Funded by

German Research Foundation

Higgs-boson production in top-quark fragmentation

Colomba Brancaccio Based on: JHEP 08 (2021) 145

The 19th Workshop of the LHC Higgs Working Group November 28th, 2022

Introduction

Conclusions

HAPPY BIRTHDAY HIGGS BOSON

CMS collaboration, '12

HIGGS BOSON PRODUCTION MODES

LHC Higgs Working Group, '17 ATLAS, '18 CMS, '18

PHENOMENOLOGICAL RELEVANCE OF $t\bar{t}H$

The ttH production is key for assessing Higgs boson properties:

- Provides direct access to the top-Higgs Yukawa coupling
 Strongest coupling of the SM
- Allows to probe the <u>CP structure</u> of the Higgs boson
 → A CP-odd component would be an indication of new physics

Conclusions

CURRENT THEORETICAL DESCRIPTION

Goal

Computing the fagmentation functions to estimate higher order QCD corrections to $pp \rightarrow t\bar{t}H$ at high $p_{T,H}$.

t ightarrow tH fragmentation

- $\checkmark\,$ LO top-Higgs FF, 1
- \checkmark NLO top-Higgs FF in the limit $m_{H}^{2}\ll m_{t}^{2}\ll \hat{s}$ and based on soft-gluon approximation, ²

 $\checkmark~$ NLO top-Higgs FF. 3

¹Braaten, Zhang, '16 ² Dawson, Reina, '98 ³ <u>CB</u>, Czakon, Generet, Krämer, '21 For more details on state-of-art $t\bar{t}H$ higher order corrections stay tuned for Chiara's talk!

FINAL STATE FACTORISATION

Hard scattering and collinear emission factorise in the collinear limit:

$$d\hat{\sigma}_{q\bar{q}\to t\bar{t}H}(p_q, p_{\bar{q}}, p_H) = \int_0^1 dz \ d\tilde{\sigma}_{q\bar{q}\to t\bar{t}}(p_q, p_{\bar{q}}, p_t; \mu) D_{t\to H}(z; \mu)$$

with $z = \frac{n \cdot p_H}{n \cdot p_t}$, $n^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, 1)$ light-cone vector in the Higgs direction.

♦ Analogous to the initial state factorisation (PDFs). ♦ $D_{t \rightarrow H}(z; \mu)$ can be perturbatively computed.

FRAGMENTATION APPROACH

- ♦ Good approximation at large $p_{T,H}$ → errors decrease to below 5% for $p_{T,H}$ > 600 GeV.
- ♦ Enables to resum logarithms at high p_{T,H} → necessary for future colliders.

$t \rightarrow H$ fragmentation function

DEFINITION OF THE FRAGMENTATION FUNCTION

Wilson Lines

This definition is gauge invariant!

Collins, Soper, '82

EXAMPLE: THE LO FRAGMENTATION FUNCTION

Applying the definition introduce in the previous slide, the LO fragmentation $D_{t \rightarrow H}$ reads:

$$D_{t \to H} = \frac{z^{d-3}}{4\pi} \int \frac{d^d p_t}{(2\pi)^d} (2\pi) \delta^+ (p_t^2 - m_t^2) (2\pi) \delta^+ (p_H^+ / z - (p_t + p_H)^+) \frac{y_t^2 \tilde{\mu}^{2\epsilon}}{2N_c} \\ \times \sum_{spins, colors} Tr \left[\not{\!\!\!/} \frac{\not{\!\!\!/}_t + \not{\!\!\!/}_H + m_t}{(p_t + p_H)^2 - m_t^2} (\not{\!\!\!/}_t + m_t) \frac{\not{\!\!\!/}_t + \not{\!\!\!/}_H + m_t}{(p_t + p_H)^2 - m_t^2} \right].$$

EXAMPLE: THE LO FRAGMENTATION FUNCTION

Using reverse unitarity, the phase-space becomes a loop integral

Anastasiou, Melnikov, '02

THE NLO FRAGMENTATION FUNCTION CONTRIBUTIONS

Real corrections

DIFFERENTIAL EQUATIONS METHOD

- Reduction to MIs performed by using the software FIRE¹
- A system of first order linear differential equations² for the MIs can be derived:

$$\partial_{x_i} \vec{f}(\vec{x},\epsilon) = A_{x_i}(\vec{x},\epsilon) \vec{f}(\vec{x},\epsilon).$$

♦ It is possible to choose a basis of MIs, the **Canonical basis**³, such that: $d\vec{f}(\vec{x},\epsilon) = (\epsilon) dA(\vec{x}) \vec{f}(\vec{x},\epsilon),$

with

$$dA(\vec{x})_{ij} = \sum_{k} c_{ijk} \left(dlog (\alpha_k(\vec{x})) \right).$$

The solution of the differential equations system is:

$$\vec{f}(\vec{x},\epsilon) = \operatorname{Pexp}\left[\epsilon \int_{\gamma} \mathrm{d}\tilde{A}(\vec{x}')\right] \vec{f}(\vec{x}_0,\epsilon).$$

¹Smirnov, Chukharev, '20 ² Kotikov, '91 ³ Henn, '13

CANONICAL BASIS FOR VIRTUAL CORRECTIONS

- Generic canonical master: $f_i^{\text{virt}} = \epsilon^{n_i} B_i(m_t, m_h, z) T_i^{\text{virt}}$
- Semi-algorithmic approach:
 - $\checkmark T_i^{\text{virt}}$ found by maximizing symmetries,
 - ✓ $B_i(m_t, m_h, z)$ found by applying Magnus transformations.

Pre-canonical T_i^{virt} :

CANONICAL BASIS FOR VIRTUAL CORRECTIONS

- Generic canonical master: $f_i^{\text{virt}} = \epsilon^{n_i} B_i(m_t, m_h, z) T_i^{\text{virt}}$.
- Semi-algorithmic approach:
 - $\checkmark T_i^{\text{virt}}$ found by maximizing symmetries,
 - ✓ $B_i(m_t, m_h, z)$ found by applying Magnus transformations.

Canonical form for MIs of the virtual topology:

$$\begin{split} f_{1}^{virt} &= \epsilon^{2} \ n \cdot p_{h} \ T_{1}^{virt}, & f_{5}^{virt} &= \epsilon^{2} \ n \cdot p_{h} \ T_{5}^{virt}, \\ f_{2}^{virt} &= \epsilon^{2} m_{h} \sqrt{4m_{t}^{2} - m_{h}^{2}} \ n \cdot p_{h} \ T_{2}^{virt}, & f_{6}^{virt} &= \epsilon^{2} \ \frac{1 - z}{z} \ (n \cdot p_{h})^{2} \ T_{6}^{virt}, \\ f_{3}^{virt} &= \epsilon^{3} \ (n \cdot p_{h})^{2} \ T_{3}^{virt}, & f_{7}^{virt} &= \epsilon^{2} m_{h} \sqrt{4m_{t}^{2} - m_{h}^{2}} \ n \cdot p_{h} \ T_{7}^{virt}, \\ f_{4}^{virt} &= \epsilon^{2} \ n \cdot p_{h} \ T_{4}^{virt}, & f_{8}^{virt} &= \epsilon^{3} \ n \cdot p_{h} \ T_{7}^{virt}. \end{split}$$

Conclusions

MASTER INTEGRALS RESULTS

$$\begin{split} I_{0,0,1,1,1,1,1} &= -\frac{1}{4\epsilon^2} \ln(z) + \frac{1}{\epsilon} \Big\{ -\operatorname{Re} \left[\operatorname{Li}_2 \left(\frac{z}{x^+} \right) \right] - \frac{1}{8} \arg^2 \left(\frac{x^+}{x^-} \right) - \frac{1}{8} \ln^2(1-r) - \frac{1}{8} \ln^2(r) - \frac{1}{8} \ln^2(1-z) - \frac{1}{8} \ln^2(z) - \frac{1}{18} \ln^2(z) - \frac{1}{18$$

12

SIMPLIFYING POLYLOGARITHMIC EXPRESSIONS WITH SYMBOLS

Symbols (S) were used as a systematic way of simplifying the polylogarithms appearing in the MIs analytic expressions.

Definition

n-1 times

- $\bullet \ \dots \otimes \ln(x \cdot y) \otimes \dots = \ (\dots \otimes \ln(x) \otimes \dots) + (\dots \otimes \ln(y) \otimes \dots),$
- $S(\pi^n) = 0$ with $n \ge 2$,
- Symbols are unique up to $\sim \pi^n$.

SIMPLIFYING POLYLOGARITHMIC EXPRESSIONS WITH SYMBOLS

Symbols (S) were used as a systematic way of simplifying the polylogarithms appearing in the MIs analytic expressions.

Definition

n-1 times

- $\bullet \dots \otimes \ln(x \cdot y) \otimes \dots = (\dots \otimes \ln(x) \otimes \dots) + (\dots \otimes \ln(y) \otimes \dots),$
- $S(\pi^n) = 0$ with $n \ge 2$,
- Symbols are unique up to $\sim \pi^n$.

Example

$$S(-\operatorname{Li}_{2}(x) - \ln(1-x)\ln(x) + \frac{\pi^{2}}{6})$$

$$=\ln(1-x) \otimes \ln(x) - (\ln(1-x) \otimes \ln(x) + \ln(x) \otimes \ln(1-x)) + 0$$

$$= -\ln(x) \otimes \ln(1-x)$$

$$= S(\operatorname{Li}_{2}(1-x))$$

$$Li_2(1-x) = -Li_2(x) - \ln(1-x)\ln(x) + A\pi^2$$

 $A = \frac{1}{6} \rightarrow$ Euler's reflection formula

Goncharov, '09

Duhr, Gangl, Rhodes,'12

 $t \rightarrow H$ fragmentation function 0000000000000

Conclusions

COLLINEAR RENORMALIZATION

The bare $t \rightarrow h$ fragmentation function:

$$D_{h \to h}^{B} = \delta(1-z) + \mathcal{O}(y_{t}^{2})$$
$$D_{t \to h}^{B}(z) = (Z_{th} \otimes D_{h \to h})(z) + (Z_{tt} \otimes D_{t \to h})(z) + \mathcal{O}(y_{t}^{2}\alpha_{s}^{2}, y_{t}^{4}).$$

The renormalization constants in terms of splitting functions are:

$$\begin{split} Z_{th}(z) &= \frac{y_t^2}{16\pi^2} \frac{1}{\epsilon} P_{th}^{(0)}(z) \qquad ? \\ &+ \frac{y_t^2}{16\pi^2} \frac{\alpha_s}{2\pi} \left(\underbrace{\frac{1}{2\epsilon} P_{th}^{(1)}(z)}_{\ell t} + \underbrace{\frac{1}{2\epsilon^2} (P_{qq}^{(0)} \otimes P_{th}^{(0)})(z)}_{\ell t} - \underbrace{\frac{\beta_{th}^{(0)}}{4\epsilon^2} P_{th}^{(0)}(z)}_{\ell t} \right) \\ &+ \mathcal{O}(y_t^2 \alpha_s^2, y_t^4), \\ Z_{tt}(z) &= \delta(1-z) + \underbrace{\frac{\alpha_s}{2\pi} \frac{1}{\epsilon} P_{qq}^{(0)}}_{\ell t} + \mathcal{O}(\alpha_s^2, y_t^2). \end{split}$$

 $P_{qq}^{(0)}$, $P_{th}^{(0)}$ known $\rightarrow P_{th}^{(1)}$ derived as a by-product of our computation.

 $t \rightarrow H$ fragmentation function 00000000000

Conclusions

SPLITTING FUNCTION RESULTS

$$\begin{split} P_{th}^{(0)T}(z) &= z \\ \hline P_{th}^{(1)T}(z) &= C_F \left[-8z \, Li_2(z) + z \, ln^2(1-z) - \frac{1}{2}z \, ln^2(z) + 3z \, ln(1-z) \right. \\ &- 4z \, ln(z) \, ln(1-z) + \left(-1 + \frac{1}{2}z \right) \, ln(z) + \left(-\frac{13}{2} + 15z \right) \right] \\ \hline P_{gh}^{(1)T}(z) &= 2T_F \left[2(-3 + 2z + z^2) - (1 + 5z) \, ln(z) + z \, ln^2(z) \right] \end{split}$$

 $t \rightarrow H$ fragmentation function 000000000

$\overline{\mathrm{D}_{t ightarrow H}}$ and $\overline{\mathrm{D}}_{g ightarrow H}$ fragmentation

Conclusions

CONCLUSIONS

SUMMARY

- Analytic computation of $D_{t \to H}(z)$ fragmentation at $\mathcal{O}(y_t^2 \alpha_s)$,
- Analytic computation of $D_{g \to H}(z)$ fragmentation at $\mathcal{O}(y_t^2 \alpha_s)$,
- ♦ LO $pp \rightarrow t\bar{t}H$ approximated with errors < 5% for $p_{T,H}$ > 600 GeV.

OUTLOOK

- Improving the NLO approximation of the *t*t *H* production,
- Use the formalism to resum large logs appearing in *t*tH production.

THEORY STATUS OF $tar{t}H$ production

Next-to-leading order:

NLO QCD corrections [Beenakker, Dittmaier, Kramer, Plumper, Spira, Zerwas, '01]

[Dawson, Orr, Reina, Wackeroth, '01]

NLO EW and QCD corrections [Frederix, Frixione, Hirschi, Pagani, Shao, Zaro, '14]

[Zhang, Ma, Zhang, Chen, Guo, '15]

Next-to-leading order + top-quark decays:

NLO+PS [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, '11]

[Garzelli, Kardos, Papadopoulos, Trocsanyi, '11]

[Hartanto, Jager, Reina, Wackeroth, '15]

[Maltoni, Pagani, Tsinikos, '16]

- NWA [Zhang, Ma, Zhang, Chen, Guo, '14]
- full off-shell effects in the di-lepton decay channel

[Denner, Feger, Lang, Pellen, Uccirati, '15-'17]

+ Higgs boson decays in the NWA

[Stremmer, Worek, '22]

THEORY STATUS OF $t\bar{t}H$ production

Next-to-leading order:

NLO QCD corrections [Beenakker, Dittmaier, Kramer, Plumper, Spira, Zerwas, '01]

[Dawson, Orr, Reina, Wackeroth, '01]

NLO EW and QCD corrections [Frederix, Frixione, Hirschi, Pagani, Shao, Zaro, '14]

[Zhang, Ma, Zhang, Chen, Guo, '15]

Beyond next-to-leading order:

NLO+NNLL (soft gluons) [Kulesza, Motyka, Schwartländer, Stebel, Theeuwes, '16]

[Broggio, Ferroglia, Frederix, Pecjak, Signer, Yang, Tsinikos, '16]

NNLO in soft Higgs boson approximation

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini, '22]

THE HIGH- $p_{\mathrm{T,H}}$ REGIME

	$s[{ m TeV}]$	$\sigma [{ m fb}]$	$\sigma_{P_{\mathrm{T},H}>600\mathrm{GeV}}\mathrm{[fb]}$	$\mathcal{L}\left[\mathbf{f}\mathbf{b}^{-1} ight]$	\boldsymbol{N}	$N_{P_{\mathrm{T},H}>600\mathrm{GeV}}$
LHC	13	580	0.9	79.8	$4.6\cdot 10^4$	72
HL-LHC	14	690	1.2	$3 \cdot 10^{3}$	$2 \cdot 10^{6}$	$3.6 \cdot 10^{3}$
HE-LHC	27	$2.8 \cdot 10^{3}$	12	$10 \cdot 10^{3}$	$2.8\cdot 10^{10}$	$1.2 \cdot 10^{5}$
FCC hh	100	$2.8\cdot 10^4$	390	$30 \cdot 10^{3}$	$8.4\cdot10^{11}$	$1.2 \cdot 10^{7}$

The LO $pp \rightarrow t\bar{t}H$ cross section is decomposed as:

$$\begin{split} \mathrm{d}\hat{\sigma}_{pp \to t\bar{t}H}(P) &\approx \underbrace{\mathrm{d}\tilde{\sigma}_{pp \to t\bar{t}H}(P,\mu)}_{\text{Direct Contribution}} + \underbrace{2\int_{0}^{1}\mathrm{d}z\,\mathrm{d}\tilde{\sigma}_{pp \to t\bar{t}}(p=P/z)\mathrm{D}_{t \to H}(z,\mu)}_{\text{Fragmentation Contribution}} \,. \end{split}$$

The direct (infrared-safe) contribution is computed as:

$$\begin{split} \mathrm{d}\tilde{\sigma}_{pp \to t\bar{t}H}(P,\mu) &\approx \lim_{m_t \to 0} \Big(\lim_{m_H \to 0} \mathrm{d}\hat{\sigma}_{pp \to t\bar{t}H}(P) \\ &- 2 \int_0^1 \mathrm{d}z \, \mathrm{d}\tilde{\sigma}_{pp \to t\bar{t}}(p = P/z) \lim_{m_H \to 0} \mathrm{D}_{t \to H}(z,\mu) \Big). \end{split}$$

The Dirac δ distribution can be replaced by the imaginary part of an effective propagator:

$$\operatorname{Disc}_{z}\left(\frac{1}{z}\right) = \lim_{\epsilon \to 0} \left(\frac{1}{z - i\epsilon} - \frac{1}{z + i\epsilon}\right)$$
$$= \lim_{\epsilon \to 0} \left(\frac{z + i\epsilon}{(z - i\epsilon)(z + i\epsilon)} - \frac{z - i\epsilon}{(z - i\epsilon)(z + i\epsilon)}\right)$$
$$= \lim_{\epsilon \to 0} \left(\frac{2i\epsilon}{(z - i\epsilon)(z + i\epsilon)}\right)$$
$$= 2i \lim_{\epsilon \to 0} \left(\frac{\epsilon}{z^{2} - \epsilon^{2}}\right)$$
$$= 2\pi i \,\delta(z)$$

$$\delta(z) = \frac{1}{2\pi i} \lim_{\epsilon \to 0} \left(\frac{1}{z - i\epsilon} - \frac{1}{z + i\epsilon} \right)$$

DIFFERENTIAL EQUATIONS METHOD

- A generic MI is a loop integral which can be represented as a function of the kinematic invariants *x* and the dimensional regulator *ε*: *f*(*x*, *ε*).
- MI derivatives with respect to each kinematic invariant x_i can be computed by introducing the differential operators:

$$O_{jk} = p_j^{\mu} \sum_{i=1}^n \frac{\partial x_i}{\partial p_k^{\mu}} \frac{\partial f(\vec{x}, \epsilon)}{\partial x_i} = \sum_{i=1}^n a_{i,jk}(x_i) \frac{\partial f(\vec{x}, \epsilon)}{\partial x_i}.$$

A system of first order linear differential equations for the MIs can be derived:

$$\partial_{x_i} \vec{f}(\vec{x},\epsilon) = A_{x_i}(\vec{x},\epsilon) \, \vec{f}(\vec{x},\epsilon).$$

CANONICAL BASIS APPROACH

♦ It is possible to choose a basis of MIs, the **Canonical basis**, such that: $d\vec{f}(\vec{x},\epsilon) = (\epsilon) dA(\vec{x}) \vec{f}(\vec{x},\epsilon),$

with

$$dA(\vec{x})_{ij} = \sum_{k} c_{ijk} \left(dlog (\alpha_k(\vec{x})). \right)$$

The solution of the differential equations system is:

$$\vec{f}(\vec{x},\epsilon) = \operatorname{Pexp}\left[\epsilon \int_{\gamma} \mathrm{d}\tilde{A}(\vec{x}')\right] \vec{f}(\vec{x}_0,\epsilon).$$

Canonical MIs can be expanded in Taylor series around $\epsilon = 0$:

$$\vec{f}(\vec{x},\epsilon) = \sum_{k=0}^{\infty} \epsilon^k \vec{f}^{(k)}(\vec{x}) \to \boxed{\vec{f}^{(k)}(\vec{x}) = \int_{\gamma} d\tilde{A}(\vec{x}') \vec{f}^{(k-1)}(\vec{x}') + \vec{f}^k(\vec{x}_0,\epsilon)}$$

Henn, '13

A possible parametrization for the integration path γ is $\gamma = \cup \gamma_i$ with:

$$\gamma_{i}(\theta) = x'_{k}(\theta) = \begin{cases} x_{k}, \ k < i \\ x_{k}^{0} + \theta(x_{k} - x_{k}^{0}), \ k = i \end{cases} \xrightarrow{i = 2} \\ x_{k}^{0}, \ k > i \end{cases} \xrightarrow{(x_{1}, x_{2})}$$

Setting the boundary condition to $\vec{x}_0 = (0, ..., 0)$

$$\vec{f}^{(k)}(\vec{x}) = \int_{(0,...,0)}^{(x_1,...,0)} A_1(\vec{x}) \vec{f}^{(k-1)}(\vec{x}) dx_1 + \dots + \int_{(x_1,...,x_{n-1},0)}^{(x_1,...,x_n)} A_n(\vec{x}) \vec{f}^{(k-1)}(\vec{x}) dx_n + \vec{f}^{(k)}(\vec{0})$$

Since the $A(\vec{x})$ is in dlog-form:

$$\vec{f}^{(k)}(x) = \underbrace{\int_{-\infty}^{x} \frac{dt_1}{t_1 - a_k} \dots \int_{-\infty}^{t_{k-2}} \frac{dt_{k-1}}{t_{k-1} - a_2} \int_{-\infty}^{t_{k-1}} dt_k \frac{f^{(0)}}{t_k - a_1}}_{\text{GPL of weight } k \to G(a_1, \dots, a_k; x)}$$

Goncharov, '01

• **Rationalizing** roots:
$$m_t^2 \rightarrow \frac{m_h^2}{4}(-\tau^2+1)$$
.

Canonical matrix in dlog-form:

$$\begin{split} \mathrm{d} A_{\tau} = & M_1 \operatorname{dlog} \left(\tau \right) + M_2 \operatorname{dlog} \left(1 - \tau \right) + M_3 \operatorname{dlog} \left(1 + \tau \right) \\ &+ M_4 \operatorname{dlog} \left(2 - z \left(1 - \tau \right) \right) + M_5 \operatorname{dlog} \left(-2 + z \left(1 + \tau \right) \right) \\ &+ M_6 \operatorname{dlog} \left(-4 + z \left(3 + \tau^2 \right) \right) \end{split}$$

where M_i are rational 8×8 matrices.

- Solution given in terms of GPLs.
- Integration constants matched in limit $m_t^2 \to \infty$.

SIMPLIFYING POLYLOGARITHMS EXPRESSIONS WITH SYMBOLS

- Take the symbol of the initial form
- Use symbol properties to simplify the expression
- Write the simplified expression in terms of polylogaritmhs

 Exploit that different types of contributions satisfy different
 symmetry relations

Example: At weight 2, there are 4 types of contributions:

 $Li_2(a), \quad \ln(a)\ln(b), \quad \pi\ln(a), \quad \pi^2,$

with

$$\begin{split} \mathcal{S}(\mathrm{Li}_2(a)) &= -\ln(1-a) \otimes \ln(a) \\ \mathcal{S}(\ln(a)\ln(b)) &= \ln(a) \otimes \ln(b) + \ln(b) \otimes \ln(a). \end{split}$$

SOFTWARES - A SUMMARY

- ♦ Integration in term of GPLs and simplification with symbols → PolyLogTools

- Fragmentation convolution with massless cross section
 STRIPPER
- Comparison with NLO $t\bar{t}H$ production \rightarrow MADGRAPH5