Top mass renormalization scheme uncertainties in Higgs cross sections

Javier Mazzitelli

PAUL SCHERRER INSTITUT

Higgs WG General Meeting, November 29th 2022

Top mass uncertainties in Higgs XS

• Top quark crucial in Higgs phenomenology:

Largest coupling to Higgs — Main contribution in ggF loop

- (Di-)Higgs XS via ggF is a function of the top-quark mass
- Experimental uncertainties in the top mass are propagated to Higgs XS
- Theoretical uncertainties in the top-quark mass are relevant as well!
- Ambiguities in the mass definition have an impact (uncertainties) in Higgs observables

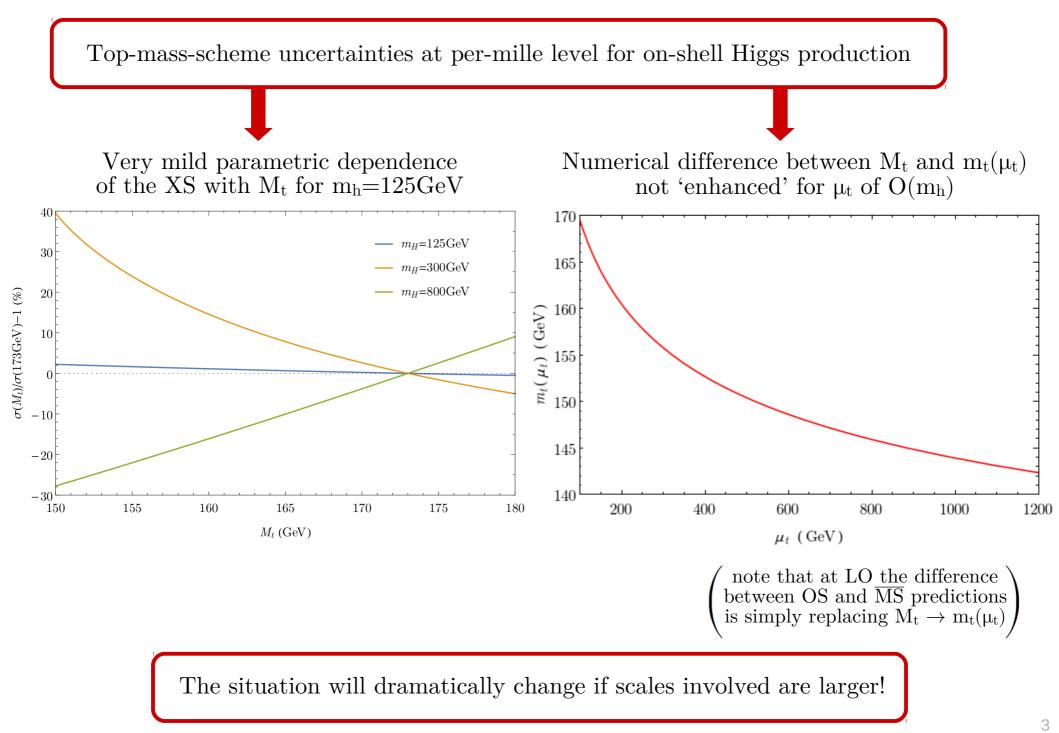
The arbitrariness in scheme (and scale) choice for the renormalization of the top-quark mass leads to uncertainties in our theory predictions

1

Top mass renormalization schemes

- The top-quark mass is subject to renormalization, and therefore it suffers from a scheme (and in general a scale) ambiguity
- Most commonly used for the top-quark mass: **pole scheme**

Pole of the quark propagator is fixed to the same value, the **pole mass** M_t , at any order in perturbation theory


- 'Natural' choice when considering on-shell top quark production
- Alternatively, we can remove only the singular contributions in dim. reg.: \overline{MS} scheme

Pole of the quark propagator receives corrections at any order The $\overline{\text{MS}}$ mass $m_t(\mu_t)$ differs from M_t and depends on arbitrary scale μ_t

- The pole mass is affected by a non-perturbative ambiguity of $O(\Lambda_{QCD})$, absent in the \overline{MS} mass
- The $\overline{\text{MS}}$ mass depends on an additional arbitrary scale, which leads to further uncertainties

A priori, no clear reason to prefer one scheme over the other for the tops inside the loop

Top-mass-scheme uncertainties

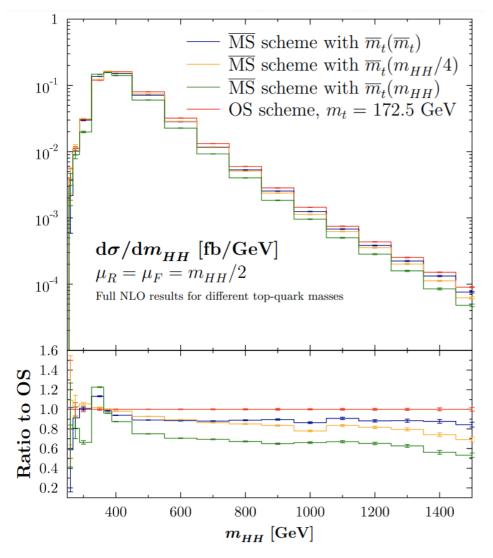
Top-mass-scheme uncertainties: H*

- Issue pointed out a few years ago in the context of di-Higgs production, [Baglio et al., 1811.05692] but also affecting off-shell Higgs (production and decay) and H+jet
- NLO (LO) studies have been performed for H* and HH (H+jet) [Baglio et al., 1811.05692, 2003.03227] [Jones and Spira, 2003.01700]

 $\left(t\bar{t}H cross section also has been studied using the <math>\overline{MS}$ scheme Aldaya Martin, Moch, Saibel $\left[Aldaya Martin, Moch, Saibel \right]$

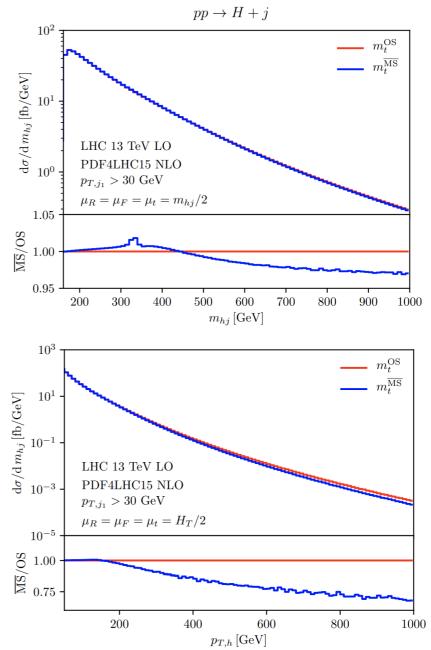
• NLO cross section for off-shell Higgs production: [Jones and Spira, 2003.01700]

 $\sigma(gg \to H^*)\Big|_{Q=125 \text{ GeV}} = 42.17^{+0.4\%}_{-0.5\%} \text{ pb}, \qquad \sigma(gg \to H^*)\Big|_{Q=300 \text{ GeV}} = 9.85^{+7.5\%}_{-0.3\%} \text{ pb}$

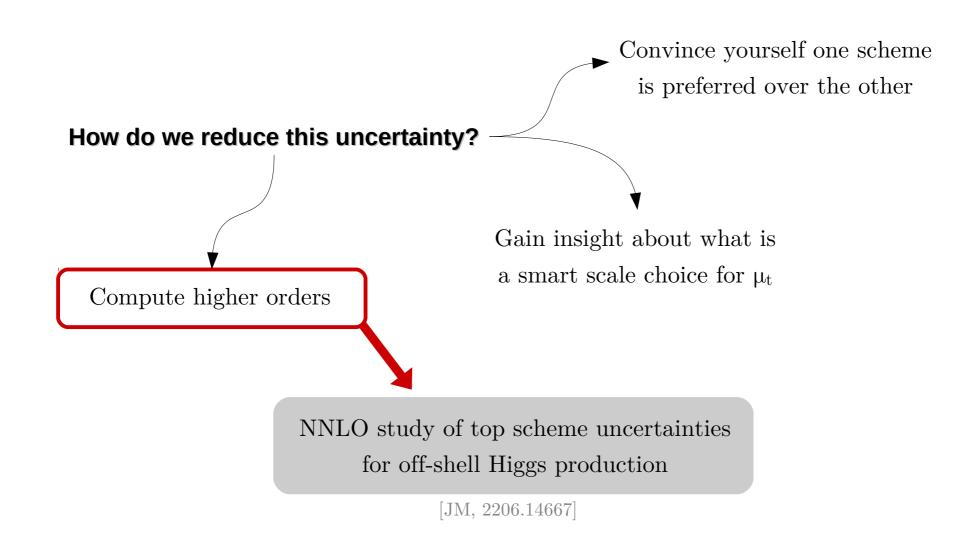

$$\begin{split} \sigma(gg \to H^*) \Big|_{Q=400 \text{ GeV}} &= 9.43^{+0.1\%}_{-0.9\%} \text{ pb}, \qquad \sigma(gg \to H^*) \Big|_{Q=600 \text{ GeV}} &= 1.97^{+0.0\%}_{-15.9\%} \text{ pb} \\ \sigma(gg \to H^*) \Big|_{Q=900 \text{ GeV}} &= 0.230^{+0.0\%}_{-22.3\%} \text{ pb}, \quad \sigma(gg \to H^*) \Big|_{Q=1200 \text{ GeV}} &= 0.0402^{+0.0\%}_{-26.0\%} \text{ pb} \end{split}$$

Central value: OS scheme

Uncertainty: envelope of \overline{MS} calculation with $\mu_t = \{Q/4, Q/2, Q, m_t(m_t)\}$


Top-scheme uncertainties are dominant for large invariant masses!

Top-mass-scheme uncertainties: HH and H+jet


- Large uncertainties, especially in the tail
- Impact also in the total cross section:

 $\sigma_{\rm NLO}(14 {\rm TeV}) = 32.81^{+4\%}_{-18\%} {\rm fb}$

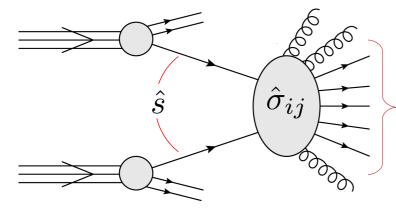
Uncertainties very important when large scales are involved, especially in the p_{T,h} tail

The way forward

Reaching NNLO for H*

- Difficult task: heavy top limit cannot be used for these studies!
- Recently Higgs production with full top mass dependence computed at NNLO

[Czakon, Harlander, Klappert, Niggetiedt]


• Results only for on-shell case, but NNLO virtuals for arbitrary mh, mt are public [Czakon, Niggetiedt]

We can use them to compute NNLOsv with full m_t dependence and any value of m_h

• We can obtain NNLOsv results for H^* production in both OS and \overline{MS} schemes

$$\begin{split} \bar{\sigma}^{(2)}(m_t(\mu_m);\mu_m,\mu_R,\mu_F) &= \left[\sigma^{(2)}(m;\mu_R,\mu_F) \\ &+ m \left(d^{(1)}(\mu_m) \,\partial_m \sigma^{(1)}(m;\mu_R,\mu_F) + \frac{1}{2} \left(d^{(1)}(\mu_m) \right)^2 \, m \,\partial_m^2 \sigma^{(0)}(m;\mu_F) \\ &+ d^{(2)}(\mu_m) \,\partial_m \sigma^{(0)}(m;\mu_F) + \beta_0 \, d^{(1)}(\mu_m) \ln \left(\frac{\mu_R^2}{\mu_m^2} \right) \partial_m \sigma^{(0)}(m;\mu_F) \right) \right]_{m=m_t(\mu_m)} \end{split}$$

Soft-virtual approximation

Final state $F = \{H, H^*, HH\}$ with invariant mass Q

- Calculation of total cross section much simpler in the soft limit!
- Universal structure: only process-dependent piece is encoded in the virtual corrections

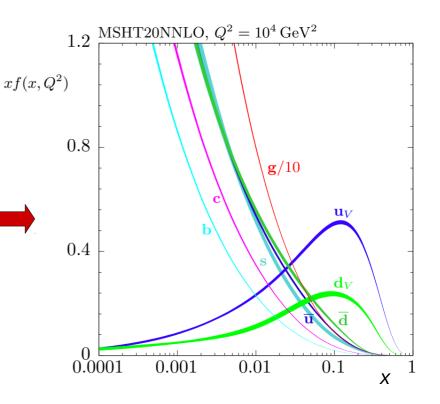
[de Florian, JM], [Catani, Cieri, de Florian, Ferrera, Grazzini]

• Why is it a good approximation?

PDFs (especially gluon) prefer low values of **x**

• Partonic energy tends to be close to the minimum: $\hat{s} = x_1 x_2 S \simeq Q^2$

predominantly only allowing for soft radiation

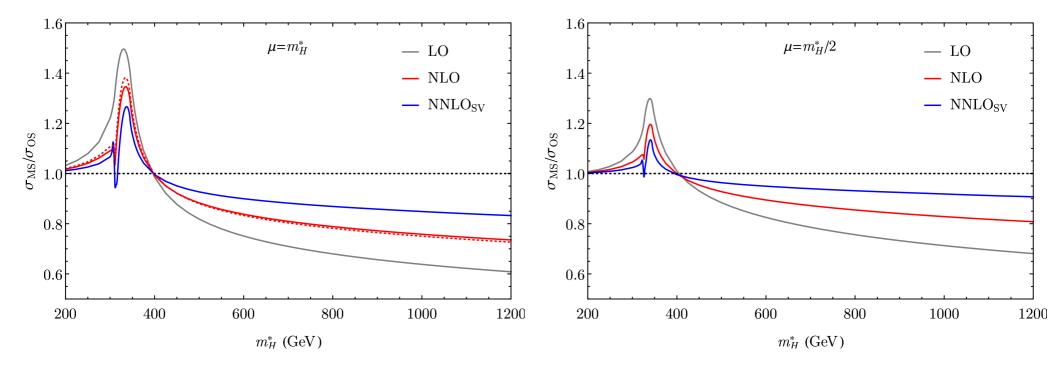

• SV-approx defined in Mellin space by dropping terms vanishing in large-N limit

We consider the variable

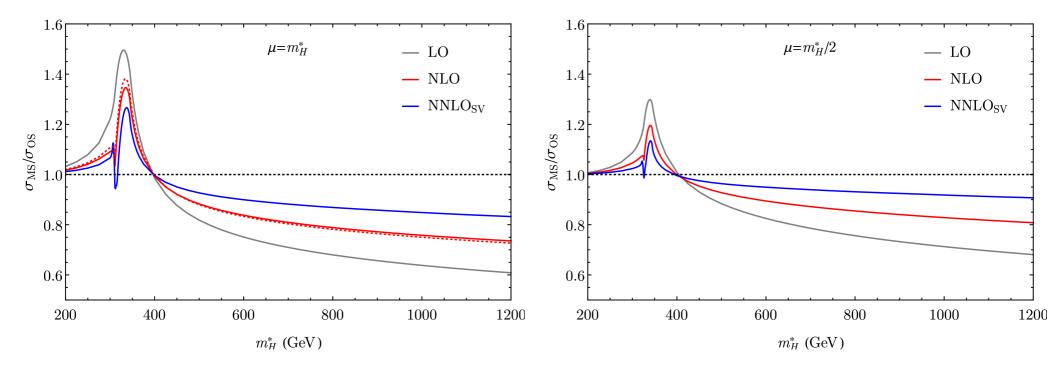
$$z = \frac{Q^2}{\hat{s}}$$

When additional radiation is **soft**, we have z~1

 $\begin{array}{c} Logarithmically\ enhanced\\ contributions\ in\ this\ limit\\ (more\ specifically\ on\ the\ conjugate\\ variable\ of\ z\ in\ Mellin\ space,\ N) \end{array}$

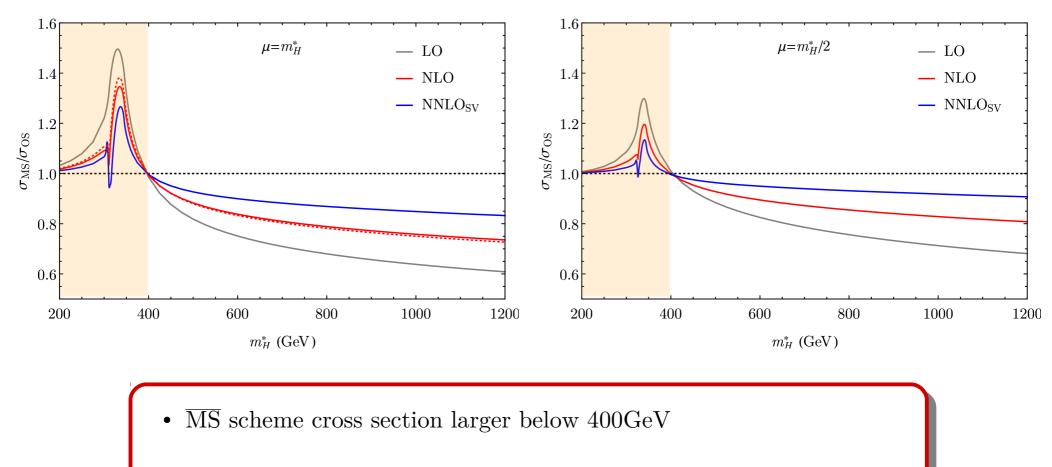

Setup of the calculation

- Off-shell Higgs boson production in 13 TeV pp collisions, pp \rightarrow H*
- Higgs virtuality m_{H}^* in range 200 GeV 1200 GeV
- Top mass: $M_t=172.GeV$ and $m_t(m_t)=162.9GeV$ (note we use a dynamic μ_t scale)
- PDF4LHC15_nnlo at every order
- Central scales set to $\mu_0 = m_{\rm H}^*/2$
- μ R, μ F and μ t varied by factor of 2, avoiding ratios larger than 2 (15-point variation)
- NNLO-SV defined in the following way:

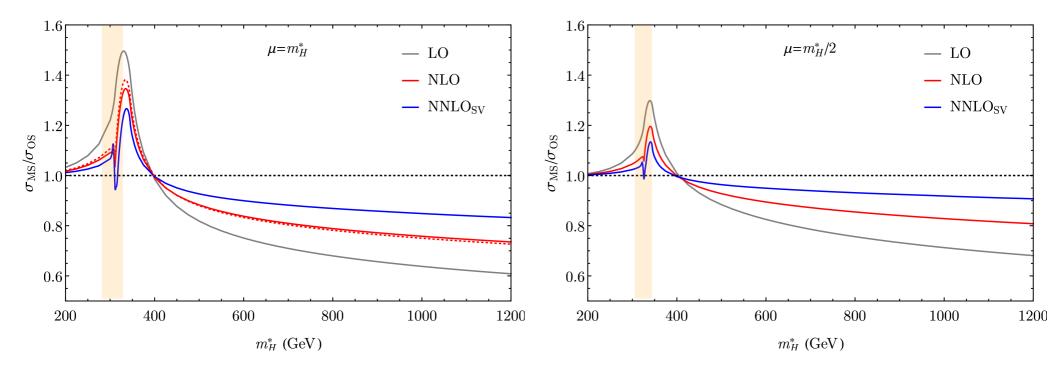

```
\sigma(\text{NNLO}_{\text{SV}}) = \sigma(\text{NLO}) + \Delta\sigma(\text{NNLO}_{\text{SV}})
```

• NLO computed using iHixs, NNLO piece with dedicated code performing SV approx

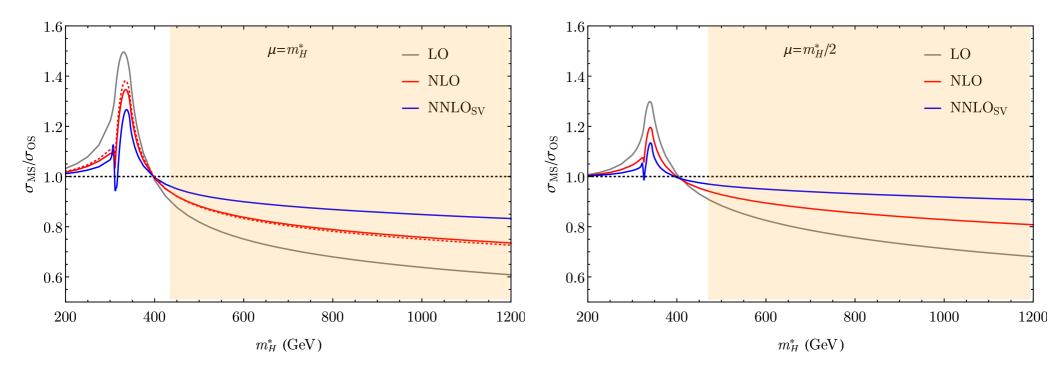
- + We compute the ratio of $\overline{\rm MS}$ and OS cross sections vs $m_{\text{H}}{}^{*}$ at each perturbative order
- For clarity, no scale variations included in these plots
- Validation: excellent agreement between NLO and NLOsv (red dashed)



- We compute the ratio of $\overline{\rm MS}$ and OS cross sections vs $m_{\text{H}}{}^{*}$ at each perturbative order
- For clarity, no scale variations included in these plots
- Validation: excellent agreement between NLO and NLOsv (red dashed)

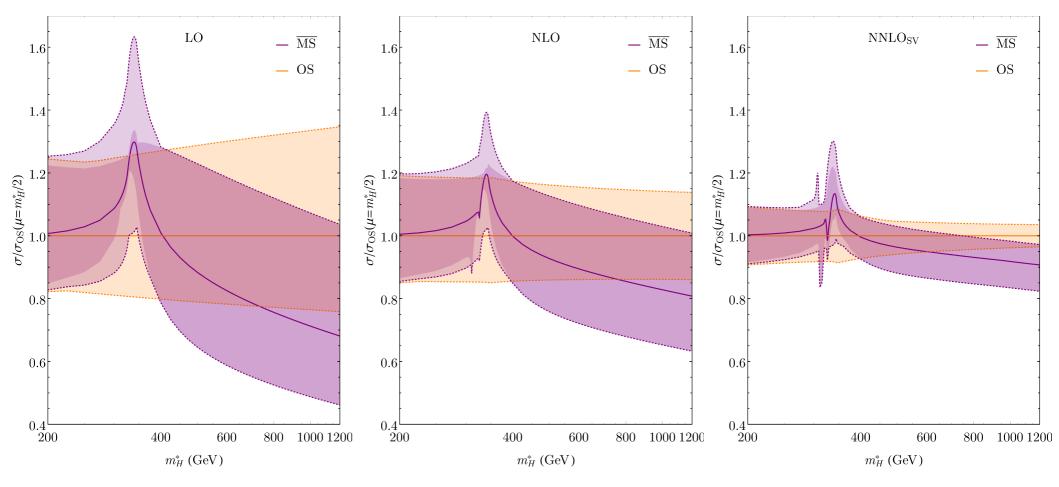

- Difference between the two schemes always reduced as we increase the order
- Larger differences for larger scale choice: higher scales means lower $m_t(\mu t)$

- We compute the ratio of $\overline{\rm MS}$ and OS cross sections vs $m_{\text{H}}{}^{*}$ at each perturbative order
- For clarity, no scale variations included in these plots
- Validation: excellent agreement between NLO and NLOsv (red dashed)


• Largest deviation: 50%, 35%, 27% at LO, NLO, NNLO for $\mu=m_{\rm H}*$, down to 30%, 20%, 13% at LO, NLO, NNLO for $\mu=m_{\rm H}*/2$

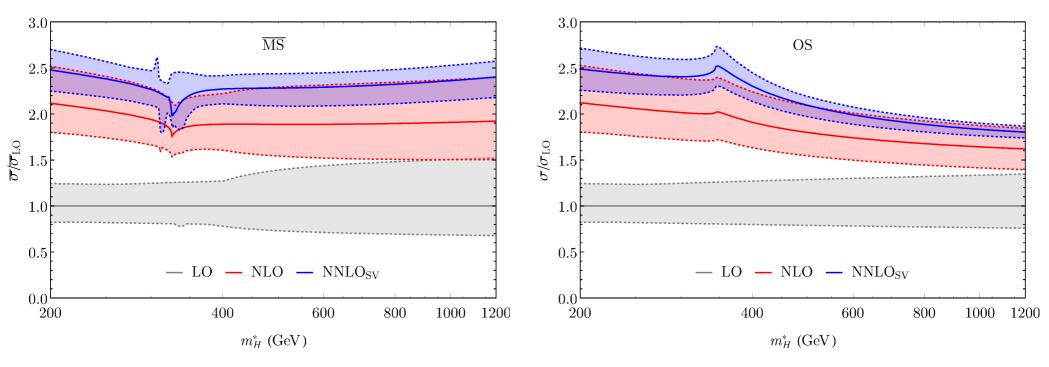
- We compute the ratio of $\overline{\rm MS}$ and OS cross sections vs $m_{\text{H}}{}^{*}$ at each perturbative order
- For clarity, no scale variations included in these plots
- Validation: excellent agreement between NLO and NLOsv (red dashed)

- NLO and NNLO curves present sudden variations close to $\mathrm{t}\overline{\mathrm{t}}$ threshold
- Traced back to large mass derivatives in $\mathrm{OS} \to \overline{\mathrm{MS}}$ conversion


- We compute the ratio of $\overline{\rm MS}$ and OS cross sections vs $m_{\text{H}}{}^{*}$ at each perturbative order
- For clarity, no scale variations included in these plots
- Validation: excellent agreement between NLO and NLOsv (red dashed)

- $\overline{\mathrm{MS}}$ cross section smaller in the tail
- Deviation at $m_{\text{H}}^*=1.2 \text{TeV}: -39\%$, -26%, -17% at LO, NLO, NNLO for $\mu=m_{\text{H}}^*$, down to -32%, -19%, -9% at LO, NLO, NNLO for $\mu=m_{\text{H}}^*/2$

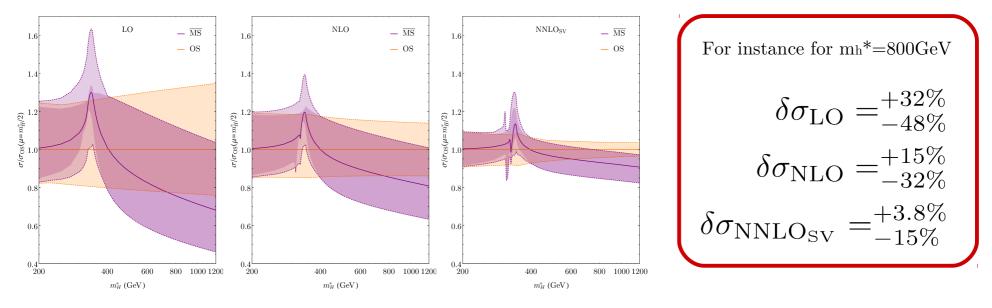
MS vs OS scheme: scale uncertainties


Central scale: $\mu_0 = m_{\rm H}^*/2$, 15-point variation (darker purple band: 7-point variation with $\mu_t = \mu_R$)

- Scale uncertainties largely reduced in both schemes when increasing order
- Sizeable overlap between $\overline{\mathrm{MS}}$ and OS bands, central values grow closer with h.o. corrections
- Independent variations of μt crucial to capture true uncertainty close to $t\bar{t}$ threshold

MS vs OS scheme: K-factors

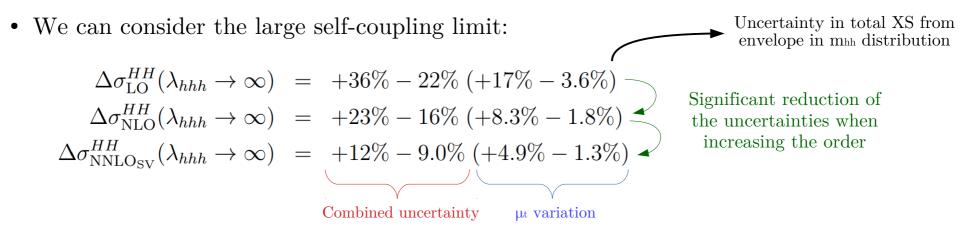
• We compare the K-factors to evaluate the quality of the perturbative convergence

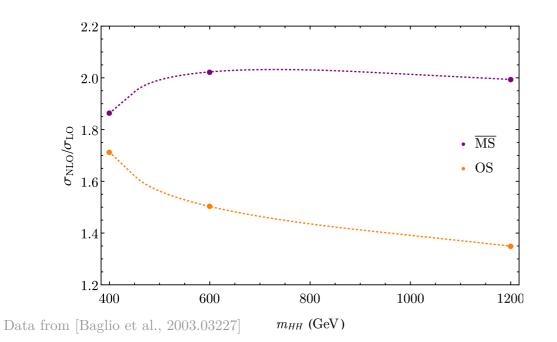

- Up to $t\bar{t}$ threshold both schemes have similar-sized corrections
- For large invariant masses the OS scheme converges much faster
- OS K-fac: 1.62 (NLO) and 1.11 (NNLO) vs $\overline{\text{MS}}$ K-fac: 1.92 (NLO) and 1.25 (NNLO) for mh*=1.2TeV
- Missing h.o. corrections expected to be larger in $\overline{\mathrm{MS}}$ scheme, and bringing both schemes closer
- OS scheme seems to be preferable choice for large invariant masses

Combination of uncertainties

• Most conservative approach: envelope of $\overline{\mathrm{MS}}$ (15-point) and OS (7-point) bands

Combined 'usual' μ_R and μ_F uncertainty with top mass scheme and scale uncertainty


- Alternative procedure: take 7-point OS prediction and add linearly μ_t -only variation
- Both approaches lead to quantitatively similar results
- Combined uncertainty significantly reduced at NNLOsv


• However they can still be overly conservative, e.g. in the m_h^* tail

What about di-Higgs?

- Full top-quark mass dependence at NNLO(sv) currently out of reach
- Up to NLO, qualitative features similar to off-shell Higgs production $(m_h^* \rightarrow m_{hh})$

• NLO K-factors in SM di-Higgs also seem to indicate better convergence of OS scheme

Analytic structure in high energy limit seems to lead to opposite conclusion...

Logs in QCD corrections to form factors:

$$\log \frac{m_t^2}{\hat{s}} \to \log \frac{\mu_t^2}{\hat{s}} + \frac{4}{3}$$
(OS) (MS)

[Baglio et al., 2003.03227] 14

Summary and Outlook

- Uncertainties arising from top-mass renormalization are relevant in Higgs observables
- Can become a dominant source if large scales are involved

Off-shell Higgs Di-Higgs Higgs pT tail

- First NNLO-accurate study of these uncertainties, for off-shell Higgs production
- Based on construction of NNLOsv cross section with full top mass dependence
- Significant differences between schemes, though compatible within uncertainties
- Higher-order corrections bring OS and $\overline{\mathrm{MS}}$ predictions closer to each other
- Substantial reduction of scheme and scale uncertainties at NNLOsv
- At large values of m_h^* the OS scheme presents smaller perturbative corrections

Preferred scheme

Than

• Similar indications for HH, though further studies are needed