seeded from L1Calo
- \circ High trigger efficiency, > 97%, with respect to offline selection

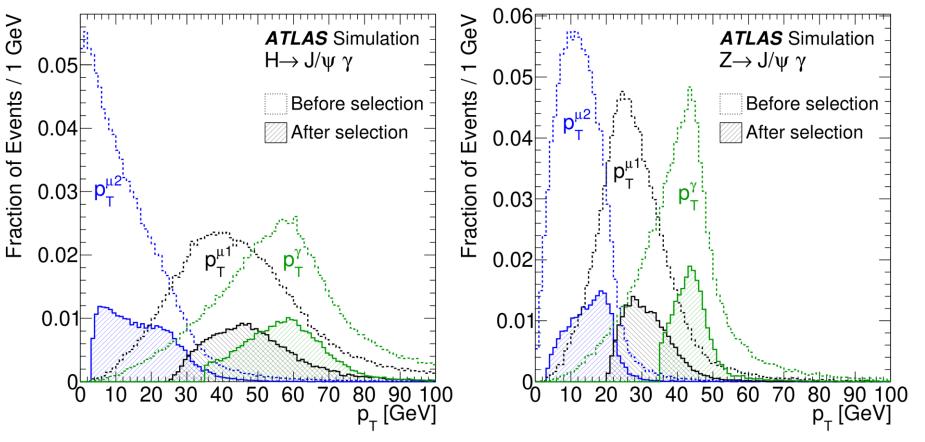
Photon Selection:

• $p_{\rm T}^{\gamma} > 35 \,{\rm GeV}$ • $|\eta^{\gamma}| < 2.37$ and outside transition region $1.37 < |\eta^{\gamma}| < 1.52$ Tight quality $\bullet \Delta \phi(Q, \gamma) > \pi/2$ Photon isolation


Meson Selection: • $p_{\rm T}^{\rm lead} > 18 \, {\rm GeV}; p_{\rm T}^{\rm sublead} > 3 \, {\rm GeV}$

- • $|\eta^{\mu}| < 2.5$
- Oppositely charged muons
- Medium guality
- • $m(\mu^+\mu^-)$ near meson mass
- •Transverse decay length significance $|L_{xy}/\sigma_{L_{xy}}| < 3$

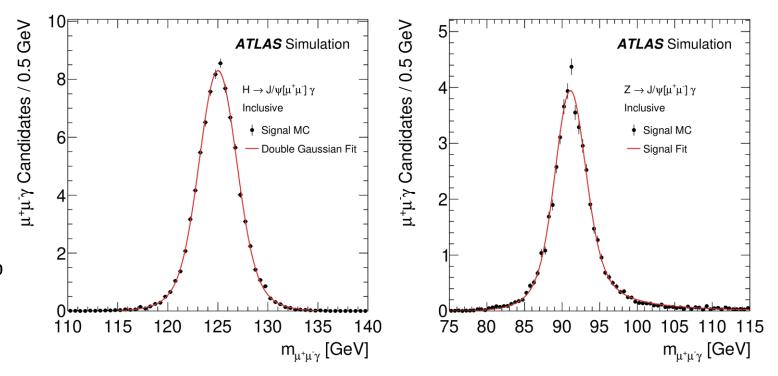
• $p_{\rm T}(\mu^+\mu^-)$ cut varies with $m(\mu^+\mu^-\gamma)$ Muon isolation


> Split $\Upsilon(nS)$ into Barrel (B) and Endcap (EC) categories

• Improved resolution in barrel helps resolve each state

R. Ward (University of Birmingham) - LHC Higgs WG 2022 Higgs and Z Boson Decays to a Meson and a Photon at ATLAS

$H(Z) \rightarrow Q\gamma$: Signal Efficiency



Generator-level $p_{\rm T}$ of Decay Products for J/ψ channels

 \succ Softer photon and muon $p_{\rm T}$ in Z boson decays leads to smaller signal efficiencies compared to Higgs boson decays

$H(Z) \rightarrow Q\gamma$: Signal Modelling and Resolution

- > Simulate signal event for all $Q\gamma$ decay channels with Monte Carlo
 - Consider all relevant Higgs boson production modes: gluon fusion, vector boson fusion, and WH, ZH and ttH associated production
 - $\circ Z$ boson samples are produced inclusively
- Achieve a signal resolution of 1.6% 1.8% across all channels
 - $\,\circ\,$ Higgs boson shape: double Gaussian
 - Z boson shape: double Voigtian multiplied by mass-dependent efficiency

Signal Resolution for J/ψ channels

$H(Z) \rightarrow Q\gamma$: Signal Systematic Uncertainties

Source of systematic uncertainty	Signal yield uncertainty					
Source of systematic uncertainty	$H \to \psi(nS)$	$H \to \Upsilon(nS)$	$Z \to \psi(nS)$	$Z \to \Upsilon(nS)$		
Total cross section	5.5	5.8%		9%		
Integrated luminosity	1.	7%	1.7%			
Signal acceptance	1.8	8%	1.0%			
Muon reconstruction	2.3%	2.2%	2.4%	2.4%		
Photon identification	1.7%	1.7%	1.9%	1.9%		
Pile-up uncertainty	0.8%	0.7%	1.1%	1.1%		
Trigger efficiency	0.7%	0.7%	0.8%	0.8%		
Photon energy scale	0.1%	0.1%	0.2%	0.2%		
Muon momentum scale	0.1%	0.1%	0.5%	0.2%		
Muon momentum resolution (ID)	< 0.01%	0.01%	0.06%	0.02%		
Muon momentum resolution (MS)	0.02%	0.01%	0.04%	0.01%		

> Take into account relevant uncertainties on the total signal yield

- Nuisance parameters with standard Gaussian constraints in maximum likelihood fit
- $\,\circ\,$ Shape uncertainties found to be negligible

$H(Z) \rightarrow Q\gamma$: Background Modelling

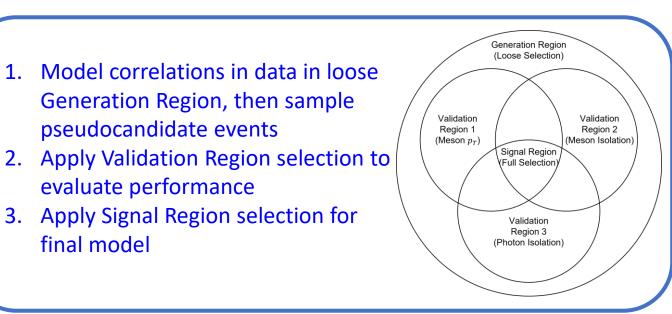
Exclusive background

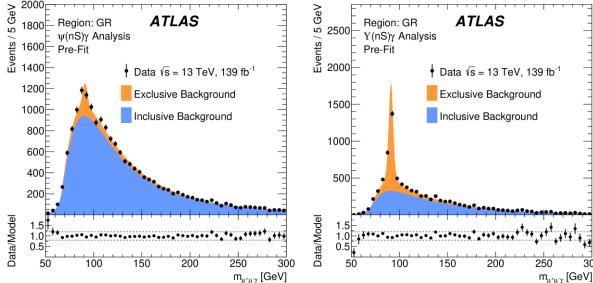
- $\circ \mu^+ \mu^- \gamma$ production via Drell-Yan
- Modelled with an analytical fit to simulated events
 - Threshold function + Voigtian function •

Inclusive background

- Multi-jet and γ +jet sources with Q or dimuon production
- Non-parametric data-driven background model
 - JHEP 10 (2022) 001 •

pseudocandidate events


evaluate performance

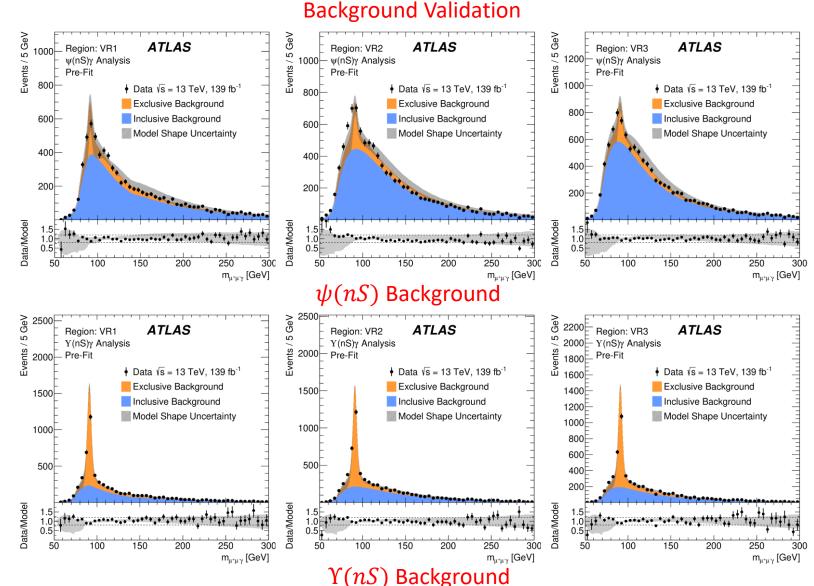

final model

3.

Generation Region, then sample

Apply Signal Region selection for

Background in Generation Region

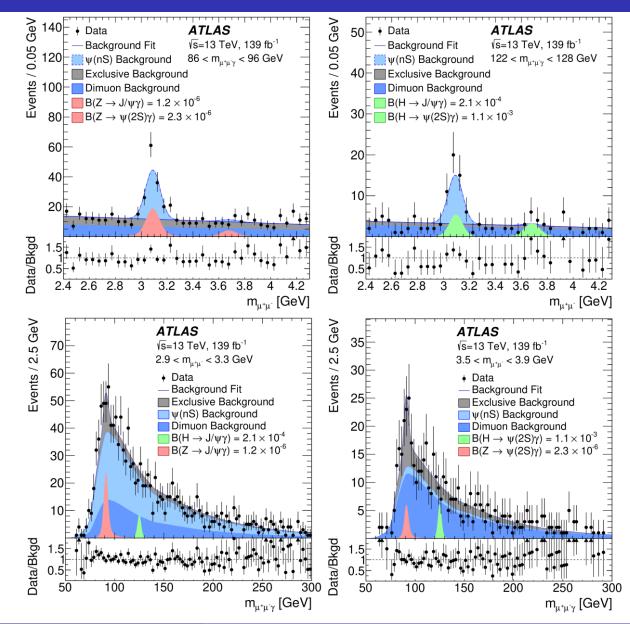

Region		$p_{\mathrm{T}}^{\mu\mu}$	Photon Isolation	Q Isolation
Generation Region	(GR)	> 30 GeV	Relaxed	Relaxed
Validation Region 1	(VR1)	Full	Relaxed	Relaxed
Validation Region 2	(VR2)	> 30 GeV	Relaxed	Full
Validation Region 3	(VR3)	> 30 GeV	Full	Relaxed
Signal Region	(SR)	Full	Full	Full

Region Definitions

$H(Z) \rightarrow Q\gamma$: Background Validation and Systematic Uncertainties

Validation plots are pre-fit

- Normalisation set to events in mass range
- Ratio of inclusive/exclusive background extracted from GR
- Each of these are free in final fit
- Systematic uncertainties accounted for with shape variations
 - Mass tilt: reweight mass distribution with a tilt function
 - Distribution can adapt to tilts in ratio
 - $\,\circ\,$ Photon $p_{\rm T}$ shift: shift generated photon $p_{\rm T}$ in GR
 - Distribution can shift higher/lower
 - $\circ~\Delta\phi$ distortion: reweight generated $\Delta\phi$ in GR
 - Width of distribution can increase/decrease



R. Ward (University of Birmingham) - LHC Higgs WG 2022 Higgs and Z Boson Decays to a Meson and a Photon at ATLAS

$H(Z) ightarrow \psi(nS)\gamma$: Projection of Fit in Regions

> Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-)$, $m(\mu^+\mu^-\gamma)$

- Discriminates between **all** signal and background contributions
- $ightarrow \psi(nS)\gamma$ analysis fit is performed inclusively in a single category
 - $\,\circ\,$ Fit to data with three-body mass $<300~{\rm GeV}$ in the signal region
 - Project fit near each signal resonance

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Projection of Fit in Regions

> Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-), m(\mu^+\mu^-\gamma)$

- Discriminates between all signal and background contributions
- $\succ \Upsilon(nS)\gamma$ analysis fit is performed simultaneously in the barrel and endcap categories
 - \circ Fit to data with three-body mass < 300 GeV in the signal region

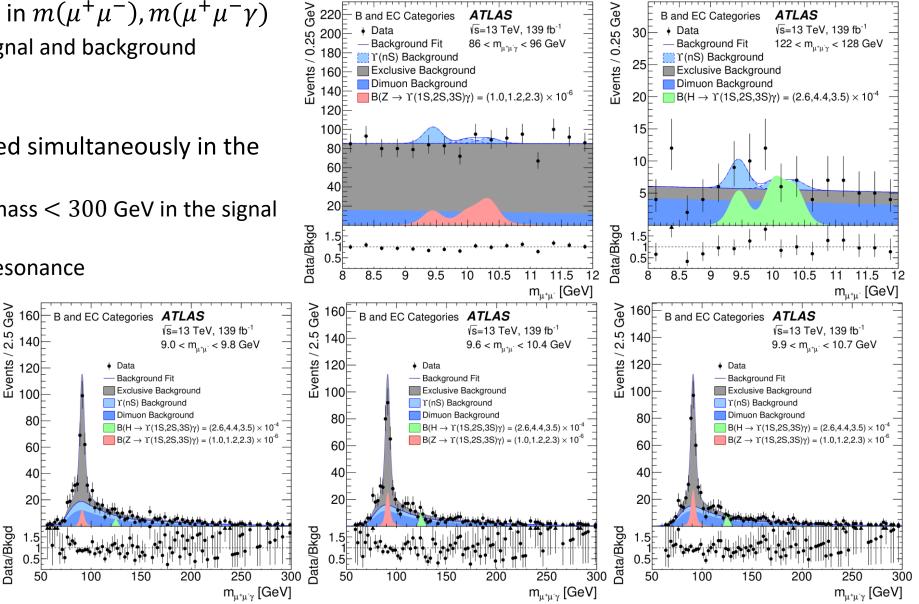
2.5

140

80

60

40


20

50

Data/Bkgd

120 Events 100

• Project fit near each signal resonance

$H(Z) \rightarrow Q\gamma$: 139 fb⁻¹ Analysis Limits and κ Interpretation

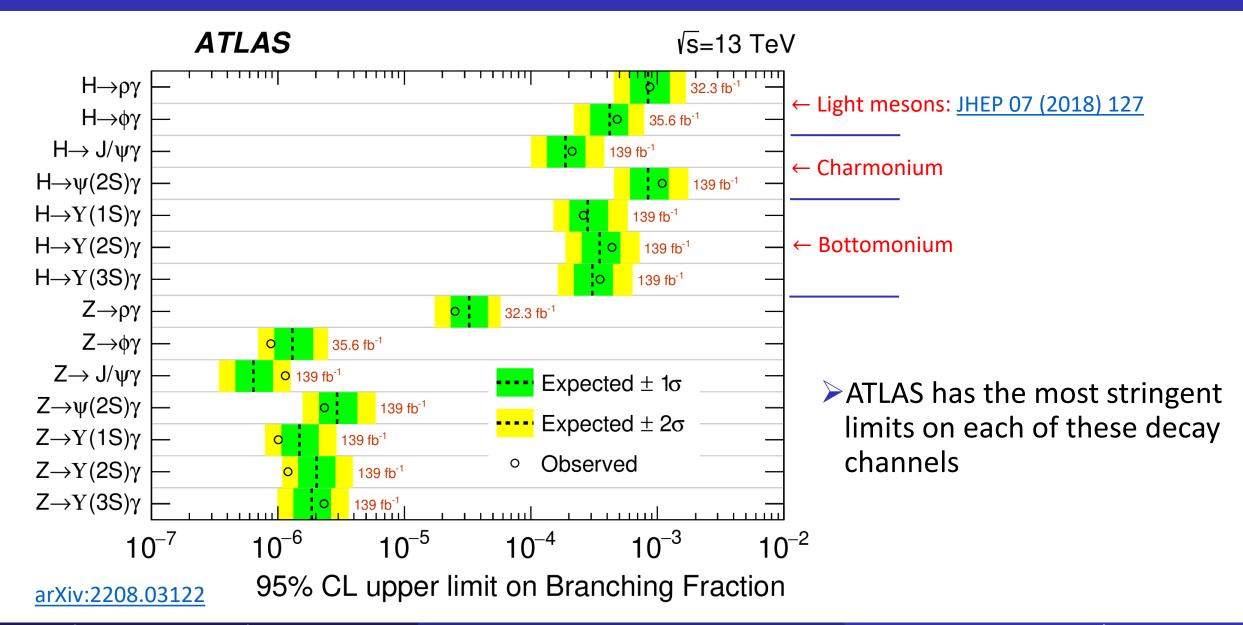
- Extract 95% CL upper limits on decay channels
 - Approximately a factor two improvement over the 36.1 fb^{-1} result
- > Statistical uncertainty dominates
 - \circ Systematics reduce sensitivity to the H(Z)signals by at most 1% (5%)
 - Main systematics are in the inclusive background shape

			mits				
		Branchin	g fraction		$\sigma \times \mathcal{B}$		
Decay	Higgs boson [10 ⁻⁴]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]	
channel	Expected	Observed	Expected Observed		Observed	Observed	
$J/\psi\gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$ 1.2		12	71	
$\psi(2S)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135	
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$ 1.0		14	59	
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$ 1.2		24	71	
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$ 2.3		19	135	

$$\succ \text{ Combine with } H \to \gamma \gamma^{\$} \text{ to interpret in terms of } \kappa_{c,b} / \kappa_{\gamma} \text{:}$$

$$\mu_{H \to J/\psi \gamma} \left| \mathcal{A}_{\text{ind}} + \frac{\kappa_c}{\kappa_{\gamma}} \mathcal{A}_{\text{d}} \right|$$

$$\frac{\frac{H \to J/\psi \gamma}{\mu_{H \to \gamma\gamma}}}{\mu_{H \to \gamma\gamma}} \approx \frac{\left| \mathcal{A}_{\text{ind}} + \frac{\kappa_c}{\kappa_\gamma} \mathcal{A}_{\text{dir}} \right|^2}{\Gamma_{H \to J/\psi \gamma}^{\text{SM}}}$$


μ is the observed rate, normalised to the SM rate

Observed (expected) bounds @ 95% CL:

 $\circ \kappa_c/\kappa_{\gamma}$: [-136, 178] ([-123, 164]) from $H \rightarrow J/\psi \gamma$ ○ κ_b/κ_γ : [-38, 40] ([-37, 40]) from combined *H* → Υ(*n*S)γ

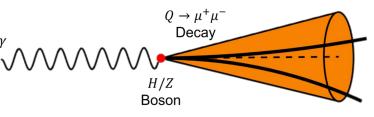
⁹ATLAS-CONF-2020-026

Summary of Exclusive $H(Z) \rightarrow M\gamma$ Search Results

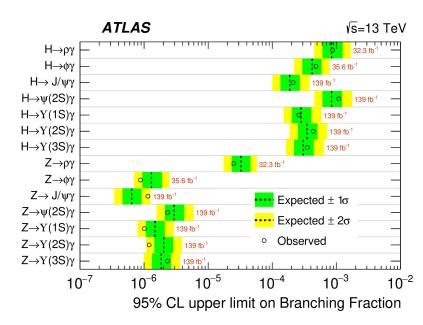
Conclusions

Searches for the rare decays $H(Z) \rightarrow J/\psi\gamma, \psi(2S)\gamma$, and $\Upsilon(1S, 2S, 3S)\gamma$

> Results using 139 fb⁻¹ $\sqrt{s} = 13$ TeV dataset are now public: <u>arXiv:2208.03122</u>

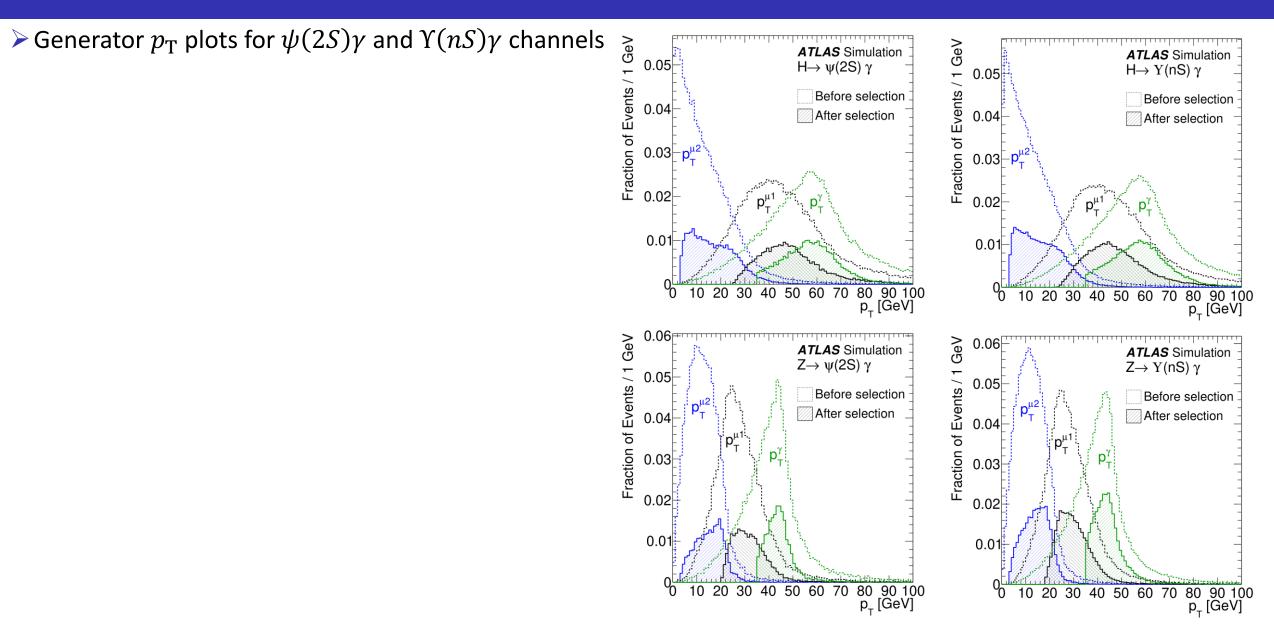

- \circ *H* decays probe magnitude and sign of *b* and *c*-quark Yukawa couplings
- $\,\circ\, Z$ decays provide a test of QCD factorisation
- $\,\circ\,$ Search for $Q \rightarrow \mu^+\mu^-$ decay channels with dedicated photon+muon triggers

Signal model

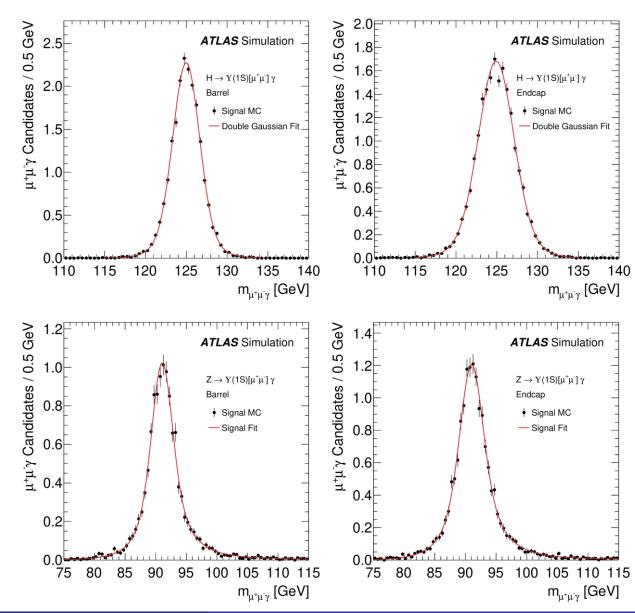

- Analytical fit to simulated events
- Resolution of 1.6% 1.8% on H/Z mass

Background Model

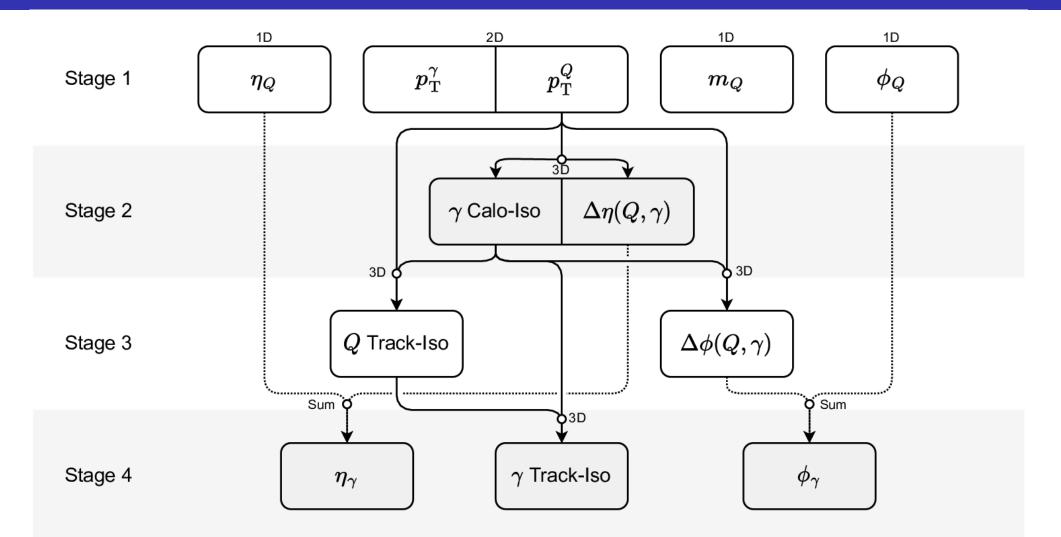
- $\,\circ\,$ Exclusive contribution from $\mu^+\mu^-\gamma$ production via Drell-Yan
 - Analytical fit to simulated events
- $\,\circ\,$ Inclusive contribution from multi-jet and γ +jet sources with Q or dimuon production
 - Non-parametric data-driven background model
- > 2D fits in $m(\mu^+\mu^-\gamma)$, $m(\mu^+\mu^-)$ discriminate signal resonances and sources of background
 - \circ Set improved limits on all 10 decay channels, and interpret results in the κ framework


Event Signature

 $H(Z) \rightarrow M\gamma$ Limits

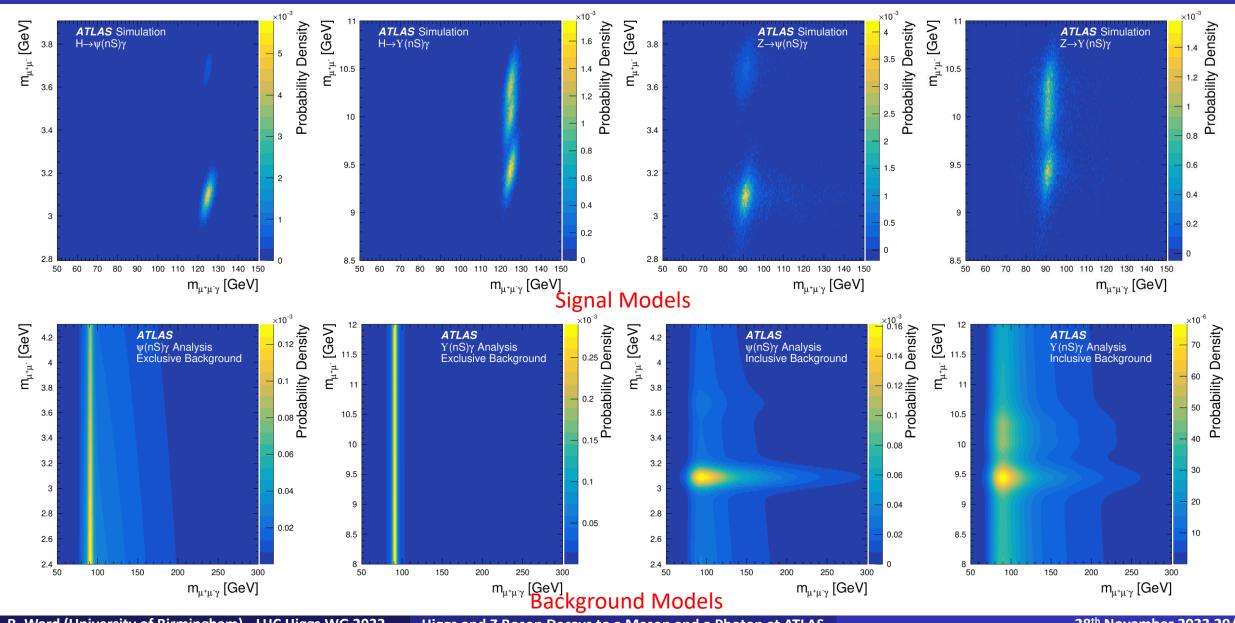

ADDITIONAL SLIDES

$H(Z) \rightarrow Q\gamma$: Trigger Strategy and Acceptance



$H(Z) \rightarrow Q\gamma$: Signal Modelling and Resolution

> Signal resolution plots for $\Upsilon(1S)\gamma$ channels in B and EC categories


$H(Z) \rightarrow Q\gamma$: Sequential Sampling Scheme

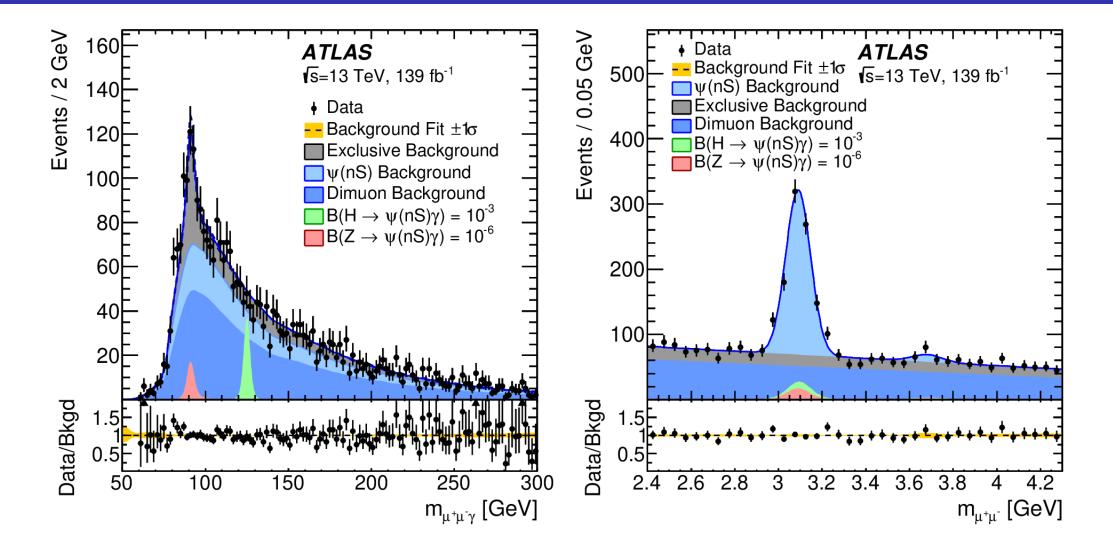
> Create probability density functions for kinematic and isolation variables using data in generation region

• Sample from these following the above scheme to generate pseudocandiate events

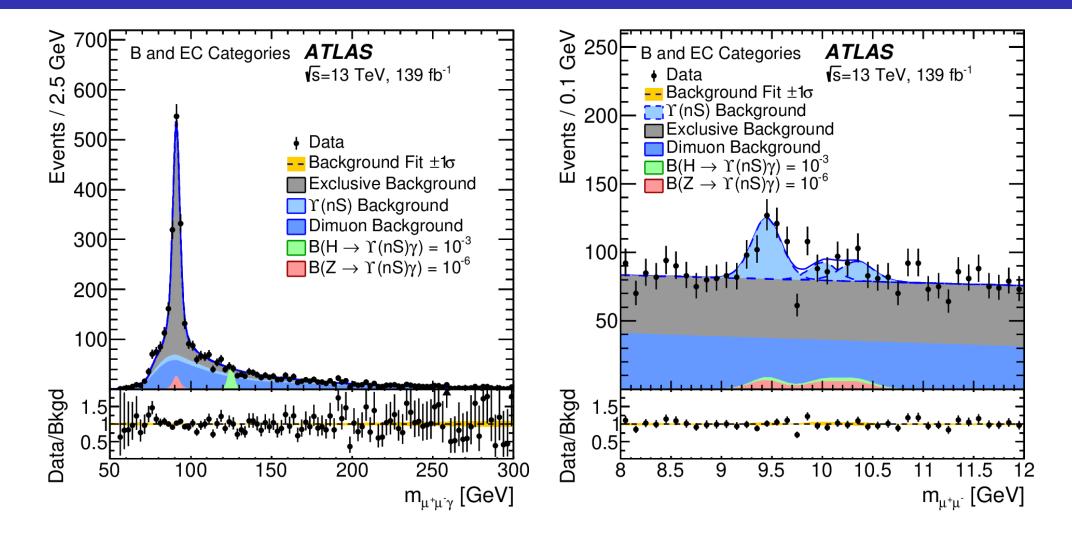
$H(Z) \rightarrow Q\gamma$: Three-body Versus Dimuon Mass

R. Ward (University of Birmingham) - LHC Higgs WG 2022 Higgs and Z Boson Decays

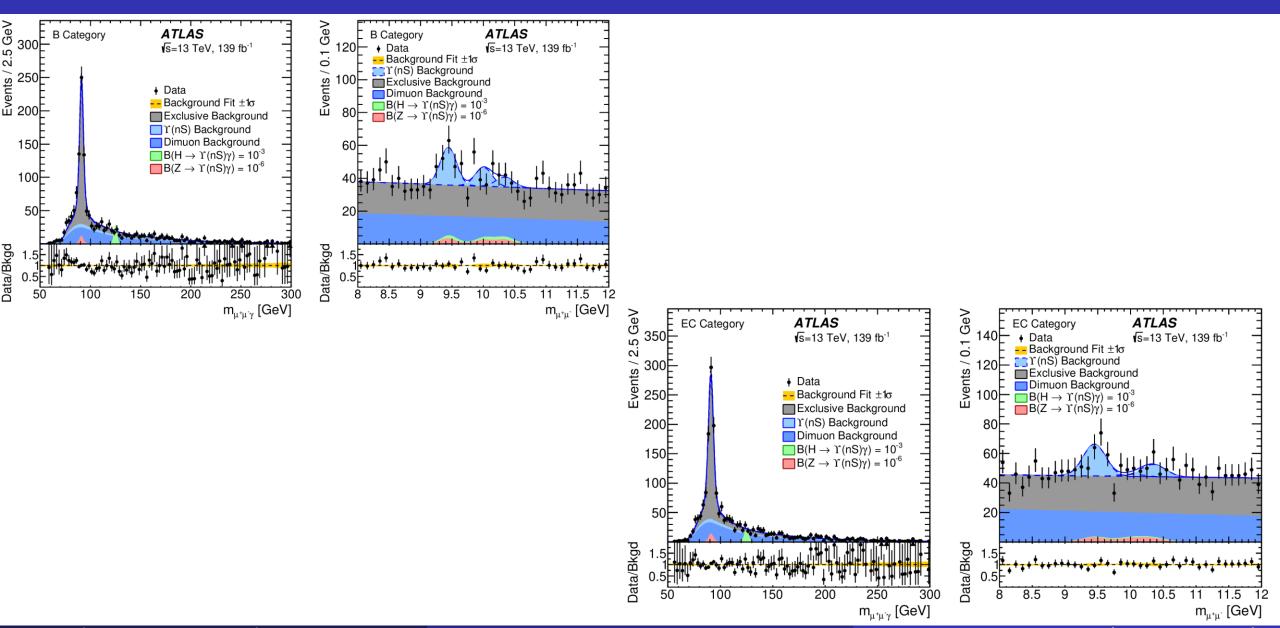
Higgs and Z Boson Decays to a Meson and a Photon at ATLAS


$H(Z) \rightarrow Q\gamma$: Observed and Expected Events

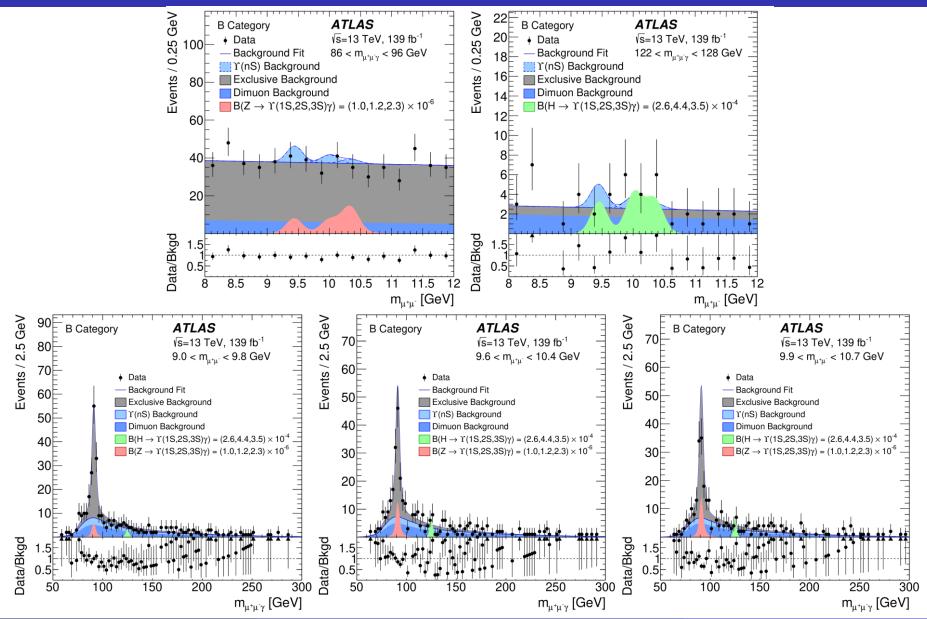
		C	Observed (expected) background				<i>H</i> signal
Category $m_{\mu^+\mu^-}$ range			$m_{\mu^+\mu^-\gamma}$ range [GeV]				for
	[GeV]	86–96		122–128		$\mathcal{B} = 10^{-6}$	$\mathcal{B} = 10^{-3}$
Inclusive	2.9-3.3	198	(185.6 ± 5.9)	61	(59.1 ± 1.6)	51.1 ± 2.5	84.3 ± 5.9
Inclusive	3.5-3.9	83	(82.5 ± 4.0)	21	(22.9 ± 0.9)	6.7 ± 0.3	11.4 ± 0.8
Barrel	9.0–9.8	125	(125.3 ± 4.7)	12	(11.6 ± 0.6)	12.3 ± 0.6	19.9 ± 1.4
Barrel	9.6–10.4	118	(121.9 ± 4.6)	14	(10.7 ± 0.6)	9.3 ± 0.5	15.1 ± 1.1
Barrel	9.9–10.7	102	(119.9 ± 4.5)	11	(10.2 ± 0.6)	10.8 ± 0.5	17.2 ± 1.2
Endcap	9.0–9.8	133	(162.9 ± 5.7)	16	(13.6 ± 0.7)	16.1 ± 0.8	19.4 ± 1.4
Endcap	9.6–10.4	150	(157.1 ± 5.6)	11	(11.7 ± 0.5)	12.2 ± 0.6	15.0 ± 1.1
Endcap	9.9–10.7	171	(156.7 ± 5.8)	7	(11.4 ± 0.6)	13.9 ± 0.7	16.8 ± 1.2


> Table of observed and expected background events in ranges of interest

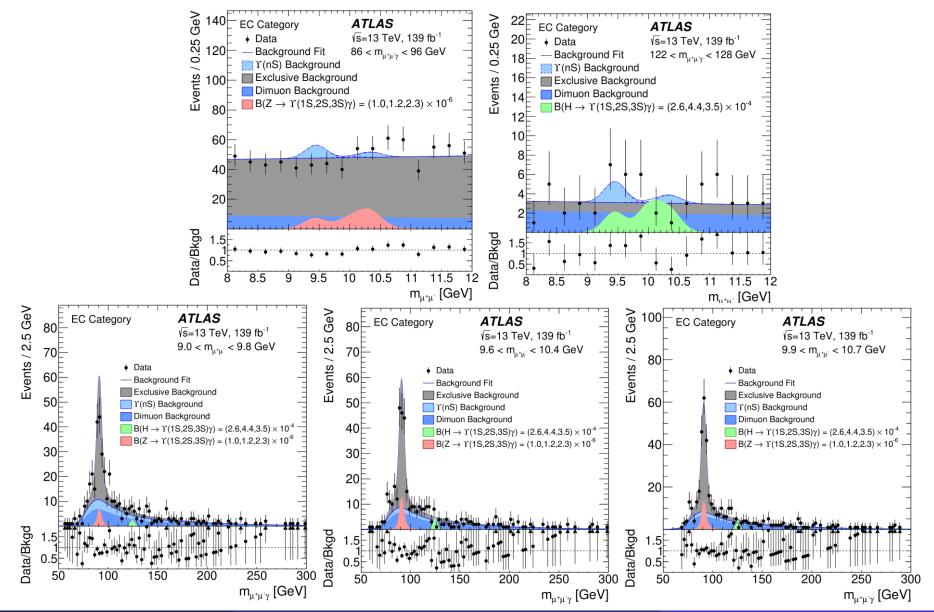
• Expected signal events are shown using reference branching ratios for each decay channel


$H(Z) \rightarrow \psi(nS)\gamma$: Inclusive Fit

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Inclusive Fit



$H(Z) \rightarrow \Upsilon(nS)\gamma$: Fit in Separate B and EC Categories



$H(Z) \rightarrow \Upsilon(nS)\gamma$: Barrel Category Projections

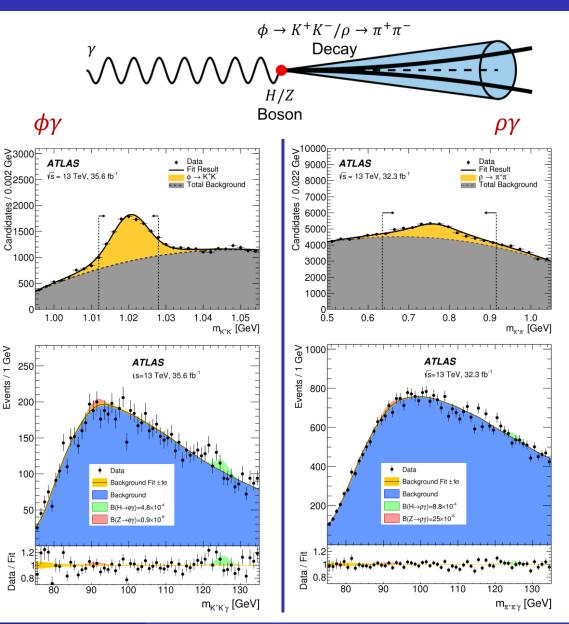
R. Ward (University of Birmingham) - LHC Higgs WG 2022 Higgs and Z Boson Decays to a Meson and a Photon at ATLAS

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Endcap Category Projections

R. Ward (University of Birmingham) - LHC Higgs WG 2022

Search for $H \to (\phi/\rho)\gamma$: Early Run 2 Analysis Results

Events


 $> H \rightarrow \phi(K^+K^-)\gamma$ sensitive to magnitude and sign of y_s

 \circ $H \rightarrow \rho(\pi^+\pi^-)\gamma$ sensitive to magnitude and sign of $y_{u,d}$

- \rightarrow Direct and indirect decay amplitudes analogous to $H \rightarrow Q\gamma$ $\circ BR_{H \to \phi \gamma(\rho \gamma)}^{SM} \approx 10^{-6} (10^{-5})$
- \triangleright Include analogous searches for $Z \rightarrow (\phi/\rho)\gamma$ $\circ BR_{Z \to \phi \gamma(\rho \gamma)}^{SM} \approx 10^{-8}$
- > **Dedicated** triggers based on single photon + modified τ -lepton algorithms
 - \circ Signal resolution $\approx 1.8\%$
- \succ Similar signal and background modelling strategy to $H \rightarrow Q\gamma$
 - Background model is fully data driven
 - No backgrounds resonant in $m(K^+K^-\gamma)$ or $m(\pi^+\pi^-\gamma)$
 - Validate model in $m(K^+K^-)$ and $m(\pi^+\pi^-)$ sidebands

 \succ Use unbinned likelihood fit to $m(K^+K^-\gamma)$ and $m(\pi^+\pi^-\gamma)$

JHEP 07 (2018) 127

Limits for $H o (\phi/\rho)\gamma$

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z \to \phi \gamma\right) \left[\ 10^{-6} \ \right]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4}\ \right]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6}\ \right]$	33^{+13}_{-9}	25

JHEP 07 (2018) 127