

HIGHER-ORDER QCD CALCULATIONS FOR THE LHC

NNPDF Collaboration & N3PDF Meeting — August 29th 2022

Alexander Huss

- 1. NNLO predictions for the LHC
 - jets & interpolations grids
 - identified photons & fragmentation ►
- 2. Differential N³LO
 - Higgs & fiducial power corrections ►
 - Drell-Yan & PDFs
- 3. Bayesian approach to MHO
 - the abc model & correlations
- 4. Summary & Outlook

THE PLAN.

WHAT WE HOPE NNLO WILL GIVE US

reduced uncertainties (<->> missing higher orders) guaranteed that all partonic channels open up at NNLO better modelling of final-state kinematics & jets

3

THE MASTER FORMULA

$$f$$

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \left(\frac{\alpha_s}{2\pi}\right) \hat{\sigma}_{ab}^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}_{ab}^{(2)} + \cdots$$

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \left(\frac{\alpha_s}{2\pi}\right) \hat{\sigma}_{ab}^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}_{ab}^{(2)} + \cdots$$

$$\hat{\sigma}_{AB} = \sum_{ab} \int_0^1 dx_a \int_0^1 dx_b f_{a|A}(x_a) f_{b|B}(x_b) \hat{\sigma}_{ab}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{QCD}/Q)\right)$$
parton distribution functions
(non-perturbative universal)

parton distribution (non-perturbative, universal) in principle, improvable

hard scattering (perturbation theory) systematically improvable

(power suppressed) ultimately, limiting factor?

4

PERTURBATION THEORY @ LEADING ORDER

Only captures gross features & unreliable uncertainty estimates

PERTURBATION THEORY @ NEXT-TO-LEADING ORDER

PERTURBATION THEORY @ NEXT-TO-NEXT-TO-LEADING ORDER

mandatory to achieve single digit of relative precision

EXPECT WHAT WE HOPE NNLO WILL GIVE US

.

WHAT CAN WE DO TODAY? — THE NNLO TIMELINE

INDEPENDENT CALCULATIONS — $H + jet \times 3!$

residue subtraction

[Caola, Melnikov, Schulze '15]

very complex calculations *we* validation!

- long-standing [~'15] discrepancy in H + jet \hookrightarrow only resolved in ['19]
- benchmark approaches

τ_1 jettiness subtraction

[Boughezal, Focke, Giele, Liu, Petriello '15] [Campbell, Ellis, Seth '19]

antenna subtraction

[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '16]

JEST ARE...

the ideal pQCD laboratory simple $2 \rightarrow 2$ parton scattering

produced in abundance

Standard Model Production Cross Section Measurements

11

Q [GeV]

INCLUSIVE JETS – 2 CALCULATIONS!

JLI [Carrie, arover, riree ro]

STRIPPER [Czakon, van Hameren, Mitov, Poncelet '19]

- in very good agreement!
- sub-leading colour negligible!(?)

FAST INTERPOLATION GRIDS - APPLEAST

NNLO calculations $\mathcal{O}(100k)$ CPU hours \rightarrow prohibitive in PDF & α_{c} fits! \rightarrow approximate the costly convolution using a grid:

[APPLgrid, fastNLO, NNLOJET `19, `22]

THE INVESTMENT

[APPLgrid, fastNLO, NNLOJET `22]

THE INVESTMENT & RETURN

PDF DEPENDENCE & UNCERTAINTIES

central

ABMP16 & ATLASpdf21 largest excursion from the rest of the "pack" extremely small NNPDF4.0 PDF errors

100

200

500

p_T^j [GeV]

1000

VALIDITY OF K-FACTORS

$$K^{\rm NNLO}(\mu) \equiv \frac{d\sigma^{\rm NNLO}(\mu)/dp_{\rm T}}{d\sigma^{\rm NLO}(\mu)/dp_{\rm T}}$$

$$\sigma_{\text{approx. 1}}^{\text{NNLO}}(\mu) = \sigma^{\text{NLO}}(\mu) \times K^{\text{NNLO}}(\mu_{\text{ref}})$$

$$\sigma_{\text{approx. 2}}^{\text{NNLO}}(\mu) = \sigma^{\text{NLO}}(\mu) \times K^{\text{NNLO}}(\mu),$$

- *K*-factor must be applied with correlated scales to avoid $\mathcal{O}(10\%)$ scale unc.
- extremely robust ($\leq 0.5\%$) w.r.t. PDF choice! (exception: HERAPDF2.0)

central

forward

17

AVAILABLE GRIDS TABLES

inclusive jets

Data	\sqrt{s} [TeV]	\mathcal{L} [fb ⁻¹]	no. of points	anti- $k_{ m T}$ R	kinematic range [GeV]	fiducial cuts	$\mu_{ m R/F}$ -choice
CMS [30]	2.76	0.00543	81	0.7	$p_{\mathrm{T}}^{\mathrm{jet}} \in [74, 592]$	y < 3.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
ATLAS [28]	7.0	4.5	140	0.6	$p_{\rm T}^{ m jet} \in [100, 1992]$	y < 3.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
CMS [31]	7.0	5.0	133	0.7	$p_{\mathrm{T}}^{\mathrm{jet}} \in [114, 2116]$	y < 3.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
ATLAS [32]	8.0	20.3	171	0.6	$p_{\mathrm{T}}^{\mathrm{jet}} \in [70, 2500]$	y < 3.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
CMS [33]	8.0	$5.6 \\ 19.7$	248	0.7	$p_{\mathrm{T}}^{\mathrm{jet}} \in [21, 74]$ $p_{\mathrm{T}}^{\mathrm{jet}} \in [74, 2500]$	y < 4.7	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
ATLAS [34]	13.0	3.2	177	0.4	$p_{\rm T}^{ m jet} \in [100, 3937]$	y < 3.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$
CMS [35]	13.0	$36.3 \\ 33.5$	2×78	$\begin{array}{c} 0.4 \\ 0.7 \end{array}$	$p_{\mathrm{T}}^{\mathrm{jet}} \in [97, 3103]$	y < 2.0	$p_{\mathrm{T}}^{\mathrm{jet}}, \hat{H}_{\mathrm{T}}$

all grids available on: ploughshare.web.cern.ch

caveat: calculation based on leading-colour approximation in NNLO parts \leftrightarrow leading: N_c^2 , $N_c n_f$, n_f^2 (sub-leading: $\times 1/N_c^2$)

di-jets

Data	\sqrt{s} [TeV]		no. of points	anti- k_{T} R	kinematic range [GeV]	fiducial cuts	$\mu_{ m R/F}$ -cho
ATLAS [55]	7.0	4.5	90	0.6	$m_{12} \in [260, 5040]$	$egin{aligned} y_1 , y_2 < 3.0\ [p_{\mathrm{T},1}, p_{\mathrm{T},2}] > [100, 50] \mathrm{GeV}\ y^* < 3.0 \end{aligned}$	m_{12}
CMS [31]	7.0	5.0	54	0.7	$m_{12} \in [197, 5058]$	$ert y ert < 5.0 \ ert p_{{ m T},1}, p_{{ m T},2} ert > ert 60, 30 ert { m GeV} \ ert y_{ m max} ert < 2.5 \ ert$	m_{12}
CMS [49]	8.0	19.7	122	0.7	$\langle p_{\mathrm{T1,2}}\rangle \in [133,1784]$	$ert y ert < 5.0 \ p_{{ m T},1}, p_{{ m T},2} > 50 { m GeV} \ ert y_1 ert, ert y_2 ert < 3.0 \ \end{array}$	$p_{{ m T},1} \exp(0.3)$ m_{12}
ATLAS [34]	13.0	3.2	136	0.4	$m_{12} \in [260, 9066]$	$egin{aligned} y_1 , y_2 < 3.0 \ p_{\mathrm{T},1}, p_{\mathrm{T},2} > 75 \mathrm{GeV} \ \langle p_{\mathrm{T}1,2} angle > 100 \mathrm{GeV} \ y^* < 3.0 \end{aligned}$	m_{12}

How Good is LC?

sub-leading colour: SLC leading colour: LC full colour (LC+SLC): FC

improved agreement

+ve SLC contribution \hookrightarrow up to 20% on $\delta\sigma^{\text{NNLO}}$ \hookrightarrow largest @ low- p_T \hookrightarrow diminishes @ high-*p*_T

impact on NNLO: within Δ_{scl}

SLC small in incl. jets (R=0.4, 0.7) still small on di-jet $d\sigma/dm_{ii}$ (R=0.4) substantial in 3D di-jet (R=0.7)

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION

different event topologies \rightarrow disentangle mom. fractions (x_1, x_2)

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION — TH VS. DATA

[Chen, Gehrmann, Glover, AH, Mo '22]

- large NP corrections low-p_{T,avg}
- EW corrections only impacts \rightarrow high- $p_{T,avg}$ & $y_b, y^* < 1$
 - improved description of data & reduced uncertainties

TRIPLY-DIFFERENTIAL DI-JET PRODUCTION – FC vs. LC

[Chen, Gehrmann, Glover, AH, Mo '22] large SLC contributions $\hookrightarrow \text{low-}p_{\text{T,avg}} \iff 30-60\%$ \hookrightarrow med- $p_{T,avg}$ \iff small $|\cdot|$ \hookrightarrow high- $p_{T,avg} \leftrightarrow -20\%$ $LC \rightarrow FC$

 $\hookrightarrow +5\%$ enhancement

grids with FC very desirable! \hookrightarrow resolve tension with other datasets? [NNPDF4.0]

22

IDENTIFIED OBJECTS — CHALLENGES IN TH VS. EXP

ISOLATED PHOTONS γ + jet

γ + jet @ NNLO WITH FRAGMENTATION

Dependence on $D_{a \rightarrow \gamma}$

- BFG II vs. ALEPH
 - [Bourhis, Fontannaz, Guillet '98]
 [ALEPH collab. '96]
- differences on $d\sigma/dp_T^{\gamma}$ $\rightarrow 2-4\%$
- frag. contrib. $\times 10^{-1}$ $\implies O(1)$ differences
- access to $D_{a \rightarrow \gamma}$ @ LHC \hookrightarrow new observables? \hookrightarrow NNFrag?

CONCLUSIONS & OUTLOOK PART 1

- NNLO QCD calculations in good shape
 - $2 \rightarrow 2$ essentially solved
 - $2 \rightarrow 3$ new frontier $\leftrightarrow \rightarrow$ methods reaching maturity
 - *loop amplitudes* becoming a bottleneck again
 - in the quest for percent-level theory $\leftrightarrow \rightarrow$ mixed QCD×EW important
- dissemination of results
 - public codes (MCFM, Matrix), nTuples, ...
 - fast interpolation grids $\leftrightarrow APPLgrid fastNLO PineAPPL (anyway needed in fitting)$
- identified objects *w* mismatch in TH vs. Exp/NNLO
 - photon isolation, flavour tagging, hadron fragmentation, ...

- 1. NNLO predictions for the LHC
 - jets & interpolations grids
 - identified photons & fragmentation ►
- 2. Differential N³LO
 - Higgs & fiducial power corrections ►
 - Drell-Yan & PDFs
- 3. Bayesian approach to MHO
 - the abc model & correlations
- 4. Summary & Outlook

THE PLAN.

HIGGS ggH @ N3LO - INCLUSIVE* PREDICTIONS

* analytically integrated over emissions: \oplus extremely fast; \ominus idealised setup

27

FULLY DIFFERENTIAL ggH @ N3LO

FIDUCIAL ACCEPTANCES & $y_{\rm H}$

ACCEPTANCE $f(p_T^H)$

$$(p_{\rm T}^{\rm H}) = f_0 + f_1 \cdot p_{\rm T}^{\rm H} + \mathcal{O}((p_{\rm T}^{\rm H})^2)$$

[Frixione, Ridolfi '97; Ebert, Tackmann '19 + Michel, Stewart '21; Alekhin et al. '21]

• Linear $p_{\rm T}^{\rm H}$ dependence

- factorial growth for fixed-order
- *sensitivity* to very low $p_{\rm T}^{\rm H}$

$$\frac{\sigma_{\text{asym}} - f_0 \,\sigma_{\text{inc.}}}{\sigma_0 \,f_0} \simeq 0.18_{\alpha_s} - 0.15_{\alpha_s^2} + 0.31_{\alpha_s^3} + \dots$$
$$\simeq 0.12 @ \text{N}^3 \text{LL}$$

[Salam, Slade '21]

ACCEPTANCE $f(p_T^H)$

"with cuts" / "no cuts" 7_{tot} **0.80** $f(p_t, H)$ $p_{t,\mathrm{H}}$ s section coming pred lominant $m_H = 125 \text{ GeV}$ $0.65 \frac{1}{0.0}$ converge. Non-converge 12.5 25.0 25.0 cause of the second sign fact

$$(p_{\rm T}^{\rm H}) = f_0 + f_1 \cdot p_{\rm T}^{\rm H} + f_2 \cdot (p_{\rm T}^{\rm H})^2 + \mathcal{O}((p_{\rm T}^{\rm H})^3)$$

• Quadratic
$$p_{\rm T}^{\rm H}$$
 dependence

suppress factorial growth

.....

• fixed order \simeq resummation

$$\frac{\sigma_{\text{prod}} - f_0 \,\sigma_{\text{inc.}}}{\sigma_0 \,f_0} \simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$$
$$\simeq 0.006 \text{ @ N^3LL}$$

[Salam, Slade '21]

HIGGS @ N3LO WITH PRODUCT CUTS

 $\sqrt{p_{\mathrm{T}}^{\gamma_1} p_{\mathrm{T}}^{\gamma_2}} \ge 0.35 \cdot M_{\mathrm{H}}$ $p_{\mathrm{T}}^{\gamma_2} \ge 0.25 \cdot M_{\mathrm{H}}$

no visible instabilities ↔ flat *K*-factor

 $N^3LO \simeq$ NNLO $\times K_{N^3LO}$

DRELL-YAN @ N3LO - Q DEPENDENCE

resonance region *w* non-overlapping bands;

[Dulat, Duhr, Mistlberger '20 '21]

NNLO: $1 \sim \pm 20$ (large cancellations) \hookrightarrow artificially small? $1 \sim \pm 2$ <u>N3LO:</u>

;
$$\Delta_{\rm scl}^{\rm NNLO} \simeq \Delta_{\rm scl}^{\rm N^3LO}$$
 ?

											1
2											
	-	-									
		1	-	-	-	2					
					1	1	-	-	-		
1											
1											
									the second	 	

DRELL-YAN @ N3LO - Y_V DISTRIBUTIONS

same collider @ 13 TeV \rightarrow almost universal NNLO \rightarrow N³LO corrections! NC & CC[±] processes probe different parton content across Y_V (valence u vs. d, ...)

N3LO PARTON DISTRIBUTION FUNCTIONS

N3LO evolution ↔ 4-loop splitting functions

• aN3LO PDFs (MSHT)

ggH: $\delta\sigma^{N^3LO}$ VBF: $\delta\sigma^{N^3LO}$

CONCLUSIONS & OUTLOOK PART 2

- N³LO predictions are key to reach percent-level accuracy
 - computation of *inclusive* $2 \rightarrow 1$ processes very mature $\iff ggH, DY, VBF, VH, \dots$
 - differential predictions for $pp \rightarrow$ "colour neutral" appearing ✓ relies on very stable NNLO "+jet" calculation
 - <u>*but:*</u> performance of slicing methods very poor $\leftrightarrow \delta$ (10M) CPU core hours
- Fiducial cuts \leftrightarrow linear power corrections (other processes?) \hookrightarrow crucial for practicability of slicing approaches
- Inadequacies in traditional scale variations \leftrightarrow DY @ N3LO \rightarrow effect from missing N³LO PDFs?
 - \hookrightarrow more robust TH uncertainties desirable (Padé approximant, Bayesian models, PMC, series transforms, ...)

- 1. NNLO predictions for the LHC
 - jets & interpolations grids
 - identified photons & fragmentation ►
- 2. Differential N³LO
 - Higgs & fiducial power corrections ►
 - Drell-Yan & PDFs
- 3. Bayesian approach to MHO
 - the abc model & correlations
- 4. Summary & Outlook

THE PLAN.

What is the Uncertainty Δ_{TH} of my Result?

- increasingly urgent to address with $\Delta_{\text{EXP}} \searrow (\leftrightarrow \text{HL-LHC})$
 - what does 5σ mean if Δ_{TH} non-negligible?
 - interpretation of data in need for robust Δ_{TH} : PDF fits, χ^2 in ATLAS jets, ...
- various sources that contribute to Δ_{TH} :
 - $\Delta_{\alpha_{s'}} \Delta_{\text{param}}$: parametric uncertainties $\leftrightarrow \Rightarrow$ exp. extraction
 - Δ_{PDF} : parton distribution functions (PDFs) $\leftrightarrow \rightarrow$ fits
 - $\Delta_{\text{non pert.}}$: hadronisation, UE, ... $\leftrightarrow \Rightarrow$ parton showers [e.g. HERWIG vs. PYTHIA]
 - Δ_{MHO} : missing higher-order (MHO) corrections

Focus here

Conventional Approach for Δ_{MHO} – Scale Variation

approximation for an observable @ (next-to-)^{*n*} leading order: $\propto \alpha_{s}^{n_{0}+k}$

NⁿLO:
$$\Sigma \simeq \Sigma_n(\mu) = \sum_{k=0}^n \Sigma^{(k)}(\mu)$$

truncation of series induces a sensitivity to terms of the next order

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Sigma_n(\mu) = \mathcal{O}(\alpha_s^{n_0 + n + 1}) = \mathcal{O}(\alpha_s^{n_0 + n + 1})$$

electroweak (EW): \hookrightarrow scheme dependence $\hookrightarrow \alpha \ll \alpha_s$

ISSUES WITH STANDARD SCALE VARIATIONS

- known to be insufficient:
 - exclusive jet(s) (veto)
 - ratios (correlation?)
 - cancellations (e.g. $q\bar{q}$ vs. qg in DY)

choice of the central scale

- fastest apparent convergence (FAC) $\hookrightarrow \Sigma^{(n)}(\mu_{\text{FAC}}) = 0$
- principle of minimal sensitivity (PMS) $\hookrightarrow \frac{\partial}{\partial \mu} \Sigma^{(n)}(\mu) = 0$
- BLM/PMC

[Brodsky, Lepage, Mackenzie '83]; [Brodsky, Di Giustino '12] • • •

crucially: *no statistical interpretation!* \rightarrow need to do better

PROBABILITY DISTRIBUTIONS FOR
$$\Delta_{\text{MHO}}$$

• Sequence of perturbative corrections δ_{p}
 $\Sigma_{n} = \Sigma^{(0)} (1 + \delta_{1} + ... + \delta_{n}) \quad \Rightarrow \quad \phi$
• Probability distribution for δ_{n+1} , give
 $P(\delta_{n+1} | \delta_{n}) = \frac{P(\delta_{n+1})}{P(\delta_{n})} = \frac{\int d^{m}p \ P(\delta_{n+1})}{\int d^{m}p \ P(\delta_{n})}$

P(A, B) = P(A | B) P(B) $P(A) = \left| \mathrm{d}B \ P(A, B) \right|$

Model: $P(\boldsymbol{\delta}_n | \boldsymbol{p})$ \bigcirc Priors: $P_0(\mathbf{p})$

[Cacciari, Houdeau '11]

 δ_k normalised w.r.t. LO (dimensionless)

 $\delta_k = \mathcal{O}(\alpha_s^k)$ ten $\boldsymbol{\delta}_n = (\delta_0, \delta_1, \dots, \delta_n)$ $(1 | p) P_0(p)$ $(p) P_0(p)$

THE CH MODEL

perturbative expansion $\delta_k = c_k \alpha_s^k$ bounded by a geometric series: $|c_k| \leq \bar{c}$

$$\left|\sum_{k} \delta_{k}\right| \leq \sum_{k} |c_{k}| \alpha_{s}^{k} \leq \sum_{k} \bar{c} \alpha_{s}^{k}$$

- one hidden parameter: \bar{c}
- constrain upper bound \bar{c} from known orders \rightarrow constraint on unknown coefficients c_{n+1}
- limitations:

 α_s at what scale? why not: $\frac{\alpha_s}{\pi}$, $\frac{\alpha_s}{2\pi}$, $\alpha_s \ln^2(v)$, $\alpha_s \ln(v)$, ...?

why not let the model figure out the expansion parameter itself?

[Cacciari,	Houdeau '	•
 		, ,

$\forall k$

THE GEOMETRIC MODEL bounded by a geometric series with expansion parameter *a*: $|\delta_k| \leq c a^k \quad \forall k \quad \iff \text{two model parameters: } a, c$ **model:** $P_{\text{geo}}^{(k)}(\delta_k | a, c) = \frac{1}{2c a^k} \Theta\left(c - \frac{|\delta_k|}{a^k}\right)$ priors: $P_0(a, c) = P_0(a) P_0(c)$ $P_0(a) = (1 + \omega) (1 - a)^{\omega} \Theta(a) \Theta(1 - a)$ $P_0(c) = \frac{\varepsilon}{c^{1+\varepsilon}} \Theta(c-1)$

LBonvini '20

 $\leftrightarrow dc/c \sim d\ln(c)$ (ε : regulator)

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

• LO $> \delta_0 \equiv 1$

 $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$

chose $\omega = 0$ for flat prior in a

> no inference yet! $P(\delta_1)$ entirely determined by the model & priors

$$P(\delta_{1}) = \int da \int dc \ P_{geo}^{(1)}(\delta_{1} | a, c) \ P_{0}(a, c)$$

THE INFERENCE STEP – GEOMETRIC SERIES: $\delta_k = (0.7)^k$ • LO $> \delta_0 \equiv 1$ $P_0(a, c) = \Theta(a) \Theta(1-a) P_0(c)$ • NLO $> \delta_1 = 0.7$ $P(a, c | \delta_1) \propto P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$

posterior

likelihood

prior

Bayes' theorem: $P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$

 δ_k independent:

 $P(\delta_2 \,|\, \delta_1) = P(\delta_2)$

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

 $> \delta_0 \equiv 1$ $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$ **NLO** > $\delta_1 = 0.7$ $P(a, c | \delta_1) \propto P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$ • N²LO > $\delta_2 = 0.7^2$ $P(a, c \mid \delta_1, \delta_2) \propto P(\delta_2 \mid \delta_1, a, c) P(a, c \mid \delta_1)$ $\propto P_{\text{geo}}^{(2)}(\delta_2 | a, c) P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$

Bayes' theorem & independence *a* ~ 0.7 <u>also:</u> *c* ~ 1

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

 $> \delta_0 \equiv 1$ LO $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$ • NLO > $\delta_1 = 0.7$ $P(a, c | \delta_1) \propto P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$ • N²LO > $\delta_2 = 0.7^2$ $P(a, c \mid \delta_1, \delta_2) \propto P(\delta_2 \mid \delta_1, a, c) P(a, c \mid \delta_1)$ $\propto P_{\text{geo}}^{(2)}(\delta_2 | a, c) P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$

can be solved analytically

$$P(\delta_{n+1} | \boldsymbol{\delta}_n) \propto \int da \int dc \prod_{k=1}^n \left[P_{\text{geo}}^{(k)}(\delta_k | a, c) \right] P_0(a, b)$$

- allow for different lower & upper bound: $b - c \leq \frac{\delta_k}{c^k} \leq b + c \quad \forall k \quad \iff \text{ three model parameters: } a, b, c$

• model:
$$P_{abc}^{(k)}(\delta_k | a, b, c) = \frac{1}{2c |a|^k} \Theta(c)$$

• priors:
$$P_0(a, b, c) = P_0(a) P_0(b, c)$$

 $P_0(a) = \frac{1}{2} (1 + \omega) (1 - |a|)^{\omega} (1 + \omega) (1 - |a|)^{\omega} (1 + \omega)$
 $P_0(b, c) = \frac{\varepsilon \eta^{\varepsilon}}{c^{1+\varepsilon}} \Theta(c - \eta) \frac{1}{2\xi c} (1 + \omega)$

 $\Theta(1 - |a|) \iff \text{support: } [-1,+1] \text{ (alternating)}$

 $\Theta(\xi c - b)$

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ • $CI_{68/95}$ (geo) (abc)

• geo

- always entered around NNLO
- very narrow peak

• abc

- $\mu/\mu_0 \gtrsim 1 \implies$ anticipate pos. N3LO
- $\mu/\mu_0 \lesssim 1 \implies$ bias slowly disappears

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ $CI_{68/95}$ (geo) (abc)

- two options:
 - 1. invoke some *principle* to pick the "optimal" scale
 - FAC, PMS, PMC, ...

Fastest Apparent Convergence $\Sigma_n(\mu_{\text{FAC}}) = \Sigma_{n-1}(\mu_{\text{FAC}})$

depends on order might not be unique

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ $CI_{68/95}$ (geo) (abc)

- two options:
 - 1. invoke some *principle* to pick the "optimal" scale
 - FAC, PMS, PMC, ...

Principle of Minimal Sensitivity $\frac{\partial}{\partial \mu} \Sigma_n(\mu) \big|_{\mu_{\rm PMS}} = 0$

depends on order might not be unique

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ • $CI_{68/95}$ (geo) (abc)

- two options:
 - 1. invoke some principle to pick the "optimal" scale
 - FAC, PMS, PMC, ...
 - 2. combine different $P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$

pursued in the following

PRESCRIPTIONS FOR SCALES

Scale Marginalisation (sm):

[Bonvini '20]

treat µ as a hidden model parameter
 & marginalise over it:

$$P_{\rm sm}(\delta_{n+1} | \boldsymbol{\delta}_n) = \int d\mu \ P(\delta_{n+1}, \mu | \boldsymbol{\delta}_n)$$
$$= \int d\mu \ P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu) \ P(\mu | \boldsymbol{\delta}_n)$$

• $P(\mu | \boldsymbol{\delta}_n) \propto P(\boldsymbol{\delta}_n; \mu) P_0(\mu)$ with prior: $P_0(\mu) = \frac{1}{2\mu \ln F} \Theta\left(\ln F - \left|\ln\left(\frac{\mu}{\mu_0}\right)\right|\right)$

Scale Average (sa):

[Duhr, AH, Mazeliauskas, Szafron '21]

µ has no probabilistic interpretation
 → average over it:

$$P_{\text{sa}}(\delta_{n+1} | \boldsymbol{\delta}_n) = \int d\mu \ w(\mu) \ P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$$

• weight function:

$$w(\mu) = \frac{1}{2\mu \ln F} \Theta\left(\ln F - \left|\ln\left(\frac{\mu}{\mu_0}\right)\right|\right)$$

$$\ln \mu$$

$$F_{0} F_{\mu_0}$$

PEAK OF THE DISTRIBUTIONS*

Scale Marginalisation (sm):

- if $\mu_{FAC} \in [\mu_0/F, F \mu_0]$ then $P_{\rm sm}(\delta_{n+1} | \boldsymbol{\delta}_n)$ peaks at $\Sigma_n(\mu_{\rm FAC})$
 - $P(\boldsymbol{\delta}_n | \boldsymbol{\mu})$ dominated by (k = n) term
 - symmetric model $\rightsquigarrow \delta_n(\mu) = 0$ enhanced

Choice of how to interpret the scale has consequences for predictions!

* for symmetric models, a convergent series, and reasonable assumptions

Scale Average (sa):

- if $\mu_{PMS} \in [\mu_0/F, F \mu_0]$ then $P_{\rm sa}(\delta_{n+1} | \boldsymbol{\delta}_n)$ peaks at $\Sigma_n(\mu_{\rm PMS})$
 - overlap between $P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$ enhanced at stationary point $\rightarrow \Sigma'_n(\mu_{\rm PMS}) \approx 0$

INCLUSIVE CROSS SECTIONS UP TO N3LO

• n < 2: CI₆₈ bigger than 9pt • $\delta_1 < 0 \implies abc$ alternating n > 2: all prescriptions similar

- δ_3 is large and outside of 9pt!
 - similar unc.: sa \simeq 9pt
- n = 2: sm \ll others (μ_{FAC})
- n = 3: all prescriptions similar

- large cancellations in the ratio
- n < 2: 9pt performs poorly
- (anticipated by *abc*) (A_W)
- size: $abc \leq others$

overall: not radically different estimates for $\Delta_{ m MHO}$

DIFFERENTIAL DISTRIBUTIONS

- Bayesian approach also applicable to distributions → treat each bin individually ↔ will not include correlations!
- new challenges
 - no longer "easy" to identify an appropriate hard scale μ_0 (up to rescaling) → inclusive ggH: $M_{\rm H}$ vs. $\frac{1}{2}M_{\rm H}$? Just let the model figure it out.
 - differential distributions can probe different kinematic regimes → dynamical scale choice ↔ *many choices!* \rightarrow e.g. in jet production: p_{T}^{j} , $p_{T}^{j_{1}}$,

re-cycling via quadrature limited \rightsquigarrow ideally interpolation grids

$$\langle p_{\mathrm{T}}^{j} \rangle_{\mathrm{avg}}, H_{\mathrm{T}} \equiv \sum_{i \in \mathrm{jets}} p_{\mathrm{T}}^{i}, H_{\mathrm{T}} \equiv \sum_{i \in \mathrm{partons}} p_{\mathrm{T}}^{i}, \dots$$

W-BOSON + JET PRODUCTION

• *n* < 2:

- CI₆₈ bigger than 9pt
- *abc* captures pos. shift

•
$$n = 2$$
:

- almost identical bands
- $\Delta_{\rm MHO}$ very robust
- sm vs. sa
 - almost identical CI

DI-PHOTON PRODUCTION

- example where 9pt fails
 - large corrections
 - $\Delta_{\rm MHO}^{
 m NNLO}\gtrsim\Delta_{
 m MHO}^{
 m NLO}$
 - no sign of convergence

$$CI_{68} \sim 2-3 \times 9pt$$

• *n* = 2:

- marginal overlap for geo
- differences in *size* & *position*
- ideally N3LO for robust Δ_{MHO}

• sm \simeq sa

large correctionsprohibit FAC points

THE PROBLEM WITH JETS...

non-trivial change of dynamical scales cannot be captured by a simple re-scaling

WORK IN PROGRESS – CORRELATIONS

- idea: if two bins show similar (opposite) perturbative behaviour \hookrightarrow two bins should be partially (anti-)correlated.
- we want: joint probability distribution P(x, y) for two bins x & y \rightarrow preserve projections for compatibility:

$$P(x) = \int dy \ P(x, y) = \int dz \ P(x, z)$$

possibilities: algorithmic "earth movers distance"; map P(x) onto P(y), ... \hookrightarrow can be done much simpler

 \rightarrow hidden parameter -1 < c < +1 to smoothly implements the correlation

WORK IN PROGRESS - CORRELATION MODEL IN miho

projections of multi-dim. Gaussians (+ correlation matrix) are again Gaussian \rightarrow map P_i onto Gaussians, implement correlations, map back

$$P(x,y) = P_1(x)P_2(y)$$

$$\times \frac{d\Phi^{-1}(\alpha)}{d\alpha} \Big|_{\alpha = \Sigma_1(x)} \frac{d\Phi^{-1}(\beta)}{d\beta} \Big|_{\beta = \Sigma_2(y)}$$

$$\times \frac{1}{2\pi\sqrt{1-c^2}} \exp\left(-\frac{1}{2(1-c^2)} \left[\xi(x)^2 + \eta(y)^2\right]\right)$$

.

 $\Sigma_i(x) = \int_{-\infty}^x dx' P_i(x')$ $\Phi^{-1}(p) = \sqrt{2} \mathrm{Erf}^{-1}(-1+2p)$ $\xi(x) = \Phi^{-1}\left(\Sigma_1(x)\right)$ $-c2\xi(x)\eta(y)\bigr]\Bigr)$ $\eta(y) = \Phi^{-1}\left(\Sigma_2(y)\right)$ c = -0.5 c = 0 c = 0.9

use inference to constrain c

CONCLUSIONS & OUTLOOK PART 3

- Bayesian inference is a powerful framework to estimate Δ_{MHO}
 - statistical interpretation $\iff P(\delta_{n+1} | \delta_n)$
 - exposes our *assumptions* & *biases* clearly $\leftrightarrow \rightarrow$ model & priors
 - *but:* it is not more reliable than scale variation \rightarrow careful analysis required
- typically for n < 2: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \simeq 9pt$
- public code: ミホ (miho) ->> https://github.com/aykhuss/miho
- future directions
 - correlations (PDF fits & data interpretation)
 - marginalisation over models, ...

CONCLUSIONS & OUTLOOK PART 3

- Bayesian inference is a powerful framework to estimate Δ_{MHO}
 - statistical interpretation $\iff P(\delta_{n+1} | \delta_n)$
 - exposes our *assumptions* & *biases* clearly $\leftrightarrow \rightarrow$ model & priors
 - *but:* it is not more reliable than scale variation \rightarrow careful analysis required
- typically for n < 2: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \simeq 9pt$
- public code: ミホ (miho) ->> https://github.com/aykhuss/miho
- future directions
 - correlations (PDF fits & data interpretation)
 - marginalisation over models, ...

Thank you!

