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Introduction – Understanding LHC measurements

•  LHC has produced an abundance of measurements that are 
extremely useful for further (combined) interpretation

•  Many groups are doing so – both inside and outside the 
experiments

•  In this presentation I want to show some aspects of what goes on 
‘under the hood’ of typical published measurements

•  With particular focus on statistical methods and treatment of 
systematic uncertainties

•  Some of these issues will also be relevant (or at least good to be 
aware of) when interpreting these results, or using them as inputs 
for further combined fits
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Anatomy of a ‘typical’ LHC measurement

•  Hierarchy of concepts for description of one measurement channel
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(Theory) sample !
normalization

Template morphing shape systematic

Beeston-Barlow-lite MC statistical uncertainties
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 à Construct L(x|μ,θ)#



A single measurement is often many measurements

•  x
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W+b(b) enriched 
control region 

Z+b(b) enriched 
control region 
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 Lfull(x|μ,θ) =  LA(x|μ,θ) LB(x|μ,θ) LC(x|μ,θ) … 



Information provided by measurements

•  For most LHC measurements, the full likelihood model contains a 
lot more detail than is published

–  Typically O(10) to O(100) of nuisance parameters that quantify impact of 
various systematic uncertainties on each of the analysis regions of the event.

–  Not all needed to understand and interpret result, but can sometimes give 
extra useful information when you intend to combine measurement with other 
measurement à Allows for precise implementation of what NPs should be 
treated as correlated, or uncorrelated

•  Full likelihood information of most LHC measurements is often 
digitally preserved (internally) in experiments

–  Allows to combine results in a later stage with full preservation of detail 

–  Most famous example is Higgs boson combined measurements

–  But happens for many other measurements  
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A visual map of the Run-1 ATLAS Higgs combination

Wouter Verkerke, NIKHEF

Every edge is a parameter (~1k), every node is function or pdf (~20k)



A visual map of the Run-2 ATLAS Higgs combination
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Every edge is a parameter (~2k), every node is function or pdf (~100k)



Information from LHC (combined) measurements

•  Full level of detail not published, and most of it is very technical 
(and usually not needed after publication)

•  For many measurements, details also published on HEPdata (but 
usually not everything)

•  But detailed likelihood-level combinations allow to study effects 
that are otherwise not easily studied 

•  Will attempt to summarize some the pitfalls, points of attention, 
and lessons learned in this presentation

–  It is by no means exhaustive
–  It may also not all be relevant for you

–  But nevertheless some of this is useful to you I hope!
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Combined measurement strategies inside (or between) LHC results

•  Most combined results follow one of 3 classes
1.  Full-detail likelihood-based combination

2.  Likelihood combination with simplified parametrized likelihood formulations of 
existing results (assuming Gaussian/Linear modeling)

3.  BLUE (variants) of combination

•  Hybrid combinations are also performed (e.g. Gaussian/Linear 
likelihood constructed from a covariance-formulated result with a 
full likelihood)

–  In many cases the difficult problems do not so much arise from the precise 
formulation of the likelihood function (many measurements are Gaussian/
Linear and hard-coding that assumption does not hurt n such cases)

–  But the difficult problems are in the formulation of systematic uncertainties and 
their (partially) correlated implementation of effects in combined 
measurements
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Unfolding measurements

•  A special class of LHC measurements – from the statistical 
treatment perspective – are unfolding measurements

•  Typical ‘unfolding’ LHC measurements follows multi-step approach
1.  Modeling of signal and background in (2 or more)-D distribution
2.  Subtraction of estimated background component from data

3.  Unfolding of bkg-subtracted data from reco to particle or parton space

4.  Publication of results in covariance form

•  While detailed information of systematic effects (through NP 
parametrization) is available in 1st step – many details are lost in the 
subsequent processing à typically less detailed information 
available than for full likelihood-based measurement.

–  This limitation is not fundamental. New unfolding tools can preserve information 
à transport uncertainties from reco-level through unfolding matrix to parton 
level. But fairly new, and therefore not much used yet
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Formulating uncertainties – Hessian vs PLL approach

•  In the regime of Gaussian uncertainties with a linear response, 
Hessian and Profile Likelihood formulation are equivalent

–  Almost all measurements at LHC are in this regime
–  Searches and low-statistics measurements not necessarily

•  Nevertheless – majority of LHC measurements are expressed in 
PLL formalism

–  Main exception are unfolded results (as mentioned before)

•  As lot of the ‘tricky’ aspects of systematics are in the response 
function and not in the subsidiary measurement, it is often natural 
to work with the full likelihood in the PLL formalism 
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A experimentalist guide to combining results

•  Golden Rule: Avoid (almost) intractable statistical problems through 
thorough advance preparation of the combination strategy#

–  Issues we really try to avoid include

•  Overlapping event selections
–  Every event should only appear at most once in the likelihood
–  Allowing events to be used more than once leads to underestimation of statistical 

uncertainties
–  This is a really hard problem that requires significant study of event selection of 

measurements with dedicated samples
–  It often also requires non-trivial adjustments to existing analysis to explicitly remove such 

overlap

•  Systematic uncertainties with an undefined degree of correlation
–  For example: what is correlation in flavor-tagging efficiency algorithm at 70% efficiency 

operating point and at 80% operating? 
–  Could in principle be studied and resolved – but very significant amount of work and 

flavor tagging groups in experiments will refuse to take on such tasks
–  But much more intractable variants exist for theoretical uncertainties. For example 

Stewart-Tackman vs JetVeto procedures, or hadronization uncertainties evaluated with 
different MC generators.

–  General strategy: 1) coordinate in advance to avoid. 2) if that failed, retroactive change 
analyses to common strategy.   
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A non-trivial combination example

•  Joint interpretation of ppàHàWW and ppàWW measurements
•  Different input formulations: 

–  Higgs measurement in full likelihood form, !
SM measurement in covariance form

–  Solution: express SM measurement !
as Gaussian likelihood

–  Harmonize/match nuisance parameters

•  Overlapping samples: 
–  Non-resonant WW production used in !

HàWW sample as control sample
–  Sololution: remove HWW control sample. !

reformulate HWW likelihood to use !
corresponding information from SM     
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Points of attention in combining measurements

•  After having avoided the ‘intractable’ problems through proper 
preparation, still plenty of issues left

•  Most of these are in the domain of formulation of systematic 
uncertainties in input measurements

•  Even if definitions are harmonized – still plenty of room for 
surprising issues

•  In the remainder of this presentation will focus mostly on definition, 
implementation and effect of systematic uncertainty 
representations. 
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The simulation workflow and origin of uncertainties
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Simulation of high-energy!
physics process

Simulation of ‘soft physics’!
physics process

Simulation of ATLAS!
detector
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Typical specifications of systematic uncertainties

•  Detector-simulation related
–  “The Jet Energy scale uncertainty is 5%”
–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”

•  Theory related
–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the 

systematic uncertainty”
–  “Evaluate the effect of using Herwig and Pythia  and consider the difference the 

systematic uncertainty”!


•  MC related
–  Usually left unspecified – but quite clearly defined as a Poisson distribution with the 

‘observed number of simulated events’ as mean. 
–  But if MC events are weighted, it gets a bit more complicated.!



•  Note that specifications are often phrased as a prescription to be 
executed on the estimation procedure of the physics quantity of 
interest (‘vary and rerun…’) or can be easily cast this way.
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Modeling systematic uncertainties in the likelihood

•  What is a systematic uncertainty? It consists of
–  1: A set of one or more parameters of which the true value is unknown, 
–  2: A response model that describes the effect of those !

    parameters on the measurement.
–  3: A distribution of possible values for the parameters
–   In practice these (response) models are often only formulated implicitly, but 

modeling of systematic uncertainties in the likelihood requires an explicit 
model

•  Example of ‘typical’ systematic uncertainty prescription !
!
    “The Jet Energy Scale Uncertainty is 5%”!


•  Note that example does not meet definition standards above
–  Specification specifies variance of the distribution unknown parameter, but not 

the distribution itself (is it Gaussian, Poisson, something else) 
–  Response model left unspecified
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Formalizing systematic uncertainties

•  The original systematic uncertainty prescription


•  The formalized prescription for use in statistical analysis
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“the JES uncertainty is 5%” 

“There is a calibration parameter in the likelihood!
of which the true value is unknown!
!
The distribution of this parameter is a Gaussian!
distribution with a 5% width!
!
The effect of changing the calibration by 1%!
is that energy of all jets in the event is!
coherently increased by 1% ” 



The sideband measurement

•  Suppose your data !
in looks like this è !
!
!
!
!
Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space !


•  Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents !
the amount of bkg is the SR. !
!
Scale factor τ accounts for difference !
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”



Generalizing the concept of the sideband measurement

•  Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’!
!
 

•  Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty 
 
 
 
 
 


–  We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement
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Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’!
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’#



Modeling a detector calibration uncertainty

•  Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N , !α | s,α) = Poisson(N | s+ !b(1+0.02α / !α)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background !
expectation from MC!
(a constant), obtained!
with a=a˜

Response function#
for JES uncertainty#
(a 1% JES change !

results in a 2% !
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ !
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty!
on nominal!
calibration!
(here 5%)#

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty

•  Simplify expression by renormalizing “subsidiary measurement”
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L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background !
expectation from MC!
(a constant)

Response function!
for normalized JES !

parameter!
[a unit change in α !

– a 5% JES change –  !
still results in a 10% !
acceptance change]

“Normalized #
subsidiary measurement”#
#
The scale of parameter!
α is now chosen such that !
values ±1 corresponds to the !
nominal uncertainty!
(in this example 5%)!

Gauss( α |α,σα )



The response function as empirical model of full simulation

•  Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

–  But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

–  Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

–  For example run at nominal JES and with JES shifted up and down by ±5%

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)


-1  0  +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation"
of true response

Most systematics response functions on scalar observables  
are implemented as piece-wise  linear functions 



The sideband measurement with a systematic uncertainty

•  The extrapolation from!
the sideband (CR) to the SR !
always assumes a model !
(that may carry an uncertainty)

–  The factor τ may depend on!
theory or detector factors that!
are uncertainty.

–  One should account for these! !
!
!
!
!
!
!


LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents !
the amount of bkg is the SR. !
!
Scale factor τ accounts for difference !
in size between SR and CR

CR SR

L(N,Nctl, 0 | s,b,αJES ) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ (1+ XαJES ) ⋅b) ⋅Gauss(0 |αJES,1)

JES response model for ratio bSR/bCR  Subsidiary measurement !
of JES response parameter



Overview of common subsidiary measurement shapes

•  Gaussian G(x|μ,σ)
–  ‘Default’, motivated by Central Limit Theorem !

(asymp dist for sum of random variables)

•  (Rescaled) Poisson P(N|μτ)
–  Obvious choice for any subsidiary measurement!

that is effectively a counting experiment

–  NB: For a Poisson model the distribution in μ!
is a Gamma distribution (posterior of Poisson)

–  Scale factor τ allows to choose variance!
independently of mean (e.g. to account for!
side-band size ratio, data/mc lumi ratio) 


•  LogNormal LN(x|μ,σ)

–  Asymptotic distribution for product!
of random variables

–  Appealing property for many applications is!
that it naturally truncates at x=0 Wouter Verkerke, NIKHEF



Additive vs Multiplicative systematic uncertainties

•  Additive vs Multiplicative effect of systematic effects is expressed 
in the response function.

•  Additive response function with Gaussian subsidiary

•  Multiplicative response function with LogNormal subsidiary
–  LogNormal cannot go negative, but asymptotically Gaussian away from 0

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

L(N | s,α) = Poisson(N | s+ !b ⋅β) ⋅ LogNorm(1|β ,0.1)



Modeling of shape systematics in the likelihood

•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain

–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ !
settings of systematic effect

•  Now construct a response function based on the shape of these 
three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

•  Need to define ‘morphing’ algorithm to define !
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Piecewise linear interpolation

•  Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear!
interpolation!
response model!
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution
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xα



Limitations of piece-wise linear interpolation

•  Bin-by-bin interpolation looks spectacularly easy and simple, !
but be aware of its limitations

–  Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5



Piece-wise interpolation for >1 nuisance parameter

•  Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.

–  Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level

–  One-parameter interpolation!


!
!

–  N-parameter interpolation

Wouter Verkerke, NIKHEF
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Comparison of morphing algorithms

Wouter Verkerke, NIKHEF, 33

Vertical!
Morphing

Horizontal!
Morphing

Moment!
Morphing

Gaussian!
varying!
width

Gaussian!
varying!
mean

Gaussian
to!

Uniform!
(this is!

conceptually ambigous!)

n-dimensional!
morphing? ✔ ✗ ✔ 



Systematic uncertainties – what exactly is uncertain?

•  Quite a bit of technical machinery involved implementing shape 
systematics in measurements, but good tools for this and technical 
aspects generally very well under control

•  More difficult conceptual question with many systematic uncertainties 
is: ‘what exactly is uncertain’?#

•  For many systematic uncertainties this is  
a quite difficult question to answer.  

–  For experimental systematics it does not only relate to e.g. the design of the 
detector, but also how calibration measurements were done. E.g. when energy 
calibration of the calorimeter are performed with dijet events, energy balance is 
explicitly used and will introduce a correlation structure

–  For theory systematics these questions can be even more difficult to answer, as 
many formulations are simply proxies for concepts without well-defined physical 
meaning at the observable level (e.g. scale uncertainties as proxy for MHOU)
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Understanding of systematic uncertainty models

•  “Best case”#
–  Well-defined parametric model that !

define uncertain degrees of freedom !
in a particular aspect of the simulation

–  Well-defined uncertainty estimates!
on the set of parameters!


•  Example – detector calibration uncertainties (e.g JES)

Simulation of ATLAS!
detector

Measurement on �
calibration data (e.g. jet-γ balance) 

Calibration with parameterization�
and correlation structure motivated by �

underlying measurement
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Understanding of systematic uncertainty models

•  “Best case”#
–  Well-defined parametric model that !

define uncertain degrees of freedom !
in a particular aspect of the simulation

–  Well-defined uncertainty estimates!
on the set of parameters!


•  Formulation of systematic uncertainty in L of physics measurement

Simulation of ATLAS!
detector

Ljoint(xphys,xcalib|μ,θc) = Lphys(xphys|μ,θc) Lcalib(xcalib|θc)

Physics parameter of interest Uncertain Nuisance Parameters!
that capture systematic uncertainty

Likelihood describing "
physics measurement Likelihood describing "

calibration measurement
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Understanding of systematic uncertainty models

•  “Best case”#
–  Well-defined parametric model that !

define uncertain degrees of freedom !
in a particular aspect of the simulation

–  Well-defined uncertainty estimates!
on the set of parameters!


•  Formulation of systematic uncertainty in L of physics measurement

Simulation of ATLAS!
detector

Ljoint(xphys|μ,θ) = Lphys(xphys|μ,θ) Lcalib-simplified(0|θ)

Simplified (Gaussian) approximation"
of calibration measurement 

Coordinate transformation "
in nuisance parαmeters
"

θc=nom-1σ    à  θ=-1"
θc=nom         à  θ=0
θc=nom+1σ   à  θ=+1

Likelihood describing "
physics measurement
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Understanding of systematic uncertainty models

•  “Bad case”#
–  Well-defined parametric model that !

define uncertain degrees of freedom !
in a particular aspect of the simulation

–  No well-motivated uncertainty estimates!
on the set of parameters!
!


•  Canonical example – Uncertainty on b-quark mass
–  Evaluation strategy clear – propagate impact of uncertain NP representing mb 

–  But no clean equivalent of ‘calibration measurement’ that constrains 
magnitude of mb  à Magnitude of uncertainty not precisely defined!
!
!
!
!
(Mostly an issue if this uncertainty dominates total measurement uncertainty) 

Simulation of parton showers!


Ljoint(xphys|μ,θ) = Lphys(xphys|μ,θ) Lcalib-simplified(0|θ)
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Understanding of systematic uncertainty models

•  “Ugly case”#
–  No well defined parametric model that !

define uncertain degrees of freedom 

–  No well-motivated uncertainty estimates!
on the set of parameters!


•  Canonical example – Fragmentation/Hadronization
–  We have several MC generators that give different answers!

that sample ‘points in the theory space’ that are indicative of the uncertainty


Pythia

Herwig

Sherpa

Nature

Next years!
generator

Dimensionality of problem unclear

Can construct 1-parameter model"
with ‘brute force’ with morphing"
interpolation

‘2-point systematic’!

39

Simulation of parton showers!




Parameterizing systematics uncertainties in the Likelihood

•  “Ugly case”#
–  No well defined parametric model that !

define uncertain degrees of freedom 

–  No well-motivated uncertainty estimates!
on the set of parameters!


•  Canonical example – Fragmentation/Hadronization
–  We have several MC generators that give different answers!

that sample ‘points in the theory space’ that are indicative of the uncertainty
 Nuisance parameter α shifts"

peak in simulated distribution of x"
Approximated with linear morphing"
between templates sampled at α=-1,0,1

Ljoint(xphys|μ,α) = Lphys(xphys|μ,α) Gauss(0|α,1)

Simplified Gaussian subsidiary"
measurement of parameter α. "

α is defined as the ‘pull’"
of the original NP 

40

Simulation of parton showers!


α=-1

α=0
α=+1

x



Build good response model for systematic uncertainties

•  A lot of work has happened in the past 10 years for experimental 
uncertainties

•  Detailed response models reflect detailed knowledge of 
calibrations. Can also provide a variable level of detail (e.g. a 
counting measurement would never need more than 1 NP for any 
systematic)

•  Theory uncertainties remain a challenging topic (but more on that 
later)

•  Getting the level of detail right is crucial. It is surprisingly easy to 
underestimate the impact of systematic effects through improper 
modeling (either too simple, or too elaborate)

Wouter Verkerke, NIKHEF



Understanding your fit – beware unintended effects#

•  Full (profile) likelihood treats physics and subsidiary measurement 
on equal footing

•  Our mental picture:

!

•  Is this picture (always) correct?#

#
#

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement

“measures s” “measures α”

“dependence on α!
weakens inference on s”



Understanding your model – what constrains your NP

•  The answer is no – not always! Your physics measurement!
may in some circumstances constrain α better than your 
subsidiary measurement.

•  Doesn’t happen in Poisson counting example 
–  Physics likelihood has no information to distinguish effect of s from effect of α

•  But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement



Understanding your model – what constrains your NP

•  A case study – measuring jet multiplicity (3j,4j,5j)!
!
!


•  Signal mildly peaks in 4j bin, sits on top of a falling background

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Effect of changing µ Effect of changing αJES 



Understanding your model – what constrains your NP

•  Now measure (μ,α) from data – 80 events!


•  Is this fit OK?
–  Effect of JES uncertainty propagated in to μ via response modeling in 

likelihood. Increases total uncertainty by about a factor of 2
–  Estimated uncertainty on α is not precisely 1, as one would expect!

from unit Gaussian subsidiary measurement…  
Wouter Verkerke, NIKHEF

µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of!
μ, α correlated!
due to similar!

response in physics!
measurement

Uncertainty!
on μ with/without !
effect of JES



Understanding your model – what constrains your NP

•  The next year – 10x more data  (800 events)!
repeat measurement with same model

•  Is this fit OK?
–  Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)
–  Because the physics likelihood can measure it better than the subsidiary 

measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision) Wouter Verkerke, NIKHEF

µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of!
μ, α correlated!
due to similar!

response in physics!
measurement



Understanding your model – what constrains your NP

•  Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?

–  From the statisticians point of view: no problem, simply a product of two 
likelihood that are treated on equal footing ‘simultaneous measurement’

–  From physicists point of view? Measurement is only valid is model is valid.

•  Is the probability model of the physics measurement valid?

•  Reasons for concern
–  Incomplete modeling of systematic uncertainties,

–  Or more generally, model insufficiently detailed 

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP

•  What did we overlook in the example model?
–  The background rate has no uncertainty!

•  Insert modeling of background uncertainty!
!


•  With improved model!
accuracy estimated!
uncertainty on both!
αJES, μ goes up again…

–  Inference weakened!
by new degree of!
freedom αbkg

–  NB αJES estimate still!
deviates a bit from normal!
distribution estimate… Wouter Verkerke, NIKHEF

L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate!
subsidiary measurement

Background rate!
response function

µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)



Understanding your model – what constrains your NP

•  Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate 
uncertainties

•  Normalized subsidiary measurement provide an excellent 
diagnostic tool

–  Whenever estimates of a NP associated with unit Gaussian subsidiary 
measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.

•  Is ‘over-constraining’ of systematics NPs always bad?
–  No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)

–  Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement

Wouter Verkerke, NIKHEF



Commonly heard  arguments in discussion on over-constraining

•  Overconstraining of a certain systematic is OK “because this is what 
the data tell us”

–  It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition

•  “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”

–  A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.

–  If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 

•  “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%

–  It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.

–  One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)   

Wouter Verkerke, NIKHEF



Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 

•  Written prescription often not clear on number of nuisance 
parameters: 

•  Does “the JES uncertainty is 5% for all jets” mean one NP
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i.e. JES miscalibration is coherent for all jets!
à You can calibrate high pT jets with a low pT jet sample

5% 



Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 

•  Written prescription often not clear on number of nuisance 
parameters: 

•  Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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i.e. JES miscalibration is not coherent across pT!
but still has 5% uncertainty for each pT bin
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Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 

•  Written prescription often not clear on number of nuisance 
parameters: 

•  If you assume one NP – chances are that your physics Likelihood !
                                      will exploit this oversimplified JES model !
                                      to overconstrain JES for high pT jets!
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i.e. JES miscalibration is coherent for all jets!
à You can calibrate high pT jets with a low pT jet sample

5% 



Example of likelihood modeling diagnostics

Wouter Verkerke, NIKHEF



How many NPs you need to capture a systematic uncertainty?

•  Detector systematics (calibrations, efficiencies) are complex 
entities, mapping det. performance measurements with variable 
resolution of the detector phase space à Need >>1 parameter#

Wouter Verkerke, NIKHEF

Lfull (x |µ,α1,...,αn ) = Lphysics (x |µ,α1,...,αn ) ⋅Lsubsidiary (0 |α1,...,αn )

Some αi parameters can also be correlated by subsidiary calibration measurement#
(typical for in-situ calibration measurements)

Lsubsidiary (0 |α1,...,αn )

= exp(−0.5 ⋅ !αT ⋅V −1 ⋅
!
α)
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How many NPs you need to capture a systematic uncertainty?

•  The need for detailed (detector) systematic modeling also 
depends on complexity of the physics analysis !
à Sometimes 1 parameter enough, sometimes all n needed#

Wouter Verkerke, NIKHEF

Lfull (x |µ,α1,...,αn ) = Lphysics (x |µ,α1,...,αn ) ⋅Lsubsidiary (0 |α1,...,αn )

Extreme case 1:
Counting measurement in a single bin

Extreme case 2:
Shape fit to multiple distributions

1 parameter in the likelihood model #
describing  total effect likely sufficient#

Applicability of a simplified NP #
model in the likelihood not obvious#

μs

b

N
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1: Reduction – Eigenvalue decomposition #

•  Large NP sets in CP groups usually arise from in-situ 
calibrations. Common feature of in-situ calibration 
uncertainties is that nuisance parameters that are strongly 
correlated.

–  A priori all of these NPs are important, making reduction of detail 
difficult

–  Common solution implemented by performance groups is 
EigenVector decomposition of these NPs. 

•  Correlation issues solved with an eigenvector decomposition 
constructs a rotated set of NPs that are largely uncorrelated 
and can be ranked in importance using the eigenvalues

–  EV decomposition doesn’t reduce #NPs in its own, but simplifies 
subsequent merging or pruning of NPs

•  CP-provided solution for NP reduction: merging!
combine weakest n NPs into a single NP 

–  Makes ad-hoc assumption that weak modes can be treated as fully 
correlated

–  Good: With uniform prescription can reduce full set of N nuisance 
parameters to anywhere between N-1 and 1 parameters

–  But, interpretation of rotated NPs difficult, correlation with other 
analyses (or even CMS) becomes more complicated!
(but solutions are foreseen) 

Wouter Verkerke, NIKHEF
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Modeling theory uncertainties

•  Difficulties are not in the modeling procedure, but in quantifying what 
precisely we know

•  Difficulty 1 – What is distribution of the subsidiary measurement?#

•  Easy example – Top cross-section uncertainty


•  Difficult example – Factorization scale uncertainty

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+εtt ⋅σ tt ) ⋅Gauss( !σ tt |σ tt, 0.08)

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“XS Uncertainty  is 8%” à Gaussian subsidiary with 8% uncertainty!
(because XS uncertainty is ultimately from a measurement)  

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian!
So what distribution was meant? 



Modeling theory uncertainties

•  Difficult example – Factorization scale uncertainty!



•  Difficult arises from imprecision in original prescription.

–  NB: Issue is physics question, not a statistical procedure question. Answer will also 
need to be motivated with physics arguments

•  Note that you always assume some distribution (even if you do error 
propagation) à Profiling approach requires you to write!
it out explicitly. This is good!

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian!
So what distribution was meant? 



Modeling theory uncertainties

•  Difficulty 2 – What are the parameters of the systematic model?#

•  Easy example – b-quark mass uncertainty!


–  One parameter: the quark massà Clearly described and connected to the 
underlying theory model

•  Difficult example – Hadronization/Fragmentation model
–  Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics analysis

–  How do you model this in the likelihood?

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )MB MB MB 



Type of modeling uncertainties for theory systematics

1.  ‘Two-point uncertainties’#
–  Two concrete predictions
–  Disagree within stat. uncertainty
–  No well-defined intrinsic uncertainty
–  Example: Herwig vs Pythia!



2.  ‘Two-band uncertainties’#
–  Two concrete predictions
–  Well-defined intrinsic uncertainty
–  Disagree within stated uncertainty
–  Example: PDF sets!



3.  ‘Envelope uncertainties’#
–  Uncertainty band from!

heuristic prescription
–  No knowledge of correlation!

structure inside band
–  Example: Scale Unc / MHOU

Wouter Verkerke, NIKHEF



Two-point uncertainties

•  Pragmatic solutions to likelihood modeling of ‘2-point systematics’
•  Final solution will need to follow usual pattern!

!
!


•  Defining an (empirical) response !
function b(α) is the easy part!
!
!
!


•  A thorny question remains: !
What is the subsidiary measurement for α?!
This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ b(α)) ⋅SomePdf (0 |α)
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Two-point uncertainties

•  Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models

–  Extra difficult to make meaningful statement about this, since meaning of 
parameter is not well embedded in underlying theory model

–  But again, all procedures need to assume some distribution… Profiling requires 
you to spell it out

•  Some options and their effects


Wouter Verkerke, NIKHEF

HerwigPythia Pythia HerwigPythia Pythia HerwigPythia Pythia

Prefers Herwig at 1σ All predictions ‘between’!
Herwig and Pythia equally!
probable

Only ‘pure’ Herwig!
and Pythia exist

Gaussian
Box with !

Gaussian wings Delta fuctions



Two-point uncertainties

•  In a counting experiment you can argue !
that for every conceivable background rate !
there exists a value of the NP that !
corresponds to that rate

–  Even if ‘SHERPA’ was never used to construct!
the model, you can still represent its outcome

•  This is not generally true for distributions.!
A shape interpolation between !
‘pythia’ and ‘herwig’ does not!
necessarily describe shape of !
‘sherpa’ (or of Nature!)

–  Fundamental modeling!
problem!

–  You may need more!
parameters… 

Wouter Verkerke, NIKHEF
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Two-point uncertainties

•  Key issue: How many d.o.f. does you systematic uncertainty 
have?

•  Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

–  A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 
assuming all generators are normally scattered in an imaginary ‘generator 
space’

Wouter Verkerke, NIKHEF

Pythia

Herwig

Sherpa

Nature

Next years!
generator

Modeled uncertainty (1 dimension)!
assuming ‘nature is on line’
Effectively captured uncertainty!
!
under the assumption that effect"
of ‘position in model space’ in "
any dimension is similar on"
response function 



Two-point uncertainties

•  Key issue: How many d.o.f. does you systematic uncertainty 
have?

•  Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

–  Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 
the generator model space?

Wouter Verkerke, NIKHEF
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Two-band uncertainties – i.e. PDF uncertainties

•  Scenario A: physics measurement cannot constrain PDF
–  If PDF sets disagree within their error bands – usually add the difference between sets 

as a 2-point systematic in addition to the intrinsic uncertainty of the chosen ‘nominal’ 
PDF set. (In the spirit of ‘being conservative’)

–  Of course issue of arbitrariness – which PDF is taken as the ‘reasonable alternative’. 
We have no real good answers/solutions for this (but generally tend to be conservative)

•  Scenario B: physics measurement can constrain PDF
–  We choose to allow physics measurement to constrain PDF uncertainty further.
–  Assumes that parametrization chosen by PDF authors is flexible enough 
–  In particular – if 2 constrained PDF sets agree post-fit – can argue that this serves as 

validation of the constrained parametrization à No need for additional systematic

Wouter Verkerke, NIKHEF



Envelope uncertainties

•  Input information (most cases) an ‘envelope’ defined by scale variations
–  ‘7-point procedure’ set the size of an envelope

–  In most cases - no known/usable information on correlation structure à 
constraining uncertainty using NP model assumptions effectively never allowed  

Wouter Verkerke, Nikhef, 68 x 

signal 

background 

envelope 
from bkg. scale 
variation 



Envelope uncertainties

•  For measurement with 1 POI the NP model that propagates !
the ‘full’ uncertainty is always the model that is maximally correlated 
with the POI à Parametrization can always be analytically derived

–  Most common example: POI is a global yield parameter!
!
!
!
!
!
!
!
!
!
!


•  Main headache here is what to do if physics measurement has power 
to constrain NP propagates MHOU uncertainty?

–  A constrained NP could (potentially) significantly constrain the propagated 
uncertainty.

Wouter Verkerke, Nikhef, 69 



Envelope uncertainties

•  Commonly proposed solution: split NP into 2 or more NPs up to 
point where constraint goes away. (each NP representing a region 
in the phase space)


•  But not necessarily a good idea: de-correlating reduces 

propagated uncertainty to POI up to a factor √N for N regions
–  Assumption of decorrelation reduced uncertainty – but is not necessarily a 

warranted assumption
–  Cure might be worse than original problem (constraint of single NP)….
–  Also: in many cases it is observed to be impossible to avoid constraints, even 

with aggressive regional splitting Wouter Verkerke, NIKHEF



Envelope uncertainties

•  There are good technical solutions for NP models that neither 
overconstrain neither inappropriately assume decorrelation

•  For example for a 2-region measurement

Wouter Verkerke, NIKHEF

Single correlated NP 
(prone to  

overconstraining) 

Two uncorrelated NPs 
(propagating  
√2-reduced unc) 

Rotated NP model 
(corr/anti-corr NP) 
no constr, no red. 

Can be generalized to N regions 



Joint fits tend to exacerbate NP modeling issues

•  Practical experience is that often constraining power of physics 
measurements does not come from the individual likelihoods that 
measure a single region, but more often from the joint inference of 
multiple regions (‘lever arm’)

•  I.e. issues of constraining of NPs (and corresponding unwanted 
reduction of propagated theory systematics) often arises first when 
making combinations à Watch carefully, good diagnostics vital.

SR1 SR2

CR1 CR2

CR3
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Wrapping up – modeling systematics in joint fits

•  Experimental systematics often have NP models that are reasonably 
robust

–  Often EV-decomposed with multiple parameters.
–  Number of used parameters in individual measurements tuned to avoid 

constraints
–  Combination of measurements usually do not lead to constraints on experimental 

systematics (but it can happen and should be checked)
–  If measurement use NP models with different level of detail (e.g. 1 vs 5 NPs – 

correlation should be done per EV (i.e. correlate EV_0 and not total uncertainty)
–  Intractable problems possible (e.g. using both 70% and 80% efficiency points of 

flavor tagging in same combination). Typically avoided with a priori coordination in 
LHC ‘internal’ combinations. But be careful with ‘home grown’ combinations

Wouter Verkerke, NIKHEF



Wrapping up – modeling systematics in joint fits

•  Theory systematics often more difficult to parametrize safely
–  Explicit validation/tuning/reparametrization in measurements common to avoid 

both constraints and unwarranted decorrelation assumptions (which would both 
result in underestimated uncertainties)

–  Tuned NP models for individual measurements often not robust against new 
problems that arise combinations à proceed with care: 

–  Overconstraining might happen, 

–  Newly introduced correlation assumptions could strongly reduce uncertainties!
(e.g. ratio of measurements with a single correlated NP) 

Wouter Verkerke, NIKHEF



Questions?


