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Introduction

Figure from Rasmussen and Williams (2006)

Gaussian processes are a versatile class of statistical models for random
functions.

They enable learning from data in situations involving random or unknown
functions.

Gaussian processes are popular because 1) they provide a plausible model
for various real-world phenomena, 2) they provide useful inferences, and 3)
they are relatively easy to work with.
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Multivariate Gaussian distribution

A random vector y ∈ Rn has an n-variate Gaussian distribution, denoted
by y ∼ N(m,Σ), if its pdf is given by

p(y |m,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(y −m)TΣ−1(y −m)

)
This is parameterized by the mean vector m ∈ Rn and the symmetric and
positive definite covariance matrix Σ ∈ Rn×n so that

E[yi ] = mi for all i = 1, . . . , n

Cov[yi , yj ] = Σij for all i , j = 1, . . . , n
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Multivariate Gaussian distribution

Multivariate Gaussian random vectors have a number of nice properties.

For example, consider the decomposition

y =

[
y1

y2

]
, m =

[
m1

m2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then the marginal distribution of y1 is

y1 ∼ N(m1,Σ11)

and the conditional distribution of y1 given y2 is

(y1|y2) ∼ N(m1 + Σ12Σ
−1
22 (y2 −m2),Σ11 −Σ12Σ

−1
22 Σ21)

By rearranging the elements of y , we can have any subset of elements in
the component y1 and the remaining elements in the component y2. In
other words:

Any subset of elements of y have a multivariate Gaussian distribution

Any subset of elements of y conditioned on the rest have a
multivariate Gaussian distribution
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Gaussian processes: Definition

Now, imagine that n is very large. We then have a large collection of
random variables

{y1, y2, . . . , yn−1, yn} = {yi}ni=1,

indexed by the discrete index i , whose joint behavior is described by the
multivariate Gaussian distribution.

A Gaussian process is an infinite-dimensional generalization of this to a
collection of random variables indexed on a continuum.

Definition

A Gaussian process is a random function f (x) whose values
f (x1), . . . , f (xn) at any finite set of inputs x1, . . . , xn follow a multivariate
Gaussian distribution.
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Gaussian processes: Definition

Definition

A Gaussian process is a random function f (x) whose values f (x1), . . . , f (xn) at
any finite set of inputs x1, . . . , xn follow a multivariate Gaussian distribution.

A Gaussian process is parameterized by the mean function m(x) and the
covariance function k(x1, x2) so that

m(x) = E[f (x)], for all x
k(x1, x2) = Cov[f (x1), f (x2)], for all x1, x2.

We then denote f ∼ GP(m(x), k(x1, x2)).

The covariance function k(x1, x2) has to be such that the covariance matrix of
[f (x1), . . . , f (xn)]T for any inputs xi , i = 1, . . . , n, is positive definite.

Functions with this property are called positive definite. There are various
well-known families of positive definite functions, but it’s good to keep in mind
that not all bivariate functions are valid covariance functions.
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Gaussian processes: Inference

Let f ∼ GP(m(x), k(x1, x2)) and assume that we get to observe

y1 = f (x1), y2 = f (x2), . . . , yn = f (xn).

What can we then say about y∗ = f (x∗) at some unobserved location x∗?

Since y∗ is a random quantity, statisticians call this prediction of y∗ (as
opposed to estimation of a fixed parameter).

Denote yn = [y1, . . . , yn]T. Then, by definition:

[
y∗
yn

]
=


y∗
y1

...
yn

 ∼ N(m,Σ), where m =


m(x∗)
m(x1)

...
m(xn)

 =

[
m(x∗)
mn

]

and

Σ =


k(x∗, x∗) k(x∗, x1) · · · k(x∗, xn)
k(x1, x∗) k(x1, x1) · · · k(x1, xn)

...
...

. . .
...

k(xn, x∗) k(xn, x1) · · · k(xn, xn)

 =

[
k(x∗, x∗) kT

∗
k∗ Kn

]
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Gaussian processes: Inference

Then, by the properties of the multivariate Gaussian distribution, the
conditional distribution of y∗ given yn is

(y∗|yn) ∼ N(m(x∗) + kT
∗ K−1

n (yn −mn), k(x∗, x∗)− kT
∗ K−1

n k∗)

Since we are trying to predict y∗ given yn, this is also known as the
predictive distribution of y∗. We can directly extract from this the
predictive mean

ŷ∗ = E[y∗|yn] = m(x∗) + kT
∗ K−1

n (yn −mn)

and the predictive variance

σ̂2
∗ = Var[y∗|yn] = k(x∗, x∗)− kT

∗ K−1
n k∗.

We can then predict y∗ using ŷ∗. A standard result from statistical learning
theory says that this is the mean squared error optimal predictor of y∗.

The (1−α) predictive uncertainty is given by [ŷ∗ − z1−α/2σ̂∗, ŷ∗ + z1−α/2σ̂∗],
which has correct coverage assuming that the model is correct.
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Gaussian processes: Inference

As a result, we conclude that y∗ should be predicted using

ŷ∗ = m(x∗) + kT
∗ K−1

n (yn −mn)

and the uncertainty of the prediction at level (1− α) is given by

[ŷ∗ − z1−α/2σ̂∗, ŷ∗ + z1−α/2σ̂∗].

This has various names depending on the context, including kriging
(spatial statistics / geostatistics), objective mapping (oceanography) or
optimal interpolation (atmospheric science).
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Gaussian processes: Inference

Notice also that we can repeat the same calculation for other x∗’s to
obtain pointwise predictions of f (x) on a fine grid, for example.

We can also repeat the calculation for the vector

[y1∗, . . . , yp∗, y1, . . . , yn]T = [f (x1∗), . . . , f (xp∗), f (x1), . . . , f (xn)]T

to obtain the predictive distribution of y1∗, . . . , yp∗ given y1, . . . , yn, which
also provides us the predictive covariance between different locations xi∗.

Key observation: Because finite evaluations of a Gaussian process follow
a multivariate Gaussian distribution, we immediately know how to make a
finite number of predictions given a finite number of observations.
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Illustration
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Gaussian process regression

In practice, we do not necessarily want to force the function f to go through the
observations y1, . . . , yn.

Therefore, the following Gaussian process regression model is commonly employed:

yi = f (xi ) + εi ,

where f ∼ GP(m(x), k(x1, x2)), εi
i.i.d.∼ N(0, σ2) and f is independent of the εi ’s.

The extra term εi is called the nugget effect and corresponds to measurement
error, unexplained variation or microscale variation, depending on the context.

One might then be interested in predicting either f∗ = f (x∗) or y∗ = f (x∗) + ε∗

The predictive distribution in the first case is

(f∗|yn) ∼ N(m(x∗)+kT
∗ (Kn+σ2I )−1(yn−mn), k(x∗, x∗)−kT

∗ (Kn+σ2I )−1k∗)

The latter case is otherwise the same but the predictive variance is

Var[y∗|yn] = Var[f∗|yn] + σ2 = k(x∗, x∗)+σ2−kT
∗ (Kn+σ2I )−1k∗
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Gaussian process modeling

A Gaussian process f ∼ GP(m(x), k(x1, x2)) is parameterized by the mean
function m(x) and the covariance function k(x1, x2)

In order to model data using a GP, one therefore needs to decide how to
choose these functions.

A significant portion of GP literature revolves around this question.

There is some ambiguity with regards to what portion of the data should
be explained using m(x) and what portion using k(x1, x2), especially if
there is only a single realization of f

“One person’s mean structure is another person’s covariance structure”

Some authors claim that one can simply set m(x) = 0 without loss of
generality, but it’s not quite that simple

In practice, we tend to use certain parametric classes of functions for both:

m(x) = m(x ;β), k(x1, x2) = k(x1, x2;θ)
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Choice of the mean function

The mean function m(x) should be flexible enough to model the average
shape of the random function f (x), but also rigid enough to not fit the
stochastic high-frequency fluctuations that might be present in the data

It might sound like it is difficult to strike a balance here, but luckily the
final predictions are usually quite robust against modest misspecification of
the mean

Common choices for m(x ;β):

Linear in x and β: m(x ;β) = xTβ

Splines (especially in 1D): m(x ;β) =
∑p

i=1 βiBi (x), where Bi (·) are
B-spline basis functions

Nonlinear (in both x and β) regression functions (e.g., neural nets)
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Choice of the covariance function

Recall that k(x1, x2) = Cov[f (x1), f (x2)].

Which bivariate function k(·, ·) to use? (Remember that k(·, ·) needs to
be positive definite.)

A common assumption is to say that k(x1, x2) is stationary (i.e.,
translation invariant): k(x1, x2) = k(x1 − x2)

Furthermore, it is common to assume isotropy

k(x1, x2) = k(‖x1 − x2‖)

or geometric anisotropy

k(x1, x2) = k(‖x1 − x2‖A),

where ‖x1 − x2‖A =
√

(x1−x2)TA (x1−x2) for a positive definite matrix A
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Choice of the covariance function

Let’s focus on the case with geometric anisotropy. Denote s = ‖x1− x2‖A.

At this point, we need to choose the matrix A and the function k(s).

Here A controls the length scales and orientation of the dependence in
f (x) over x .

The function k(s) controls the remaining properties of the random field
f (x), such as smoothness, periodicity, etc.
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Choice of the covariance function

Popular models for k(s) include:

Exponential: k(s) = φ exp(−s), φ > 0
f (x) continuous but not differentiable

Squared exponential: k(s) = φ exp(−s2), φ > 0
f (x) infinitely differentiable

Matérn: k(s) = φ21−ν

Γ(ν) s
νKν(s), φ > 0, where ν > 0 is a smoothness

parameter and Kν is a modified Bessel function
f (x) k times differentiable if and only if ν > k
Gives exponential for ν = 1

2 and squared exponential for ν →∞
Has simplified form when ν is half integer, i.e., ν = 1

2 ,
3
2 ,

5
2 , . . .

For example, if we pick A = diag(1/θ2
1, . . . , 1/θ

2
d) and let k(s) be

exponential, then we have the following covariance model

k(x1, x2;φ, θ1, . . . , θd)

= φ exp

(
−

√(
x11−x21

θ1

)2

+

(
x12−x22

θ2

)2

+ · · ·+
(
x1d−x2d

θd

)2
)

parameterized by φ, θ1, . . . , θd > 0
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Illustration: Effect of covariance length scales
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(a) θ1 = 0.3, θ2 = 0.3
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(b) θ1 = 1, θ2 = 0.3
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(c) θ1 = 0.3, θ2 = 1
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(d) θ1 = 1, θ2 = 1
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Parameter estimation

Let θ denote the vector of covariance parameters that affect the data-data
covariance Kn so that Kn(θ)

Then the unknown parameters of the model are (β,θ, σ2) and we wish to
learn these parameters using the observed data yn
Various techniques for estimating these parameters exist, but the most
common approach is to use maximum likelihood.

Since yn follows a multivariate Gaussian, the log-likelihood of (β,θ, σ2) is

`(β,θ, σ2) = log p(yn|β,θ, σ2)

= −1

2

[
n log(2π) + log det (Kn(θ) + σ2I )

+ (yn −mn(β))T(Kn(θ) + σ2I )−1(yn −mn(β))
]

The estimates (β̂, θ̂, σ̂2) are those values that maximize `(β,θ, σ2)

For linear mean functions, β can be solved in closed-form (for given
(θ, σ2)), but to solve (θ, σ2) one needs to typically use numerical
optimization
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Gaussian processes in particle physics

Some uses of Gaussian processes in HEP:

Bayesian prior for an unknown function f

Modeling of background shapes

Bayesian optimization

Emulators/surrogates for computationally intensive simulations

...
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Gaussian processes and unfolding

[arXiv:1811.01242]
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Gaussian processes for background modeling

[arXiv:1709.05681]
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Bayesian optimization in HEP

[arXiv:1610.08328]
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Surrogate models using Gaussian processes

[arXiv:1611.02704]

Mikael Kuusela (CMU) Gaussian Processes July 20, 2022 29 / 30



Additional reading

The following textbooks are good starting points for learning more:

C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006

M.L. Stein, Interpolation of spatial data: Some theory for kriging,
Springer, 1999

N.A.C. Cressie, Statistics for spatial data, Revised edition, John Wiley
& Sons, 1993

C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006

J. Mockus, Bayesian Approach to Global Optimization: Theory and
Applications, Kluwer, 1989
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Backup
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Gaussian processes in Earth science

In Earth sciences, the following Gaussian process model is often used for
interpolating atmospheric or oceanographic observations:

yi ,j = fi (xlat,i ,j , xlon,i ,j , ti ,j) + εi ,j ,

fi
iid∼ GP(m, k), εi ,j

iid∼ N(0, σ2),

where

yi ,j is some observed quantity (for example, temperature, humidity,
CO2 concentration,...)

i = 1, . . . , n refers to years and j = 1, . . . ,mi to observations in the
ith year

xlat,i ,j , xlon,i ,j and ti ,j are the latitude, longitude and time of yi ,j

Key point: This is a fully frequentist model. It is quite sensible to model
the year-to-year variations in these fields as a Gaussian process.
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Upper ocean heat content anomalies

(a) 02/2007 (b) 02/2010

(c) 02/2013 (d) 02/2015

Monthly ocean heat content anomalies interpolated from in situ
oceanographic float data using locally stationary Gaussian processes
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Gaussian processes in cosmology

Cosmic microwave background temperature fluctuations from WMAP

Standard cosmological models imply that CMB is a Gaussian random field
(i.e., a Gaussian process with 2 input dimensions)

Observational evidence of non-Gaussianity would have important
implications for theories of the early Universe

Key point: Here we have a function that by physical arguments is known
to be a Gaussian process. Hypothetically one can imagine observing
multiple realizations of this random function (in practice there is of course
just a single realization).
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