

HIGHER-ORDER QCD CALCULATIONS FOR THE LHC

Alexander Huss

NNPDF Collaboration & N3PDF Meeting — August 29th 2022

- *1. NNLO predictions for the LHC*
	- ‣ *jets & interpolations grids*
	- ‣ *identified photons & fragmentation*
- *2. Differential N3LO*
	- ‣ *Higgs & fiducial power corrections*
	- ‣ *Drell-Yan & PDFs*
- *3. Bayesian approach to MHO*
	- ‣ *the model & correlations abc*
- *4. Summary & Outlook*

THE PLAN.

WHAT WE HOPE NNLO WILL GIVE US

o reduced uncertainties (\leftrightarrow missing higher orders) ๏ guaranteed that all partonic channels open up at NNLO ๏ better modelling of final-state kinematics & jets

3

4

THE MASTER FORMULA

$$
\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \left(\frac{\alpha_s}{2\pi}\right) \hat{\sigma}_{ab}^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}_{ab}^{(2)} + \cdots
$$
\n
$$
\sigma_{AB} = \sum_{ab} \int_0^1 dx_a \int_0^1 dx_b f_{a|A}(x_a) f_{b|B}(x_b) \hat{\sigma}_{ab}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q)\right)
$$

parton distribution functions *(non-perturbative, universal) in principle, improvable* **hard scattering**

(perturbation theory) systematically improvable

non-perturbative effects *(power suppressed) ultimately, limiting factor?*

LO

PERTURBATION THEORY @ LEADING ORDER

Only captures gross features & unreliable uncertainty estimates

PERTURBATION THEORY @ NEXT-TO-LEADING ORDER

mandatory to achieve *single digit* of relative precision

PERTURBATION THEORY @ NEXT-TO-NEXT-TO-LEADING ORDER

WHAT WE HOPE NNLO WILL GIVE US **EXPECT**

WHAT CAN WE DO TODAY? — THE NNLO TIMELINE

INDEPENDENT CALCULATIONS $- H + jet \times 3!$

*τ*1 jettiness subtraction residue subtraction [Boughezal, Focke, Giele, Liu, Petriello '15] [Caola, Melnikov, Schulze '15] [Campbell, Ellis, Seth '19] LO XXX 0*.*3 NLO **NLO** $[{\rm fb}/10~{\rm GeV}]$ $_{\perp,j_1}$ [fb/10 GeV] NNLO, $\epsilon = 2.5 \times 10^{-5}$ 0*.*25 NNLO NNLO, $\epsilon = 10^{-4}$ NNPDF2.3, 8 TeV **NLO** 0*.*2 $d\sigma/dy$ [pb] 0*.*15 iet 0*.*1 **T** $\sigma/\mathrm{d}p$ *y*H 0*.*05 $\overline{\mathbf{C}}$ 1*.*5 <u>NLO</u> LO 1*.*25 NNLO NLO 1 -2 Ω 0 30 60 90 120 150 p_{\perp,j_1} [GeV]

o very complex calculations \leftrightarrow validation!

- \longrightarrow long-standing [~'15] discrepancy in $H + jet$ \hookrightarrow only resolved in ['19] \mathbf{F} and \mathbf{F} and \mathbf{F} boson computed at NLC and NLC using MCFM, \mathbf{F} in the NNLOJET setup. The NNLO coefficient is calculated using both ! = 2*.*5×10−⁵ and ! = 10−⁴ in the boosted definition of *T*1. The lower panel shows the ratio of the NNLO and NLO results.
- ๏ benchmark approaches The latter includes the transverse momentum and the rapidity distributions as well as the

[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '16]

antenna subtraction

JEST ARE…

simple $2 \rightarrow 2$ parton scattering

Standard Model Production Cross Section Measurements

Q [GeV]

constrain Q [GeV]. Previous measurements of Q [GeV].

1 International Control

 $p_{\rm T}$

INCLUSIVE JETS — 2 CALCULATIONS!

- o in very good agreement!
- ๏ sub-leading colour negligible!(?) 0.0 < |y| < 0.5 *PDF4LHC15_nnlo*

STRIPPER [Czakon, van Hameren, Mitov, Poncelet '19]

)

^T =2p

FAST INTERPOLATION GRIDS — APPLFAST The Interpretation of the Interpretation of the Interpretational concept of the Interpretation \mathcal{L}

• NNLO calculations $\mathcal{O}(100k)$ CPU hours \rightarrow prohibitive in PDF & α_s fits! \hookrightarrow approximate the costly convolution using a grid: approximate the costly convol \overline{C} $\frac{1}{2}$ *s*tly convolution using a grive $\overline{\mathbf{a}}$

[APPLgrid, fastNLO, NNLOJET `19, `22]

THE INVESTMENT

[APPLgrid, fastNLO, NNLOJET `22]

THE INVESTMENT & RETURN

PDF DEPENDENCE & UNCERTAINTIES

๏ ABMP16 & ATLASpdf21 largest excursion from the rest of the "pack" ๏ extremely small NNPDF4.0 PDF errors

100

500

200

 p_T ^J [GeV]

1000

VALIDITY OF *K*-FACTORS

$$
K^{\text{NNLO}}(\mu) \equiv \frac{\mathrm{d}\sigma^{\text{NNLO}}(\mu)/\mathrm{d}p_{\text{T}}}{\mathrm{d}\sigma^{\text{NLO}}(\mu)/\mathrm{d}p_{\text{T}}}
$$

$$
\sigma_{\text{approx. 1}}^{\text{NNLO}}(\mu) = \sigma^{\text{NLO}}(\mu) \times K^{\text{NNLO}}(\mu_{\text{ref}})
$$

$$
\sigma_{\text{approx. 2}}^{\text{NNLO}}(\mu) = \sigma^{\text{NLO}}(\mu) \times K^{\text{NNLO}}(\mu),
$$

central forward

- \bullet *K*-factor must be applied with correlated scales to avoid $\mathcal{O}(10\%)$ scale unc.
- \bullet extremely robust ($\lesssim 0.5\,\%$) w.r.t. PDF choice! (exception: HERAPDF2.0)

AVAILABLE GRIDS TABLES

๏ *caveat:* calculation based on leading-colour approximation in NNLO parts \iff leading: N_c^2 , $N_c n_f$, n_f^2 (sub-leading: $\times 1/N_c^2$)

๏ all grids available on: ploughshare.web.cern.ch

inclusive jets di-jets

HOW GOOD IS LC?

sub-leading colour: SLC leading colour: LC full colour (LC+SLC): FC

๏ +ve SLC contribution $ightharpoonup$ up to 20% on $\delta \sigma^{\rm NNLO}$ ⇔ largest @ low- p_T \hookrightarrow diminishes @ high- p_{T}

๏ improved agreement

๏ impact on NNLO: \rightarrow within Δ_{scl}

SLC small in incl. jets (R=0.4, 0.7) still small on di-jet d*σ/dm_{jj} (*R=0.4) substantial in 3D di-jet (R=0.7)

 10^{5}

<

 10^{-2}

:10 $^{-3}$

๏ different event topologies \rightsquigarrow disentangle mom. fractions (x_1, x_2) $*p*$ $\frac{2p_{\text{T,avg}}}{\sum_{\text{max}} p_{\text{T,avg}} + p_{\text{T,avg}}}}$

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION is a charged hadron, and the jet energy fraction carried by neutral hadrons and photons must be less than 99%. These criteria remove less than 1% of genuine jets.

Only events with at least two jets up to an absolute rapidity of *|y|* = 5.0 are selected and

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION — TH VS. DATA

- large NP corrections @ low- *p*T,avg
- ๏ EW corrections only impacts \rightsquigarrow high- $p_{\text{T,avg}}$ & y_b, y^* < 1
- ๏ improved description of data & reduced uncertainties

[Chen, Gehrmann, Glover, AH, Mo '22]

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION — FC VS. LC

22

grids with FC very desirable! \leftrightarrow resolve tension with other datasets? [NNPDF4.0]

large SLC contributions \hookrightarrow low- $p_{T,avg}$ \leftrightarrow 30–60% $ightharpoonup$ med- $p_{T,avg}$ \leftrightarrow small $|\cdot|$ \leftrightarrow high- $p_{\text{T,avg}} \leftrightarrow -20\%$ [Chen, Gehrmann, Glover, AH, Mo '22]

 $O: LC \rightarrow FC$ \leftrightarrow +5% enhancement

IDENTIFIED OBJECTS — CHALLENGES IN TH VS. EXP

γ + jet @ NNLO WITH FRAGMENTATION

DEPENDENCE ON *Da*→*^γ*

- BFG II vs. ALEPH
	- [Bourhis, Fontannaz, Guillet '98] [ALEPH collab. '96]
- ๏ differences on d*σ*/d*p^γ* $\rightarrow 2-4\%$ **T**
- \bullet frag. contrib. $\times 10^{-1}$ $\rightarrow \infty$ $\mathcal{O}(1)$ differences
- ๏ access to @ LHC *Da*→*^γ* new observables? ↪ ⇔ NNFrag?

CONCLUSIONS & OUTLOOK PART 1

- ๏ NNLO QCD calculations in good shape
	- \rightarrow 2 essentially solved
	- \cdot 2 \rightarrow 3 new frontier \leftrightarrow methods reaching maturity
	- ‣ *loop amplitudes* becoming a bottleneck again
	- in the quest for percent-level theory \leftrightarrow mixed QCD×EW important
- ๏ dissemination of results
	- ‣ public codes (MCFM, Matrix), nTuples, …
	- fast interpolation grids \leftrightarrow APPLgrid fastNLO PineAPPL (anyway needed in fitting)
- \bullet identified objects \leftrightarrow mismatch in TH vs. Exp/NNLO
	- ‣ photon isolation, flavour tagging, hadron fragmentation, …

- *1. NNLO predictions for the LHC*
	- ‣ *jets & interpolations grids*
	- ‣ *identified photons & fragmentation*
- *2. Differential N3LO*
	- ‣ *Higgs & fiducial power corrections*
	- ‣ *Drell-Yan & PDFs*
- *3. Bayesian approach to MHO*
	- ‣ *the model & correlations abc*
- *4. Summary & Outlook*

THE PLAN.

HIGGS ggH @ N3LO — INCLUSIVE* PREDICTIONS

27

* analytically integrated over emissions: ⊕ extremely fast; ⊖ idealised setup ! ŒȣŒȋˈʉǩƁ ǩȣʉƟNJɫŒʉǩȴȣ ȴʻƟɫ ä+5 Ɵȝǩɻɻǩȴȣɻ $\text{C}e, \text{C}e, \text{$

nice convergence of perturbative expansion

FULLY DIFFERENTIAL ggH @ N3LO

FIDUCIAL ACCEPTANCES & y_H sei talveen
.

Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series IANCE $f(p_T^{\Pi})$ momentum imbalance between the two objects, where perturbative calculations could be a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the discussions in those papers resulted in the widespread adoption of so-called "asymmetric" ACCEPTANCE *f*(*p*^H $\frac{\text{H}}{\text{T}}$

a linear dependence on the Higgs boson transverse momentum *pt,*^h [15, 16]:

Z *d*dl

.
.

$\frac{1}{\sqrt{1-\frac{1$ \bullet Linear $p_T^{\rm H}$ dependence T

mann '1 t '21; $\frac{1}{2}$ *.* (1.1) CWATER 21, ALUMITIE COUL *idem + Michel & Stewart '20* [Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21; Alekhin et al. '21]

$$
f(p_T^H) = f_0 + f_1 \cdot p_T^H + \mathcal{O}((p_T^H)^2)
$$

[Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21;

$$
m_H = 125 \text{ GeV}
$$

\n $m_H = 125 \text{ GeV}$
\n $\frac{1}{2} \frac{1}{2} \frac$

- *pt,*^h $\frac{1}{2}$ T dependence
1 growth for fixed-order (*n* 1)! ‣ **factorial growth** for fixed-order
- *n*=1 • *sensitivity* to very low p_{T}^{H} T

Growth [Salam, Slade '21]

Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series asymmetric and symmetric cuts yield an acceptance for *H* ! decays, *f*(*pt,*h), that has **Replace cut on leading photon → cut on product of photon pt's** momentum imbalance between the two objects, where perturbative calculations could be a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the discussions in those papers resulted in the widespread adoption of so-called "asymmetric" ACCEPTANCE *f*(*p*^H $\frac{\text{H}}{\text{T}}$

Z *d*dl

$$
f(p_T^{\rm H}) = f_0 + f_2 \cdot p_T^{\rm H} + f_2 \cdot (p_T^{\rm H})^2 + \mathcal{O}((p_T^{\rm H})^3)
$$

with cuts"/ no cuts"

\n
$$
\oint_{\text{B}}\left(\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i \mathbf{R}_i}}{\sqrt{\frac{\rho_{\text{TS}}\mathbf{R}_t - \sum_{i=1}^{n} \sum_{i=1}^{
$$

$$
\bullet
$$
 Quadratic p_T^H dependence

$$
\cdot
$$
 suppress factorial growth

.
.

a a a a correspondence on the Higgs boson the Higgs boson transverse momentum *particles in the Higgs boson transverse momentum particles in the Higgs boson transverse momentum particles in the Higgs boson transverse momen*

- *pt,*^h X (*n* 1)! ²
2/_{*n* ved order \sim} .idi gru # ◆*ⁿ* rial growth bpr ss fa s factorial growth ‣ *suppress* factorial growth
	- ad org <u>rder</u> 4*n* 4(*n*!) ‣ fixed order resummation ≃

Z *d*dl

Ind $\frac{1}{2}$ $\frac{1}{2$ θ_{test} arises and \log_{∞}^{2n-1} and $\frac{2n}{3n}$ p_{ref} is all-order to f_0 -inspired to $\frac{1}{2}$ power-law dependence of the acceptance for ρ ^t, in a perturbative series for the series for the series for the perturbative series for the perturbative series for the series for the series for the series for the series $f_{\rm eff}$ $f_{\rm 0}$ $f_{\rm 0}$ coming pred $Im \varphi = 125$ GeV cause of t_{β} e speev isign factorial growth induced renormalized by induced t_{β} . In the t_{β} $CDZ5m_H$ 2 ACCEP ACCEPTAN ACCEPTANCE ACCEPTANCE $f(p)$

"with context of $\frac{1}{p}$
 σ_{fid} σ_{fid} σ_{Fe}
 σ_{Fe} ACCEPTANCE $f(p_T^H)$

"with cuts

"with cuts
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{for }p_T^{\text{sc}}\\ \text{of }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{for }p_T^{\text{sc}}\\ \text{of }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{on }\theta\end{array}\right\}$
 $\tau_{\text{tot}}\left\{\begin{array}{l}\text{on }\theta\end{array}\right\}$
 $\tau_{\text{tot$ ACCEPTANCE $f(p_T^H)$

"with cuts"/

Ttot 0.80 $\frac{p_T^H p_T^H k_t - 2}{p_T^H p_T^H k_t^H}$
 $\frac{p_T^H p_T^H k_t^H}{\frac{p_T^H p_T^H k_t^H}{\frac{p_T^H p_T^H k_t^H}{\frac{p_T^H p_T^H k_t^H}{\frac{p_T^H k_t^H k_t^H}}{ \frac{p_T^H k_t^H k_t^H}{\frac{p_T^H k_t^H k_t^H}}{ \frac{p_T^H k_t^H k_t^H k_t^H}}}}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"nc

"with cuts"/"nc
 $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cu

Ttot $\begin{cases} \frac{\sqrt{p_{\text{tr}}\mathbf{g}_{\text{tr}}}}{\sqrt{p_{\text{tr}}\mathbf{g}_{\text{tr}}}} = \frac{1}{2}g_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\mathbf{g}_{\text{tr}}^2\math$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot 0.80 $\frac{|\sqrt{p_t\mathcal{B}_t}-\gamma_0\cdot\mathcal{B}_T|}{|\mathcal{B}_t|}\sqrt{\frac{2(n+1)}{n+1}-\frac{2(n+1)}{n+1}}$

That $\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ (Hitter) $\frac{dp}{dp}$
 $-\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ $-\frac{1}{\sum_{i=1}^{n}p_{t,i}}$ $-\frac$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Tto $\left\{ \begin{array}{l}\n\hat{g}_0 + \frac{\hat{p}_1}{\hat{p}_1} \sum_{\Delta} \hat{h} \sum_{n=1}^{R} \hat{h}_{n+1} & \frac{2(n!)}{2(n!)}\n\end{array} \right\}$

The search \hat{g}_0 and \hat{g}_1 is \hat{g}_1 is \hat{g}_2 and \hat{g}_3 and \hat{g}_4 ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\frac{1}{2}$ over $\frac{1}{2}$ ov ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot $\begin{cases} \n\oint_C \frac{p_T^H f}{p_T^H f} \frac{\partial^2 f}{\partial x \partial y} \frac{\partial^2 f}{\partial y \partial z} \frac{\partial^2 f}{\partial y \partial x} \frac{\partial^2 f}{\partial z \partial y \partial z} \frac{\partial^2 f}{\partial z$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"

Ttot 6.60 $\frac{[p_T^H R_t - \sum_{i=1}^{n} \sum_{j=1}^{n} B_i^T R_{t,i}]}{[p_T^H R_t - \sum_{i=1}^{n} f(i_{t,i}) d p_t]}$

"lid so $\frac{[p_T^H R_t - f(i_{t,i}) d p_t]}{[p_T^H R_t - \sum_{j=1}^{n} f(i_{t,i}) d p_t]}$
 $\frac{[p_T^H R_t - \sum_{i=1}^{n} f(i_{t,i}) d p_t$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\tau_{tot}\left\{\begin{array}{l}\n\delta_0 \frac{1}{\sqrt{p_{\text{TX}}p_{\text{C}}-p_{\text{A}}}p_{\text{B}}p_{\text{B}}n_{\text{H}}} \frac{1}{2(n)!}\n\delta_{\text{Hd}} \equiv \frac{1}{\sqrt{1-\frac{p_{\text{A}}p_{\text{A}}p_{\text{B}}p_{\text{B}}}}p_{\text{B}}p_{\text{B}}n_{\text{H}}} \frac{1}{2(n)!}\n\end{array}\right\}$
 $-\$ ACCEPTANCE $f(p_1^H)$

"with cuts"/"no cuts"

Ttot $\oint \oint \frac{p_1 \sqrt{p_1 \sqrt{p_2 p_1}} - \gamma \beta_1 \beta_1 \theta_1 p_1}{2(n_1)}$, \oint
 \oint \oint \oint \oint $\frac{1}{2} \int_{10}^{10} \frac{p_1 \sqrt{p_1 \sqrt{p_2 p_1}} - \gamma \beta_1 \beta_1 \theta_1 p_1}{2(n_1 \sqrt{p_1})}$
 $\oint \oint \frac{p_1 \sqrt{p_1$ with cuts"/"no cuts"

Ttot 0.60 $\frac{p_1p_2R_t}{p_1R_t}\frac{Q_0R_t}{2}Bm_H \frac{Q_0R_t}{2}$

The Highland Contract of the Higgs and Division to the Higgs boson of the Highland
 $f(\theta_{L,\theta})$ is $f(\theta_{L,\theta})$ is $f(\theta_{L,\theta})$
 $f(\theta_{L,\theta})$ is $f(\theta_{$ f (*pt*,^H) = f ₀
coming p
0.65 *·^pt,*^h $\frac{1}{10}$ $-\frac{2}{1}$ $f(p_{t,\mathrm{H}})$
m2llogs H
Dt.{ *m*² \mathcal{L} $\frac{1}{2}$ $\frac{2(n!)}{2(n!)}$ *.*ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 \mathcal{F}_{tot} ($\mathbf{\hat{a}}_0 \rightarrow \mathbf{\hat{b}}_1 \rightarrow \mathbf{\hat{c}}_2 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}_2 \rightarrow \mathbf{\hat{c}}_1 \rightarrow \mathbf{\hat{c}}_2 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}_2 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}_3 \rightarrow \mathbf{\hat{c}}$ ACCEPTANCE $f(p_T^H)$

"with cuts"/"no cuts"
 $\frac{1}{2} \int_{r \to 0}^{r} \frac{p_{0}^H \sqrt{p_{0}^H p_{0}}}{\sqrt{p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H}}$
 $\frac{f(p_T^H) = f_0 + f_0$
 $\frac{f_0^H \sqrt{p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}^H p_{0}$ with cuts" /"no cuts"

visit cuts"
 $r_{\text{tot}}\left(\frac{\sqrt{P_{\text{tot}}P_{\text{tot}}}-\sqrt{P_{\text{tot}}P_{\text{tot}}}}{\sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}\right) + \sqrt{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}}\right)$
 $\sigma_{\text{fid}} = \int \frac{P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P_{\text{tot}}P$ port dependence of the accuse of the acceptance of the acceptance of the acceptance of the acceptance ρ_t , ρ_t and ρ_t are ρ_t and ρ_t and ρ_t are ρ |
|
|
|
|
| $f(p_T^H) = f_0 + f_1 \sqrt{\frac{p_H^H}{n}} + f_2$
 1 g
 1 c
 1 c
 1 c
 1 c
 1 c
 1 depending
 1 c
 1 c
 1 c
 1 depending
 1 f
 1 f
 fid 0.0 COILVC 12.5
cause of the steevisign *s* duy
5.0
fact Factorial growth in the value of θ_{E} (here θ_{E} on θ_{E} of θ $f(\theta)$ and $f(\theta)$ and The same of the s context, the smallest term in the suppress factorial growth
 $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ for $\frac{1}{\pi}$ is $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi}$ for $\frac{1}{\pi$ $\sum_{\substack{a=1 \text{odd } b \text{odd}}} \sum_{\substack{a=1 \text{odd } b \text{odd } b \text{odd}}} \sum_{\substack{a=1 \text{odd } b \text{odd } b \text{odd}}} \sum_{\substack{a=1 \text{odd } b \text{odd } b \text{odd}} \sum_{\substack{a=1 \text{odd } b \text{odd } b \text{odd}}}} \text{fixed order } \approx \text{resummation}$
 $\sum_{\substack{a=1 \text{odd } b \text{even } b \text{odd } b \text{odd}} \sum_{\substack{a=1 \text{odd } b \text{odd } b \text{odd}}}} \text{fixed order } \approx \text$ $\frac{d\mathbf{y}_{\text{off}}}{dt}$ and $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ fixed-order \approx resummation.
 $\frac{d\mathbf{y}_{\text{off}}}{dt}$ for $\frac{d\mathbf{y}_{\text{off$ perturbation calculations in the section of $\frac{a_{\text{prod}}}{2}$ is section than the section of $\frac{a_{\text{prod}}}{\sigma_0 f_0}$
 $\Rightarrow 125 \text{ GeV}$ with implies $\frac{a_{\text{prod}}}{\sigma_0 f_0} \approx 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + ...$
 $\Rightarrow 0.006 \text{ @$ **Solution**, stage ϵ , ϵ $\frac{1}{2}$ *minant* $\frac{\text{H}_\text{C}}{\text{H}}$ "with cuts" / "no cuts" $\sigma_{\rm fid}$ \pm $\frac{\partial t}{\partial \mu}$ $dp_{t,\mathrm{H}}$ $f(p_{t,H})dp_{t,H}$ e arise *f*⁰ + *f*¹ \sum ∞ *n*=1 (1)
(1)
(1) $f(x)$ ($f(x)$) ($f(x)$) ($f(x)$) (1) $f(x)$) $\mathcal{F}_{\text{tot}}\left\{\text{for }\frac{1}{2}n\right\}$ $\mathbf{F}^{\boldsymbol{\beta}}$ $\frac{\infty}{\cdot}$ n $\stackrel{W}{=}1$ $\frac{t}{2}$ = $\frac{0.35(2m)}{2(n)}$
 $\frac{1}{2}$ = $\frac{1}{2}$ $\left(\frac{(2m)!}{2(n!)}\right)$ *d*dl *dpt,*^h \bigoplus p vot *pt,*^h $\sum_{i=1}^n$ ∞ *n*=1 $\lim_{n\to\infty} \frac{2n-1}{n}$ $\frac{\partial}{\partial P}p^{\prime}$ $\frac{1}{2}$ f (*pt*,H) = f_0 + f_0 + f_1 + f_0 [from sides by Salam, Les Houches 221]

*d*dl

X

.

(*n*
1)
1) november - Alexander Contractor (1)
1) november - Alexander Contractor (1)

(1)*n*¹ 2 log2*n*¹ *^m*^h

2*pt,*h

✓2*CA*↵*^s*

dpt,^h

=

 $\frac{1}{2}$

pt,^h

.

(*n* 1)!

⇡

m^h

[Salam, Slade '21]

 $p_{\rm T}^{\gamma_1} p_{\rm T}^{\gamma_2} \geq 0.35 \cdot M_{\rm H}$ $p_{\rm T}^{\gamma_2} \geq 0.25 \cdot M_{\rm H}$

๏ no visible instabilities \leftrightarrow flat *K*-factor

 \odot N³LO \simeq NNLO × $K_{\text{N}^3\text{LO}}$

HIGGS @ N3LO WITH PRODUCT CUTS

DRELL—YAN @ N3LO — *Q* DEPENDENCE

33

NNLO: (large cancellations) $ightharpoonup$ artificially small? **N3LO:** $1 \sim \pm 20$ $1 \sim \pm 2$

[Dulat, Duhr, Mistlberger '20 '21]

resonance region \leftrightarrow non-overlapping bands; $\Delta_{\rm scl}^{\rm NNLO}\simeq \Delta_{\rm scl}^{\rm N^3LO}$?!

scl

DRELL—YAN @ N3LO — *Y_V* DISTRIBUTIONS

 Ω same collider (0) 13 TeV σ banne comune σ is it is the ratio of the ratio of the N3LO prediction to \mathbb{R}^d • **NC & CC[±] processes probe different parton content across** Y_V **(valence u vs. d, ...)** • same collider $@13 \text{ TeV} \rightarrow \text{almost universal NNLO} \rightarrow \text{N}^3\text{LO}$ corrections! NC & CC^{\pm} processes probe different parton content across Y_V (valence u vs. d

๏ N3LO evolution ↔ 4-loop splitting functions

ggH: $\delta \sigma^{\text{N}^3\text{LO}}$ \ VBF: $\delta \sigma^{\text{N}^3\text{LO}}$ \

๏ aN3LO PDFs (MSHT)

N3LO PARTON DISTRIBUTION FUNCTIONS

CONCLUSIONS & OUTLOOK PART 2

- N³LO predictions are key to reach percent-level accuracy
	- computation of *inclusive* $2 \rightarrow 1$ processes very mature \leftrightarrow ggH, DY, VBF, VH, ...
	- differential predictions for $pp \rightarrow$ "colour neutral" appearing « relies on very stable NNLO "+jet" calculation
	- *but:* performance of slicing methods very poor \leftrightarrow 6(10M) CPU core hours
- **◎** Fiducial cuts ↔ linear power corrections (other processes?) \hookrightarrow crucial for practicability of slicing approaches
- \bullet Inadequacies in traditional scale variations \leftrightarrow DY @ N3LO effect from missing N3LO PDFs? ↪
	- more robust TH uncertainties desirable ↪ (Padé approximant, Bayesian models, PMC, series transforms, …)

- *1. NNLO predictions for the LHC*
	- ‣ *jets & interpolations grids*
	- ‣ *identified photons & fragmentation*
- *2. Differential N3LO*
	- ‣ *Higgs & fiducial power corrections*
	- ‣ *Drell-Yan & PDFs*
- *3. Bayesian approach to MHO*
	- ‣ *the model & correlations abc*
- *4. Summary & Outlook*

THE PLAN.

WHAT IS THE UNCERTAINTY Δ_{TH} of MY RESULT?

- increasingly urgent to address with $\Delta_{\rm EXP} \searrow (\leftrightarrow\leftrightarrow \rm HL\text{-}LHC)$
	- \cdot what does 5*σ* mean if Δ_{TH} non-negligible?
	- interpretation of data in need for robust Δ_{TH} : PDF fits, χ^2 in ATLAS jets, ... Δ_{TH} : PDF fits, χ^2
- \bullet various sources that contribute to Δ_{TH} :
	- ‣ $\Delta_{\alpha_{s'}}$ Δ_{param} : parametric uncertainties \leftrightarrow exp. extraction
	- \cdot Δ_{PDF} : parton distribution functions (PDFs) \leftrightarrow fits
	- \rightarrow Δ _{non pert.}: hadronisation, UE, ... \leftrightarrow parton showers [e.g. HERWIG vs. PYTHIA]
	- Δ_{MHO}: *missing higher-order (MHO)* corrections

Focus here

CONVENTIONAL APPROACH FOR Δ_{MHO} – SCALE VARIATION

• approximation for an observable ω (next-to-)^{*n*} leading order: $\propto \alpha_s^{n_0+k}$

๏ truncation of series induces a sensitivity to terms of the next order Cremienten variation: Scale Variation

$$
\mathbf{N}^{\mathrm{1}}\mathbf{LO:} \qquad \Sigma \simeq \Sigma_n(\mu) = \sum_{k=0}^n \Sigma^{(k)}(\mu)
$$

$$
\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Sigma_n(\mu) = \mathcal{O}(\alpha_s^{n_0+n+1}) = \mathcal{O}(\mathbf{1})
$$

electroweak (EW): ↪ scheme dependence $\hookrightarrow \alpha \ll \alpha_s$

ISSUES WITH STANDARD SCALE VARIATIONS

- ๏ known to be insufficient:
	- exclusive jet(s) (veto)
	- ratios (correlation?)
	- ‣ cancellations (e.g. *qq*¯ vs. *qg* in DY)

๏ choice of the central scale

- ‣ fastest apparent convergence (FAC) $\hookrightarrow \sum(n)$ $(\mu_{\text{FAC}}) = 0$
- ‣ principle of minimal sensitivity (PMS) $\leftrightarrow \frac{\partial}{\partial u}$ ∂*μ* $\Sigma^{(n)}(\mu)$ *μ*PMS $= 0$
- ‣ BLM/PMC

‣

๏ crucially: *no statistical interpretation!* need to do better ⇝

… [Brodsky, Lepage, Mackenzie '83]; [Brodsky, Di Giustino '12]

PROBABILITY DISTRIBUTIONS FOR
$$
\Delta_{\text{MHO}}
$$

\nSequence of perturbative corrections δ_k normalised w.r.t. LO (dimensionless)
\n
$$
\Sigma_n = \Sigma^{(0)} (1 + \delta_1 + ... + \delta_n) \qquad \leadsto \delta_k = \mathcal{O}(\alpha_s^k)
$$
\nProbability distribution for δ_{n+1} , given $\delta_n = (\delta_0, \delta_1, ..., \delta_n)$
\n
$$
P(\delta_{n+1} | \delta_n) = \frac{P(\delta_{n+1})}{P(\delta_n)} = \frac{\int d^m p \ P(\delta_{n+1} | p) \ P_0(p)}{\int d^m p \ P(\delta_n | p) \ P_0(p)}
$$

 $P(A, B) = P(A | B) P(B)$ $P(A) = \text{d}B P(A, B)$

 $\mathsf{Model}: P(\mathcal{S}_n | p)$ Priors: $P_0(p)$ ⊕

 δ_{n+1} , given $\delta_n = (\delta_0, \delta_1, ..., \delta_n)$ $P_0(p) P_0(p)$ p p p p p \rightarrow $\delta_k = O(\alpha_s^k)$

THE CH MODEL

• perturbative expansion $\delta_k = c_k \alpha_s^k$ bounded by a geometric series: $|c_k| \leq \bar{c}$ $\forall k$

- one hidden parameter: \bar{c}
- \cdot constrain upper bound \bar{c} from known orders \rightarrow constraint on unknown coefficients c_{n+1}
- ๏ limitations:

*a*_{*s*} at what scale? why not: $\frac{d^2y}{dx^2}$, $\frac{d^2y}{dx^2}$ *αs π αs* 2*π* $\alpha_s \ln^2(v)$, $\alpha_s \ln(v)$

why not let the model figure out the expansion parameter itself?

$$
\left|\sum_{k} \delta_{k}\right| \leq \sum_{k} |c_{k}| \alpha_{s}^{k} \leq \sum_{k} \bar{c} \alpha_{s}^{k}
$$

THE GEOMETRIC MODEL **•** bounded by a geometric series with expansion parameter *a*: \bullet model: $P_{\text{geo}}^{(k)}(\delta_k | a, c) =$ $P_0(a, c) = P_0(a) P_0(c)$ $|\delta_k| \leq c \ a^k \quad \forall k \qquad \leftrightarrow \text{two model parameters: } a, c$ $\frac{1}{2c \, a^k} \Theta\left(c - \frac{|\delta_k|}{a^k}\right)$ $P_0(a) = (1 + \omega) (1 - a)^{\omega} \Theta(a) \Theta(1 - a)$ $P_0(c) =$ *ε c*1+*^ε* $\Theta(c-1)$

[Bonvini '20]

↭ d*c*/*c* ∼ d ln(*c*) (*ε*: regulator)

The Inference Step — Geometric series: $\delta_k = (0.7)^k$

 \circ LO $\delta_0 \equiv 1$

 $P_0(a, c) = \Theta(a) \Theta(1 - a) P_0(c)$

 ${\sf chose} \,\, \omega = 0$ for flat prior in *a*

 $P(\delta_1) = \int da \int dc \ P_{\text{gec}}^{(1)}$ $P_0(1)(\delta_1 | a, c) P_0(a, c)$

no inference yet! $P(\delta_1)$ entirely determined by the *model & priors*

46

The Inference Step — Geometric series: $\delta_k = (0.7)^k$

 \circ LO $\delta_0 \equiv 1$ $\delta_1 = 0.7$ $\delta_2 = 0.7^2$ $P(a, c | \delta_1) \propto P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$ $P(a, c | \delta_1, \delta_2) \propto P(\delta_2 | \delta_1, a, c) P(a, c | \delta_1)$ $\propto P_{\text{geo}}^{(2)}(\delta_2 | a, c) P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$ 1 1 2 3 4 $P_0(a, c) = \Theta(a) \Theta(1 - a) P_0(c)$ *P*(*a*) 1 Bayes' theorem

& independence *also:*

 $a \sim 0.7$ also: $c \sim 1$

The Inference Step — Geometric series: $\delta_k = (0.7)^k$

 \circ LO $\delta_0 \equiv 1$ $\delta_1 = 0.7$ $\delta_2 = 0.7^2$ \bullet $P(a, c | \delta_1) \propto P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$ $P(a, c | \delta_1, \delta_2) \propto P(\delta_2 | \delta_1, a, c) P(a, c | \delta_1)$ $\propto P_{\text{geo}}^{(2)}(\delta_2 | a, c) P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$ $P_0(a, c) = \Theta(a) \Theta(1 - a) P_0(c)$

$$
P(\delta_{n+1} | \delta_n) \propto \int da \int dc \prod_{k=1}^n \left[P_{\text{geo}}^{(k)}(\delta_k | a, c) \right] P_0(a, c)
$$

can be solved analytically

-
- ๏ allow for different lower & upper bound: $b - c \leq$ δ_k $\frac{\kappa}{a^k} \leq b + c \quad \forall k \quad \Leftrightarrow$ three model parameters: *a*, *b*, *c*

$$
\text{model:} \quad P_{abc}^{(k)}(\delta_k \mid a, b, c) = \frac{1}{2c|a|^k} \Theta\bigg(c
$$

• **priors:**
$$
P_0(a, b, c) = P_0(a) P_0(b, c)
$$

\n
$$
P_0(a) = \frac{1}{2} (1 + \omega) (1 - |a|)^{\omega}
$$
\n
$$
P_0(b, c) = \frac{\epsilon \eta^{\epsilon}}{c^{1 + \epsilon}} \Theta(c - \eta) \frac{1}{2\xi c}
$$

Θ(*ξc* − *b*)

^ω Θ(1 − |*a*|) ↭ support: [-1,+1] (alternating ✔)

- -

WHAT TO DO WITH THE THE SCALE μ ?

 Θ $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ ‣

๏ geo

- ‣ always entered around NNLO
- ‣ very narrow peak

- $\mu/\mu_0 \gtrsim 1 \rightsquigarrow$ anticipate pos. N3LO
- ‣ bias slowly disappears *μ*/*μ*⁰ ≲ 1 ⇝

๏ *abc*

WHAT TO DO WITH THE THE SCALE *μ*?

 Θ $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ ‣ $CI_{68/95}$ (geo) (dbc)

> **F**astest **A**pparent **C**onvergence $\Sigma_n(\mu_{\text{FAC}}) = \Sigma_{n-1}(\mu_{\text{FAC}})$

> > *52*

- ๏ two options:
	- 1. invoke some *principle* to pick the *"optimal"* scale
		- FAC, PMS, PMC, ...

depends on order might not be unique

WHAT TO DO WITH THE THE SCALE *μ*?

 Θ $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ ‣ $CI_{68/95}$ (geo) (dbc)

> **P**rinciple of **M**inimal **S**ensitivity $\frac{\partial}{\partial \mu} \Sigma_n(\mu) \big|_{\mu_{\rm PMS}}$ $= 0$

> > *52*

- ๏ two options:
	- 1. invoke some *principle* to pick the *"optimal"* scale
		- FAC, PMS, PMC, ...

depends on order might not be unique

WHAT TO DO WITH THE THE SCALE μ ?

 Θ $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ ‣

- ๏ two options:
	- 1. invoke some principle to pick the "optimal" scale
		- ‣ FAC, PMS, PMC, …
	- 2. combine different $P(\delta_{n+1} | \delta_n; \mu)$

53

pursued in the following

PRESCRIPTIONS FOR SCALES

Scale Marginalisation (sm):

 o treat *μ* as a hidden model parameter & *marginalise* over it:

Scale Average (sa):

 $P(\mu | \delta_n) \propto P(\delta_n; \mu) P_0(\mu)$ with prior: $P_0(\mu) =$ 1 $\frac{1}{2\mu \ln F} \Theta(\ln F - |\ln (\ln$ *μ μ*0

๏ has no probabilistic interpretation *μ average* over it: ⇝

$$
P_{\rm sm}(\delta_{n+1} | \delta_n) = \int d\mu \ P(\delta_{n+1}, \mu | \delta_n)
$$

=
$$
\int d\mu \ P(\delta_{n+1} | \delta_n; \mu) \ P(\mu | \delta_n)
$$

with prior:
\n
$$
w(\mu) = \frac{1}{2\mu \ln F} \Theta\left(\ln F - \left|\ln\left(\frac{\mu}{\mu_0}\right)\right|\right)
$$
\n
$$
\ln \mu = \mu_0/F \mu_0 F \mu_0
$$

$$
P_{\rm sa}(\delta_{n+1} | \delta_n) = \int d\mu \ w(\mu) P(\delta_{n+1} | \delta_n; \mu)
$$

[Bonvini '20] [Duhr, AH, Mazeliauskas, Szafron '21]

PEAK OF THE DISTRIBUTIONS*

Scale Marginalisation (sm):

- ω if $\mu_{\text{FAC}} \in [\mu_0/F, F\mu_0]$ then $P_{\rm sm}(\delta_{n+1} | \delta_n)$ peaks at $\Sigma_n(\mu_{\rm FAC})$
	- $P(\delta_n | \mu)$ dominated by $(k = n)$ term
	- ‣ symmetric model \rightarrow $\delta_n(\mu) = 0$ enhanced

Scale Average (sa):

- ω if $\mu_{\text{PMS}} \in [\mu_0/F, F\mu_0]$ then $P_{sa}(\delta_{n+1} | \delta_n)$ peaks at $\Sigma_n(\mu_{PMS})$
	- overlap between $P(\delta_{n+1} | \delta_n; \mu)$ enhanced at stationary point \rightarrow $\sum_{n}'(\mu_{PMS}) \approx 0$

* for symmetric models, a convergent series, and reasonable assumptions

Choice of how to interpret the scale has consequences for predictions!

INCLUSIVE CROSS SECTIONS UP TO N3LO

-
- \bullet similar unc.: sa \simeq 9pt
- $\mathbf{0}$ $n = 2$: sm \ll others (μ_{FAC})
- renormalisation scales. Computations were performed with the proVBFH code [124].

 \smile *A*

 $\cancel{\approx}$

 \int_{n+1}^{n} *n*+1

- **•** δ_3 is large and outside of 9pt!
•• large cancellations in the ratio δ_3 is large and outside of 9pt!
 • large cancellations in the ratio
- **o** similar unc.: sa \simeq 9pt **o** $n < 2$: 9pt performs poorly
	- $O (A_W)_n$ \nearrow *(anticipated by abc)*
	- ๏ size: others *abc* ≲

0 1
0 7
0 S
 Δ_M single Higgs VBF production. For *n <* 2 the Bayesian approach gives a larger uncertainty α dically different estimates for Δ_{atm} *abc* sa [45.6, 46.6] [44.8, 49.0] abc sa **[45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 45.6, 4**
Construction of the construction of the construction of the construction of the construction of the construc overall: not radically different estimates for $\Delta_{\rm MHO}$

o $n < 2$: CI₆₈ bigger than 9pt **o** δ_3 is large and outside of 9pt! δ_1 < 0 \rightsquigarrow *abc* alternating \bullet *n* > 2: all prescriptions simular \bullet *n* = 2: sm \lt others (μ_{FAC}) • $n = 3$: all prescriptions similar conventional 7-point scale variation at *n* = 2 [127]. The CIs for the neutral-current Drell conventional 7-point scale variation at *n* = 2 [127]. The CIs for the neutral-current Drell • *n* > 2: all prescriptions similar

I averally not radically different estimate

DIFFERENTIAL DISTRIBUTIONS

- ๏ Bayesian approach also applicable to distributions \rightarrow treat each bin individually \leftrightarrow will not include correlations!
- ๏ new challenges
	- **no longer "easy" to identify an appropriate hard scale** μ_0 **(up to rescaling)** \rightarrow inclusive ggH: M_H vs. $\frac{1}{2}M_H$? Just let the model figure it out. 1 $\frac{1}{2} M_{\text{H}}$
	- ‣ differential distributions can probe different kinematic regimes **→ dynamical scale choice <→ many choices!** \rightarrow e.g. in jet production: p_T^j , $p_T^{j_1}$, $\langle p_T^j \rangle_{avg}$, $H_T \equiv \sum p_T^i$, $\hat{H}_T \equiv \sum p_T^i$, ... 1 $\frac{j_1}{\rm T}$, $\langle p_{\rm T}^j \rangle$ $p_{\rm T}^{\it i}$ ̂ $p_{\rm T}^{\it i}$

 \cdot re-cycling via quadrature limited \rightsquigarrow ideally interpolation grids

$$
\langle p_{\rm T}^J \rangle_{\text{avg}} \, , H_{\rm T} \equiv \sum_{i \in \text{jets}} p_{\rm T}^i \, , H_{\rm T} \equiv \sum_{i \in \text{partons}} p_{\rm T}^i \, , \dots
$$

W-BOSON + JET PRODUCTION

58

 \bullet $n < 2$:

- ‣ almost identical bands
- ‣ very robust ΔMHO
- ๏ sm vs. sa
	- almost identical CI

- \cdot CI₆₈ bigger than 9pt *n* < 2:
 CI₆₈ bigger than
 abc captures po
 n = 2:

almost identical
 A_{MHO} very robus

sm vs. sa

almost identical
- ‣ captures pos. shift *abc*

$$
n=2:
$$

D I-PHOTON PRODUCTION

- ๏ example where 9pt fails
	- large corrections
	- $\mathrm{MHO}\, \gtrsim \Delta\mathrm{MHO}$
	- no sign of convergence

- ‣ marginal overlap for geo
- ‣ differences in *size* & *position*
- \cdot ideally N3LO for robust Δ_{MHO}

 \bullet sm \simeq sa

large corrections $\Delta_{\rm MHO}^{\rm NNLO} \gtrsim \Delta_{\rm MHO}^{\rm NLO}$
no sign of converger
2:
CI₆₈ ~ 2-3 × 9pt
2:
marginal overlap for
differences in *size &*
ideally N3LO for rol
 \simeq sa
large corrections
prohibit FAC points

$$
n < 2
$$

$$
\cdot \quad \text{CI}_{68} \sim 2-3 \times 9 \text{pt}
$$

 \bullet $n = 2$:

THE PROBLEM WITH JETS…

non-trivial change of dynamical scales cannot be captured by a simple re-scaling

WORK IN PROGRESS — CORRELATIONS

 \bullet possibilities: algorithmic "earth movers distance"; map $P(x)$ onto $P(y)$, ... can be done much simpler ↪

- ๏ idea: if two bins show similar (opposite) perturbative behaviour \leftrightarrow two bins should be partially (anti-)correlated.
- \bullet we want: joint probability distribution $P(x, y)$ for two bins $x \& y$ preserve projections for compatibility: ↪

⇔ hidden parameter $-1 < c < +1$ to smoothly implements the correlation

$$
P(x) = \int dy P(x, y) = \int dz P(x, z)
$$

WORK IN PROGRESS — CORRELATION MODEL IN miho

๏ projections of multi-dim. Gaussians (+ correlation matrix) are again Gaussian \hookrightarrow map P_i onto Gaussians, implement correlations, map back

$$
P(x,y) = P_1(x)P_2(y)
$$

\n
$$
\times \frac{d\Phi^{-1}(\alpha)}{d\alpha} \bigg|_{\alpha = \Sigma_1(x)} \frac{d\Phi^{-1}(\beta)}{d\beta} \bigg|_{\beta = \Sigma_2(y)}
$$

\n
$$
\times \frac{1}{2\pi\sqrt{1 - c^2}} \exp\left(-\frac{1}{2(1 - c^2)} \left[\xi(x)^2 + \eta(y)^2 - c2\xi(x)\eta(y)\right]\right)
$$

\n
$$
\times \underbrace{\qquad \qquad }
$$

 $\Sigma_i(x) = \int_{-\infty}^x dx' P_i(x')$ $\Phi^{-1}(p) = \sqrt{2} \text{Erf}^{-1}(-1 + 2p)$ $\xi(x) = \Phi^{-1}(\Sigma_1(x))$ $\eta(y) = \Phi^{-1}(\Sigma_2(y))$

use inference to constrain *c*

CONCLUSIONS & OUTLOOK PART 3

- Bayesian inference is a powerful framework to estimate $\Delta_{\rm MHO}$
	- \rightarrow statistical interpretation \leftrightarrow $P(\delta_{n+1} | \delta_n)$
	- ▸ exposes our *assumptions & biases* clearly < **w**> model & priors
	- *but:* it is not more reliable than scale variation \rightarrow careful analysis required
- **Ⅰ** typically for $n < 2$: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \approx 9pt$
- **◎** $public code: ミ; (mih) → https://github.com/aykhuss/miho$
- ๏ future directions
	- ‣ correlations (PDF fits & data interpretation)
	- ‣ marginalisation over models, …

CONCLUSIONS & OUTLOOK PART 3

- Bayesian inference is a powerful framework to estimate $\Delta_{\rm MHO}$
	- \rightarrow statistical interpretation \leftrightarrow $P(\delta_{n+1} | \delta_n)$
	- ▸ exposes our *assumptions & biases* clearly < **w**> model & priors
	- *but:* it is not more reliable than scale variation \rightarrow careful analysis required
- **Ⅰ** typically for $n < 2$: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \approx 9pt$
- **◎** $public code: ミ; (mih) → https://github.com/aykhuss/miho$
- ๏ future directions
	- ‣ correlations (PDF fits & data interpretation)
	- ‣ marginalisation over models, …

Thank you!