

LHC BLM System readiness Summary of FW & SW changes

Machine Protection Panel

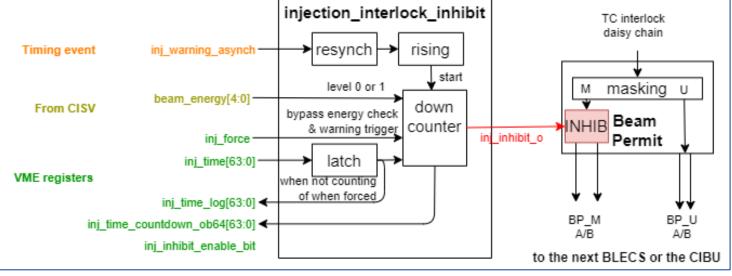
Mathieu Saccani (SY-BI-BL) on behalf of the BLM team 10/06/2022

BLM Checklist

10/06/2022

BLM LHC recent issues

- 1. VME Power supply failure on 12V (unused) in pt1
 - → Equipment replaced
- 2. Temperature issue (water cooling problem) in pt2 triggering optical link error interlocks.
 - → The alarms were not enabled, now all active
 - → CV has turned on the water flow to maximum
 - → Multiple cards have been exchanged to better resist higher temperature
 - → Need to change the temperature thresholds 5° C lower (30→ \sim 25°C)
- Weak optical links could trigger interlock if both redundant fail at the same time
 → Replaced 11 BLETC at surface and a few BLECF in the tunnel (preventive maintenance)
- 4. Sanity checks issue blocking OP before injection:
 - → Workaround: always play the whole sequence not just a subset
 - → Issue in the VMW slave core: needs a BLECS FW upgrade (scheduled for YETS)



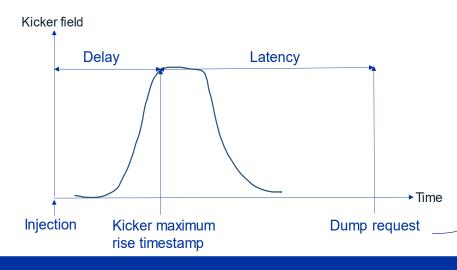
Blindable channels (inhibit at injection)

- Now present in <u>all crates</u>
- Disabled by default
- Acts only on maskable channels
- <u>Programable timer</u> per crate from injection warning (from BST + delay to be at injection)
- Inhibit the interlock output to BIC only (all running sums still active, all dump requests are logged)

Goals:

- 1. <u>Test the feature</u> with 12 bunches next week and <u>measure</u> the blind time needed
- 2. Select a first <u>set of channels</u> to blind (+adjust monitor factor)

Injection Interlock Inhibit FW Implementation

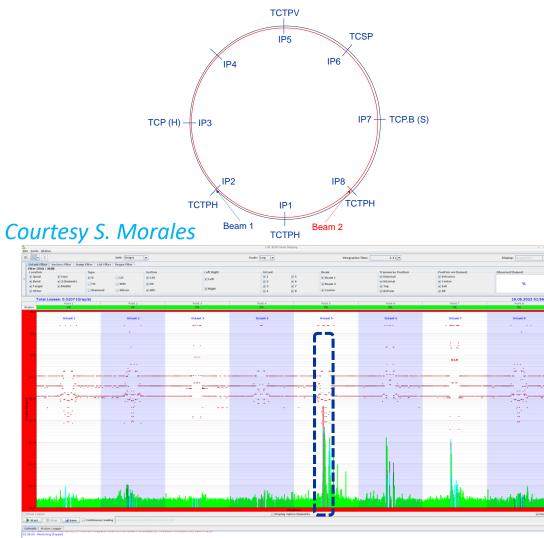

BLM beam test principle

Two tests performed in parallel on the 18/05/2022 by OP:

- Test 1: Interlock request functionality of the BLM crates
 - Procedure written by BL and played by OP
 - Aim to trigger as many BLM crates as possible
 - 1 collimators/beam closed initially and opened using threading sequence.
 - Injection of pilot bunch test at injection

Test 2: Interlock request system latency

- Latency must be less than 3 LHC turns (89 μs each)
- Post-analysis performed by BI-BL from NXCALS (automatized with a Python script)


Possible to perform both tests in parallel

Latency calculated for each triggered crate

Procedure in EDMS

BLM beam test result

Example: Triggering of B1 Dump in IP5 at TCTPV

- Selection of collimator orientation arbitrary
- Same collimator type per point for B1 and B2
- Most dumps from BLM central crate, maskable channels (OK)
- BLM latency below 3 LHC turns OK

FW & SW changes summary

FW

On the 4 optical links reception chains on the surface processing board:

- 1. Add input delay constraints for all data lines
- 2. Improve the clock domain crossing mechanism

All the rest of the HDL code remains the same (as v1.1.7).

This new firmware v1.2.0 is deployed and tested with beam.

SW

To avoid losing CTIM events (XPOC and PM missing data) because of CPU high activity:

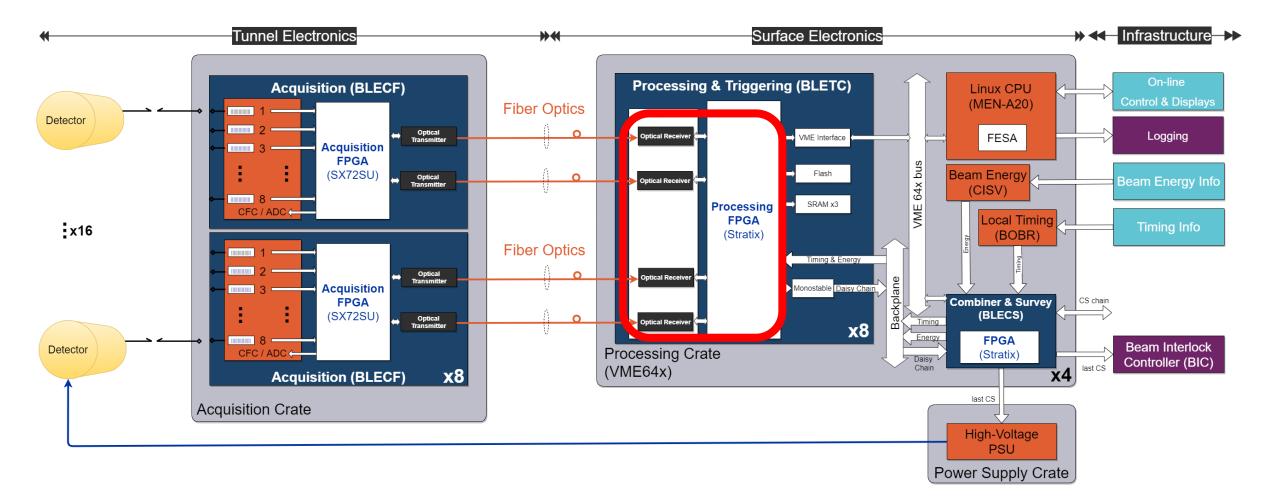
- 1. CTRP IRQ priority increase
- 2. FESA RT thread priority rescaled
- 3. In the future the CPU upgrade would give more margins (profiling & statistics under development)

More details regarding FW & SW changes

MPP - LHC BLM System Readiness

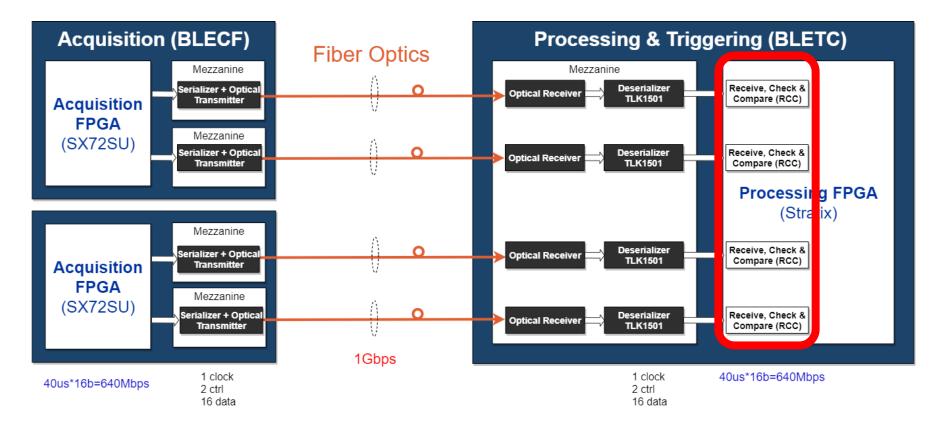
Annex

FW Changes


Optical link reception improvement

10/06/2022

LHC BLM Architecture


• 2 redundant optical links from the tunnel to the surface electronics

Optical links Architecture

- FW update in the BLETC (Threshold comparator) FPGA
- Only in the RCC (Receive, Check and Compare) block

Optical Link Data Reception

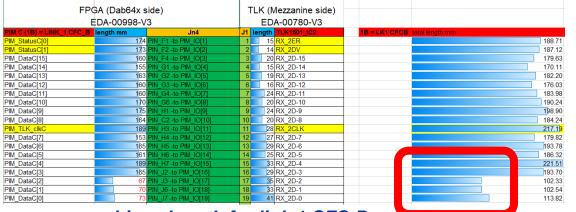

- Redundant link
- Protected by CRC32
- Frame ID counter

CID (card identity number)					
STATUS 1					
	STATUS 2				
Cou	Count 1		ADC 1		
ADC 1	Cou	int 2	ADC 2		
ADC 2		Count 3			
ADC 3			Count 4		
Count 4		ADC 4			
Coi	Count 5 A		C 5		
ADC 5	Cou	int 6	ADC 6		
AD	ADC 6		Count 7		
ADC 7		Count 8			
Count 8		ADC8			
FID (frame identity number)					
DAC1		DAC2			
DAC3		DAC4			
DAC5		DAC6			
DAC7		DAC8			
CRC					
CRC					
10.00 640000					

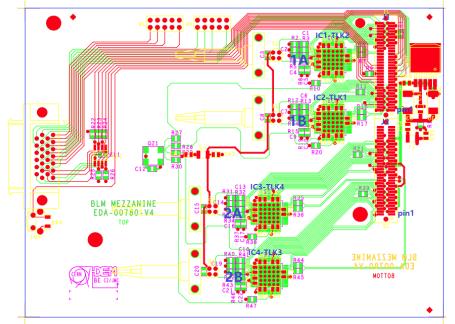
40us frame (20*16bits word)

TLK1501 deserializer

- 40MHz clock
- 2 control bits: StartOfFrame (SOF) + RestOfFrame (ROF)
- 16 data bits


Simulation example

- Each of the four TLK1501 generates its own 40MHz
- The TLK1501-FPGA lines not skew compensated (neither on the carrier nor on the mezzanine v4.0)



Optical Link Data Reception

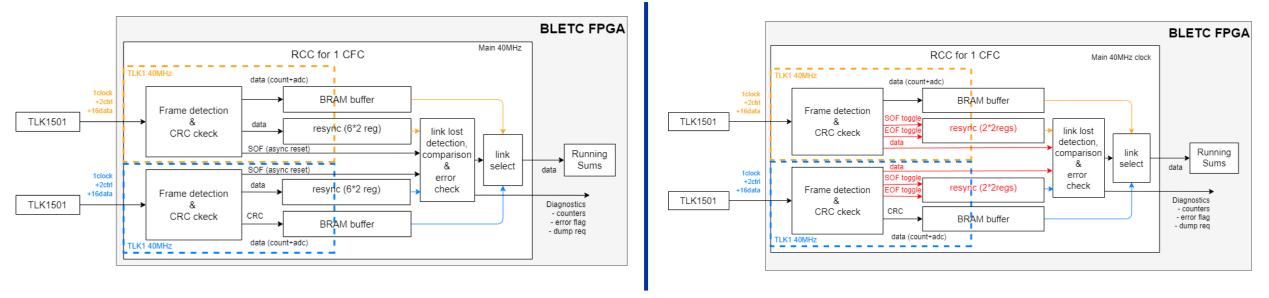
- Most of the installed mezzanines are v4.0
- Skew compensation introduced from mezzanine v5.0

Lines length for link 1 CFC-B

Mezzanine v4.0 layout

Solution compatible

Skew now partially compensated in the FPGA (input delay)


set_instance_assignment -name stratix_decrease_input_delay_to_internal_cells -to PIM_IO[11] on set_instance_assignment -name decrease_input_delay_to_input_register -to PIM_IO[17] off set_instance_assignment -name decrease_input_delay_to_input_register -to PIM_IO[18] off	with v5.0
Timing Analysis constraints added per individual lines (set_input delay)	
# min delay: Th (from TCLK docs) + data trace delay - clock delay	
<pre>set_input_delay -clock_fall -clock {virt_cfcB_lkl_clk_40} -min [expr \$TLK_TCO_min + \$cfcB_lkl_ctrl_0_delay - \$cfcB_lkl_clk_delay] </pre>	[get_ports {PIM_IO[1]}]
set_input_delay -clock_fall -clock {virt_cfcB_lk1_clk_40} -min [expr \$TLK_TCO_min + \$cfcB_lk1_ctrl_1_delay - \$cfcB_lk1_clk_delay]	[get_ports {PIM_IO[2]}]
set_input_delay -clock_fall -clock {virt_cfcB_lk1_clk_40} -min [expr \$TLK_TCO_min + \$cfcB_lk1_data_0_delay - \$cfcB_lk1_clk_delay]	[get_ports {PIM_IO[3]}]
set_input_delay -clock_fall -clock {virt_cfcB_lk1_clk_40} -min [expr \$TLK_TCO_min + \$cfcB_lk1_data_1_delay - \$cfcB_lk1_clk_delay]	[get_ports {PIM_IO[4]}]

Link 1B:

Data reception in HDL

- One clock domain per link for the frame detection and CRC check
- One BRAM per link for clock domain crossing
- A common error check and selection per redunded link
- Main modification => use synchronous SOF
 - Avoid asynchronous reset of counters in the main 40MHz domain
 - Reduces the number of resynchronization registers (anti-metastability)
 - Tested in simulation, in the lab for several days, then deployed in LHC on 17/05/2022

Annex

SW Changes

FESA + OS IRQ management

10/06/2022

MPP - LHC BLM System Readiness

Issue Description

Issue:

Millisecond event (PM and XPOC) missing from time to time in some random BLM crates. <u>JIRA-TIMING-4011</u> Other systems (SY-EPC-CCS) seemed to face kind of the same problem <u>JIRA-TIMING-4027</u>

Root cause:

- The CTR loses some CTIM events (separated by 125us) when the CPU activity is high even if the CTR event queue is not full.
- Was reproduced by BE-CEM&CSS
- No notification of interrupt loss in CTR driver (gateware problem?)
- The issue appeared after the migration to FESA3, where priorities are defined on a range [0-100] and no more by category/offset (LOW|NORMAL|HIGH / -2|-1|0|+1|+2)

Special thanks to Marine Gourber-Pace, Michel Arruat, Frederic William Hoguin & Stephane Deghaye

Workaround 1: Priorities

Increase the priority of the CTRP IRQ kernel thread

- JIRA-BIBML-2373
- This solution was implemented on the 01/06/2022
- It seems to solve the problem for now
- Need to be confirmed by N. Magnin (SY-ABT-BTC) with his XPOC logs

Implemented solution:

- 1. CTRP IRQ increase to 88 (instead of 87)
- 2. FESA RT thread priority rescaled in range [0:25] (instead of [0:70]), but the FESA precedence remains (same behavior)

		BLMLHC_DU_M	3006	70 25
		BLMLHC_DU_M	3015	5
		BLMLHC_DU_M	3016	1
os -eLo comm,rtprio	gren ira	BLMLHC_DU_M	3017	7
irq/9-acpi	87	BLMLHC_DU_M	3018	10
irq/23-ehci hcd	87	BLMLHC_DU_M	3019	9
irq/23-uhci hcd	87	BLMLHC_DU_M	3020	6
irq/8-rtc0	87	BLMLHC_DU_M	3021	8
irq/28-eth0	87	BLMLHC_DU_M	3022	5
.rq/19-i801_smb	87	BLMLHC_DU_M	3023	8
irq/14-ata piix	87	BLMLHC_DU_M	3024	11
irq/15-ata piix	87	BLMLHC_DU_M	3032	10
irq/16-serial	87	BLMLHC_DU_M	3033	1
irq/17-vme brid	87	BLMLHC_DU_M	3034	6
irq/16-ctrp.02:	87 88			

CTR IRQ priority increased

FESA RT threads rescaled

ps -eLo comm,tid,rtprio

2990

2993

2994

3005

BLMLHC DU M

BLMLHC DU M

BLMLHC DU M

BLMLHC DU M

Special thanks to Stephen Jackson

grep BLMLHC DU M

70 25

70 25

1 70 25

Workaround 2: CPU upgrade

Move the LHC BLM systems to MenA25

The CPU upgrade would drastically reduce the CPU activity

- 4 cores instead of 2
- More RAM
- Faster MBLT VME data throughput
- → A continuous profiling on operational A20s is developed and will be compared to A25 in the lab.

The upgrade of BLM CPUs could be done during the next YETS

- The new CPU behaviour will be first fully characterised in the lab
- The exchange can be done quite quickly and easily
- Will give more margins in processing time
- Will ease the future system maintenance and upgrades
- 30 CPUs (27 BLM FECs in LHC + 2 lab crates + 1 spare for piquet)

Thank you for your attention! Questions?

