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Scope of this Lecture

 Basics of machine learning were introduced in Glen Cowan’s Lecture
. We will only go over the
essentials here.

* Impossible to “learn machine learning” with this lecture. The aim is at
pointing out key aspects for doing “good machine learning” and the
specifics to high energy physics applications.

 Emphasis on what you need to bear in mind while developing
Machine learning at collider to avoid common pitfalls.

* Lots of references provided therein for further reading and
understanding. Also in

This work is partially supported by the U.S. DOE, Office of Science, Office of High Energy
Physics under Award No. DE-SC0011925, DE-SC0019219, and DE-AC02-07CH11350.
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https://indico.cern.ch/event/1132551/
https://github.com/iml-wg/HEPML-LivingReview

Outline

. Physics at the Large Hadron Collider

Il. A glimpse at the Machine Learning Landscape
1. Motivations for using Machine Learning

AVA Deep-learning in the HEP data pipeline

V. Collider-Specific Al
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The Large Hadron Collider
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Colliding Hadrons

Beam of partons

Radiation from incoming partons
Primary hard scatter

Radiation from outgoing partons
Typical proton-proton Hadronization

collision

Probing fundamental laws of physics as large spectrum
of particles (known and unknown) can be produced
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The Standard Model
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We can predict most of the observations

We can use a large amount of simulation
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Size Of The Challenge

¢ 7 TeV CMS measurement (L < 5.0 fb™)

¢ 8 TeV CMS measurement (L < 19.6 fb™)
— 7 TeV Theory prediction

I

— 8 TeV Theory prediction
Z CMS 95%CL limit

Production Cross Section, o [pb]
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500.000 proton
collision
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All results at: http://cern.ch/go/pNj7 Th. Ac,, in exp. Ac

Low probability of producing exotic and interesting signals.
Observe rare events from a large amount of data.
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The Sea Beyond Standard Model

Slide: A. Wulzner

HEP yesterday HEP today

_SUSY, etc.

To p e dP N TS T g !mmm_a T

W boson
“Almost” Simple H+ “Very” Composite Hj
Focus on few sharply-defined Huge set of alternatives

alternative models (e.g., the Higgs) Case-by-case optimisation unfeasible

Case-by-case design of optimal test | The right H4 likely not yet formulated
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http://www.weizmann.ac.il/conferences/SRitp/Aug2019/

HEP Data Pipeline

LHC COputg Grid -Cll\/l§p|3reliminary . -
200k cores pledge to O B SRR
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Events / 3 GeV

CMS over ~100 sites

CERN Tier-0/Tier-1

| “II\III--“VJ_,!,!!,‘ 1 I
100 200 400 800

. m, [GeV]
Tape Storage LHC Grid Rare Signal
20pOPB totagl Remote Access Measurement
~ 6
to 100PB of data 1 out of 10

?é =T CERN Tier-0
D o Computing Center
e 4 20k cores
Large Hadron Collider S
40 MHz of collision B h ool Trioners
| WG9S 50k cores, 1kHz
CMS Detector
1PB/s
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Event Triggering

Select what is important to keep for analysis.
Ultra fast decision in hardware and software.

1 KHz

1 MB/event
—

Offline

40 MHz 100 KHz

Reconstruction(s) of the event under limited latency.
Better resolution help lowering background trigger rates.
Approximate deep learning surrogates can help.

_'|:|
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Reconstructing Collisions

nt at LHC, CERN
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Event Processing

From digital signal, to local hits, to a sequence of objects, and high-level features.
Complex and computing intensive tasks.

]
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Simulating Collisions

4 )
Madgraph, Event Generator: compute predictions of the standard models to
Pythia, several orders of expansion in coupling constants (LO, NLO,
Sherpa, ... NNLO, ...) using proton density functions.

N J

4 e . . )
Pythia, ... Hadronization: phenomenological model of the evolution of

hadrons under the effect of QCD.

- J

4 )
Material simulator: transports all particles throughout meters of

GEANT 4, detector, using high resolution geometrical description of the
GEANT V materials.

\_ J

- _ , )

Electronic emulator: converts simulated energy deposits In

Homegrown sensitive material, into the expected electronic signal, including
software noise from the detector.

- Y,

Non-differentiable, computing intensive sequence of complex simulators
of the signal expected from the detectors.

- il ¢ 13
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Annual CPU Consumption [MHS06]

The Computing Cost of Science
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Year

Ever growing needs for computing resource
Slowdown of classical architecture
Growth of GPU architecture
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https://indico.cern.ch/event/822126/contributions/3500169/

Take home messaqge :

Measure rare and exotic processes from orders
of magnitude larger backgrounds.

The Standard Model predicts with precision
what to expect from many processes.

Reconstruct, identify and reject large amount of
event within resource constraints.
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What Is Machine Learning

J

“Giving computers the ability to learn without explicitly programming them’
A. Samuel (1959).

Is fitting a straight line machine learning ?
Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning from data.

In practice : a statistical method that can extract information from the
data, not obviously apparent to an observer.

> Most approach will involve a mathematical model and a cost/reward

function that needs to be optimized.
> The more domain knowledge is incorporated, the better.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant l:.."
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Overview

Reinforcement Learning (cherry)

— The machine predicts a scalar
reward given once in a while.

— A few bits for some samples

Supervised Learning (icing)

— The machine predicts a category
or a few numbers for each input

— 10-10,000 bits per sample

Unsupervised Learning (cake)

— The machine predicts any part

of its input for any observed
part.

— Predicts future frames in videos
— Millions of bits per sample
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Supervised Learning

- Given a dataset of samples, a subset of features is qualified as
target, and the rest as input

- Find a mapping from input to target

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

A

dataset= {(x;, y;)} %
find function f s.t. f(x,)=y,

g0

Temperature
80

70

- Finite set of target values :
> Classification
- Target is a continuous variable :

60

> Regression ! 10
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Unsupervised Learning

+ Given a dataset of samples, but there is no subset of feature
that one would like to predict

+ Find mapping of the samples to a lower dimension manifold

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

dataset={(x;)}

find f st f(x)=p, -

- Manifold is a finite set
> Clusterization 0
- Manifold is a lower dimension manifold :
> Dimensionality reduction,
density estimator

-20
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Reinforcement Learning

- Given an environment with multiple states, given a
reward upon action being taken over a state

- Find an action policy to drive the environment toward
maximum cumulative reward

St+ 1= EnV(St’ at)
r.= Rew(s,,a,)

P———-—
T
M(als)= P(A=alS=s)
find T s.t. z r, IS maximum
4

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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(Some) Machine Learning Methods

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

NO

"~ | <100K
samples

YES

NOT
WORKING

predicting a

category

YES

do you have R

labeled
NO data

few features
should be
important

NOT
WORKING

NO
<100K YES
samples
YES
predicting a \

quantity

number of
categories
known

YES

clustering -

NO

NO

NOT
WORKING

oT
WORKING

YES
10K . . -
o dimensionality
reduction

predicting
structure
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http://scikit-learn.org/stable/tutorial/index.html

Decision Tree

- Decision trees is a well known tool in supervised learning.
- It has the advantage of being easily interpretable
- Can be used for classification or regression

;; = (Y1 ' Yz)
v
y, >15
TRUE FALSE
y,<4.6 y,>314
a
Class A Class B Y, < -2 Class A

Root node m‘/ &SE
Internal node

Class A Class B

v Leaf node
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Artificial Neural Network

- Biology inspired analytical model, but not bio-mimetic

- Booming in recent decade thanks to large dataset, increased computational
power and theoretical novelties

- Origin tied to logistic regression with change of data representation

- Part of any “deep learning” model nowadays

- Usually large number of parameters trained with stochastic gradient descent

Input Hidden Output

layer layer

h=q¢(Ux+ v)
o(x)=w h+ b

= p(y=1ix)= 6(0(x))= —

%{i —

IOSSXE=—Z yn(p)+ (1= y)In(1- p,)
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Neural Net Architectures

" Input Cell

Q Backfed Input Cell
E Noisy Input Cell
. Hidden Cell -
. Probablistic Hidden Cell
’ Spiking Hidden Cell
. Capsule Cell

. Output Cell

@© Matchinput Output Cell

W
N

. Recurrent Cell

. Memory Cell

. Gated Memory Cell

Kernel

Convolution or Pool

Markov Chain (MC)

Feed Forward (FF)

2.

Perceptron (P)

NIRRT
NN,

\V
e

Hopfield Network (HN) Boltzmann Machine (BM)

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Variational AE (VAE)

Radial Basis Network (RBF)

oo

Denoising AE (DAE)

Restricted BM (RBM)

©)
08050, 8 8

Deep Feed Forward (DFF)

N RSN
SRR
SRR

(>
TR

Sparse AE (SAE)

Deep Belief Network (DBN)

X/ N

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

)
y
)
y

S~ = X~ = &
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Extreme Learning Machine (ELM)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Echo State Network (ESN)

W0 AN A

N NN N
A BAS
A AwAVAYAVS

Deep Residual Network (DRN)

/3
7

Capsule Network (CN)

Attention Network (AN)

'.,5»“’ '
B X

e - W - AW, o
= ’//’

9‘@ 25


http://www.asimovinstitute.org/neural-network-zoo

Spiking Neural Network

- Closer to the actual biological brain

- Adapted to temporal data

- Hardware implementation with low power consumption

- Trained using evolutionary algorithms, recent work on
gradient-based methods , :

- Economical models

- Python libraries for spiking neural network :

]

-

"' Not well established (here, genetic"s

)

Training Method Back-propagation

‘oo algorithms) Pt
---------------- t - t1f
Native Input Types Images/Arrays of values Spikes L/f/
\_ Spike reception: EPSP J
Large (many layers, many neurons Relatively small (fewer neurons and
and synapses per layer) sparser synaptic connections)
Processing .
Abilities Good for spatial Good for temporal
Performance Well understood and state-of-the-art Not well understood
o'.
'-? ..é e) 26
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https://arxiv.org/abs/1706.02609
https://arxiv.org/abs/1901.09948
https://arxiv.org/abs/2110.14092
https://lava-nc.org/lava-lib-dl/slayer/
https://snntorch.readthedocs.io/
https://spikingjelly.readthedocs.io/
https://norse.github.io/norse

Quantum Machine Learning

Deep learning is computing intensive, and de-facto enabled by use of
GPU. People are looking for ways to leverage possible quantum
advantage to accelerate machine learning techniques.
Main algorithms used in recent studies

= \/ariational Quantum Circuits (VQC) :8; _Z_ _Z— - —Z— —Ilj
=Quantum Support Vector Machine (QSVM) o) 7| & @] &Ll e E D HER
= Quantum Restricted Bolztman Machine (QRBM) N =2 I R B = T R U IS W = B LSS W = W e B
= Quantum Adiabatic Machine Learning (QAML) = ) I 722 N T R ] T}

= Quantum Generative Adversarial Network (QGAN)
[

Field.i.r.1 constant evolution. Embedding is crucial.
Deep implications of kernel methods.

. o

s

I I f feature space F

Software and toolkit available , / P N\
data—encom' p(l’) (

a. Training the embedding b. Classification > / feature map NI

quantum kernel

S o enantm
\\ﬁ\ \ sSpace O qlld‘lltlllll ?

models

f() = tr{p(-)M}

1) —{gHE
canonical () = k(z. - \\/ [0) — ] /
nonical f(_) ( )_ LN Y

~ A\
reproducing kernel
Hilbert space F'

- | t(z,a') = tr{p(x)p(z’)}
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https://pennylane.ai
https://www.tensorflow.org/quantum
https://arxiv.org/abs/1804.11326
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/2001.03622

Machine Learning Concept

Dataset Model

Objective
function

Predictive
model

All comes down to an optimization problem.
What follows are some of the things to keep an eye
on when developing a machine learning solution

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:'
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Cross Validation

Validation Set

Training Set
Round 1 Round 2 Round 3 Round 10
validation g3, 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

- Model selection requires to have an estimate of the uncertainty on the metric
used for comparison

- K-folding provides an un-biased way of comparing models

- Stratified splitting (conserving category fractions) protects from large variance
coming from biased training

- Leave-one-out cross validation : number folds = sample size

_’lt. C
Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ?lz.; @
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Under-fitting

- Poor model performance can be explained
+ Lack of modeling capacity (not enough parameters,

inappropriate parametrization, ...)

+ Model parameters have not reached optimal values

Under Fit )

o o
X0 o]
0O
XX__ (o
X Q X
Xo X
o
Appropriate

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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Need for Data

- “What is the best performance one can get ?” rarely has an answer

- When comparing multiple models, one can answer “what is the best of

these models, for this given dataset 7"
- |t does not answer “what is the best model at this task ?”

| o (EEEEEEE: Jposemeees 1
0.66 - |
5
Q 0.64; { % | |
o A "
- ..
2 /L‘*
O 0.62; |
@)
a'd
= 0.60]
©
5
© 0.58/
Y
< 0.56;
0.54; | | |
MR

Training size
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Over-fitting

- “Too good to be true” model performance can be explained
- Excessive modeling capacity (too many parameters, parametrization is too
flexible, ...)
- Model parameters have learn the trained data by heart
- Characterized by very good performance on the training set and (much) lower
performance on unseen dataset

1 A
O o O o
X0 o © X.0x; ©
. O 2%
X X O X X ¢ %O
X @ 5 el Yoo
Xo X XSO
N it -
Appropriate Over Fit
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Generalization

- Systematic error = bias

 Sensitivity of prediction = variance

- A good model is a tradeof of both

= Early stopping can help with halting the model

High Bias Low Bias

Low Variance High Variance

Test Sample

Prediction Error

Underfitting | Overfitting

<+— >

Training Sample

Bias trade-off

Low Model Complexity

High

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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Figure(s) of Merit(s)

- Objective function in optimization might be chosen for
computational reason (differentiable, ...)

- Objective function might only be a proxy to the actual figure
of merit of the problem at hand

- Multi-objective optimization is subject to trade-off between
objectives

=\While model optimization is based on the loss function over the
training set, following the evolution of a more interesting (non-
usable) metric over the validation can help selecting models
that are better for the use case

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:..6‘
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Class Imbalance

- In many cases the number of samples varies significantly from class to class
- Class imbalance biases the performance on the minority class
- Multiple ways to tackle the issue
- Over-sample the minority class J~ | — rowents |
- Synthetic minority over-sampling \ I
- Under-sample the majority class
- Weighted loss function
= Active learning

- NB: metrics can be sensitive to class imbalance and be misguiding if not
correct : e.g. 99% accuracy with 0% recall

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant °|:'.;' L &



Training

- Training phase or learning phase is when the parameters of the model are
adjusted to best solve the problem

- For some model/technique (especially deep learning) this can become
computationally prohibitive

- General purpose graphical processing units (GP-GPU) offer an enormous
amount of parallel compute power, applicable to specific numerical problems

- Matrix calculation, minibatch computation, deep learning, ... can get a
significant boost from GP-GPU.

- Further parallelization can be obtained across multiple nodes/GPU using :
most of the deep learning framework offer distributed training solutions :

, ’ ,lll
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https://www.tensorflow.org/api_docs/python/tf/distribute
https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://github.com/AI-SciLab/NNLO

Hyper-parameter Optimization

- Most optimization methods and models require hyperparameters
- number of layers/nodes in an ANN, number of leaves in a decision

tree, learning rates, ...
- In most cases these parameters cannot be optimized while the model is
trained ; i.e not optimized with gradient descent
- Their values can however significantly influence the final performance

- These can be optimize in various ways
- Simple grid search
- Bayesian optimization
- Evolutionary algorithm
- Model comparison should be done very carefully
- K-folding is a "must”
= Multiple libraries available , , , ,

- - 37
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https://scikit-optimize.github.io/stable/
https://github.com/hyperopt/hyperopt
https://sheffieldml.github.io/GPyOpt/
https://docs.ray.io/en/latest/tune/index.html
https://github.com/HIPS/Spearmint
https://deap.readthedocs.io/en/master/

Cost of Running the Model

- Contrary to training, making prediction from a trained model is usually
rather fast, even on CPU

- However fast is may be, it might still not be fast enough for the particular
application

- Faster inference can be obtained on specialized hardware GP-GPU, TPU,
FPGA, neuromorphic, ... when the application allows it (trigger, onboard
electronics, ...)

- “Inference as a service” can be a solution to get access to accelerators
remotely, at the cost of communication

his4ml Reuse factor = 1, Kintex Ultrascale

244 % Full model
Pruned model

>
9 18 /\
e
©
-l
16
75 ns L

1wl

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point - ofle
ixed-point precision ..
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https://hls-fpga-machine-learning.github.io/hls4ml/

Take Home Message

Machine learning applications need to be developed with scientific rigor.
Lots of interesting studies possible on statistics/theory of learning.
Keep an eye on cost of making prediction.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant Yog=’
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Motivations for Using
Machine Learning
In High Energy Physics

and elsewhere ...




Machine Learning in Industry
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H20 DEEPLEARNING4)
DSSTNE

Flow
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Prominent skill in industry nowadays.
Lots of data, lots of applications, lots
of potential use cases, lots of money.
Knowing machine learning can open
significantly career horizons.
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https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence

Learning to Control

Rollout policy SL policy network RL policy network Value network Policy network Value network

Pa P alp (a I S) Vo (SI)

X E%m %

MJOM]aU |einsN

eleq

Learning to Walk via Deep Reinforcement Learning

Human expert positions Self-play positions

Mastering the game of Go with deep neural networks and tree search,

Modern machine learning boosts control technologies.
Al, gaming, robotic, self-driving vehicle, etc.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:.6 ~p~
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https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103

Operation Vectorization

—_—— Iy —_—
L1 Wy
i Iy )
L2 | iy %)
[ W13

ANN = matrix operations = parallelizable

W11 1 .. (Wi X ip) + (Wy X iy)]
W12 ' [?] = (WX i) + (W, X 1)
W13 | (WisX i) + (W5 X i) ]

Computation of prediction from artificial neural network model
can be vectorized to a large extend.

I C
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Hyper-Fast Prediction

Keras
TensorFlow

PyTorch .
~ v Co-processing kernel

compressed
model HLS . —
conversion Custom firmware
design

Usual machine learning

software workflow ‘[f
tune confi_gurotion
precision
reuse/pipeline

Synthesizing FPGA firmware from trained ANN

J. Duarte et al.

Artificial neural network model can be
executed efficiently on FPGA, GPU, TPU, ...

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Low Power Prediction

Best Results: Single View

x-view conv1pooll conv2| pool2 conv3 | pool3 conv4|poold| fc1 drop f02 drop fc3 AR
(127x50) (8x3) (2x1) (7x3) (2x1) (6x3) [ (2x1) (6x3) [(2x1)| (196) out out (11)

Convolutional Neural Network Result: ~80.42%

* 90 neurons, 86 synapses

« Estimated energy for a single

classification for meFBANNA
implementatio

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017. %OAK]I}}DGI

Slide C. Schuman

Neuromorphic hardware dedicated to spiking neural networks
Low power consumption by design

]
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https://indico.fnal.gov/event/13497/contribution/0

Learning Observables

Electron classification performance l:so.
Base Additions (k,3) (AUC) zizz )
7HL 0.945
7HL +Mjet 0956 0.50 -
THL S 0.970
THL +Mije. [+.2 (1,1) |17 (1,1) | 0.971 R
7HL . (27 _) 0.970 log,o [EFP Observable]
THL +Mie |50 (2,1) | © (2,—)] 0.971 [ 3
CNN 0.972 : -

logio [EFP Observable]

Machine Learning can help understand Physics.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlime o -4 3 -2 -1
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984

Use Physics

a Data b DeltaGN c OGN/HOGN d fq,:0DE’s time derivatives

____________

(@p)n P4 [(@P)n At ! ( EEID EI” i .
s q,p’, q p)n (qv p)z 5 fq,f) Tl (Qa p)z
® A== A S |
GNy At s 3
| Ve oova
Physics (Aq, Ap)gﬁm Integrator (@,P)i— GNy — (4, P):
+ £ HOGNs fap

RN ’ mﬁf ' mﬁjﬂ (@,P)i— GN, — Hox — (a"GN,_f’HGN)L (4, )
(q, P)n+1 ?b (4, P)n+1 (Q, P)n+1 ! op oq )

_________________________________

Rollout trajectories per model
Ground truth True Ham. DeltaGN OGN HOGN

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia

Let the model include Physics principles to master convergence

]
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https://arxiv.org/abs/1909.12790

Learning from Complexity

55 - -
27
13 13 13

N
1 L 1
N = = -
‘: 5 — — /'_" 3 =~ — 3 — "— -~
IN X ~ T = 13 & 1 13 3 — - 13 dense dense
- 27 4 3 -~
55 384 384 256
Max L
256 ¢ 4096
Max Max pooling
Stride\| o | Po°ling pooling
224\ || of 4
Ll AR Numerical Data-driven
’ " '.' “1 :‘ %
& ¥ 4 o
» [&]

9[qe) Suruurp

O R D

210)S A190013

22
.
.

Fc8: Object Classes

Conv 1: Edge+Blob Conv 3: Texture Conv 3: Object Parts

Machine learning model can extract information from complex dataset.

More classical algorithm counter part may
take years of development.

_’lt. C
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Al In HEP

Role of Al. accelerator control, data acquisition,
event triggering, anomaly detection, new physics
scouting, event reconstruction, event generation,
detector simulation, LHC grid control, analytics, signal
extraction, likelihood free inference, background
rejection, new physics searches, ...

LHC Computing Grid
200k cores pledge to
CMS over ~100 sites

CMS preliminary
T T

> ]
©

o * Data Vs=7TeV:L= 51f"
- L 1 m, =126 GeV Vs=8TeV:L=196f"
< 1 = zv,zz
§2] B z+X
C

9]

>

L

N I
CERN Tier-0/Tier-1

i | “”Ill-‘ﬂ-»!,!!,‘ 1 I
100 200 400 800

..................

: m,, [GeV]
Tape Storage LHC Grid Rare Signal
200PB total Remote Access Measurement
to 100PB of data ~1 out of 106
— I e CERN Tier-0
Computing Center
= 20k cores

Large Hadron Collider

40 MHz of collision CMS L1 & High-

Level Triggers
950k cores, 1kHz

A > Up to date listing of references:
CMS Detector

1PB/s
LN o
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https://github.com/iml-wg/HEPML-LivingReview

Possible Utilizations

Accuracy Speed

Interpretable

> Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.
> More accurate than existing algorithms (tagging, regression, etc) ; even better if faster.
> Model performing otherwise impossible tasks (operations, etc)

— ] K

o< % 50
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Growing Literature

Date of paper

1972 2022

Community-based up to date listing of references
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https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning

Take home messaqge :

Machine Learning is a widely recognized and
used technology in industry

Deep Learning has the potential of helping
Science to make progress

Neural Networks could help with the computing
requirements of Science

Wide range of potential applications

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:'.6‘

52



Deep Learning
In High Energy Physics

The 10 miles v['ew.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant



Producing the Data

o W e Machine learning can be used to
et tune devices, control beams,
(s / perform analysis on accelerator
parameters, etc.

compared distributions parameter
Detected phase space
0.04

* Already successfully deployed
on accelerator facilities.

2 |=Setup
5 —Target 0.02

(]
0
-0.02

-0.04

e More promising R&D to
increase beam time.

0.04

0.02

AE (GeV)

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner

Opportunities in Machine Learning for Particle Accelerators

Machine learning for design optimization of storage ring nonlinear dynamics

Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report
Machine learning for beam dynamics studies at the CERN Large Hadron Collider

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:'6


https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461

Acquiring Data

low dimensional
representation

m |
» zx\/:*l» - Decoder ‘

1
NE

- * Machine learning since long
deployed in the trigger for

selected signatures.

€

 Further potential for background

----- 1k e\./ts/month e

100 _ 0 \ . .
el N N Y = vl Mix trigger rate reduction.
10-2 Y, o L 1 A-dt

=
o
o

[ h*->tv

1 h*->1v
1 LQ

Emerging opportunity for
triggering on unknown
signatures.

=
o

Probability
Probability
=
o
I

More promising R&D and
experiment adoption.

LosSreco Dkt

Use of variational auto-encoders directly on data to marginalize outlier
events, for anomalous event hotline operation.

_’lt. C
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https://doi.org/10.1007/JHEP05(2019)036

Compressing Data

Rich literature on data

compression of image with

neural network.
0.25Act?\)iireao.75 N ActiveAregdvec_eta : A;;veAregdvec_;hl 0 i%%?gg:oLxgngooo B Ne;;:)i?/e!i 0 2000 Cen:::;)iij 6000 ° Make use Of ab StraCt Semantic
space for image compression.
I Y - » Image compression can suffer
ActiveAreadvec_pt - | ActiveAreadvec_m Timing s DetectorEta | S" ~ EMFrac ’ HECFrac ’ Some lOSS Of resolution.
101 B Input | . .
Output | - T oot « Saving on disk/tape cost.
o0 OotFrao:()C?usterss e e OotFrac(()flsusterslo H - HEC(guaIity ? 00 LArOS:Iity POtentlal ln Scoutlng data

analysis.

e R&D needed to reach the
necessary level of fidelity.

Use of auto-encoder model

K B C
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http://lup.lub.lu.se/student-papers/record/9004751

Cleaning Data

Fully connected
-
Fully connected

= = /;‘ —  Data quality is a person power
ts @~ @ intensive task, and crucial for
| e e {1y swift delivery of Physics

4@46x12 feature

maps 4@46x12 feature

mors e Machine learning can help with
;T I 144 hidd it num 144 hidden units automation.
2 N PN LN HL A S .
. g‘o.s’r e i  Learning from operators,
w Zosl o reducing workload.
...................... L 0.4 - SNN, AUC: 0.993

Variance, AUC: 0.977 |

02 — Scen - * Continued R&D and experiment
ol EER adoption.
0.00 0.05 0.10 0.15 0.20 0.25

Fall-out (1-TNR)

Channel

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth

Towards automation of data quality system for CERN CMS experiment

LHCb data quality monitoring

Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider

Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment

LN ¢
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https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1

Managing Data

machine é é é  The LHC-grid 1s key to success
of the LHC experiments.

Visualization / Monitoring

* Complex ecosystem with

et EJ dedicated operation teams.
Actions Storage .
El= R - =N | * Person power demanding, and
oo 3 @ [oomorm N inefficient in some corner of the
oot caone phase space.
Sg';tsgféms Data Providers A © B o 3 ) ] .
cenvoes & & o Ao \ /  Potential for Al-aided operation.

 Lots of modeling and control

|Cache Type’Thruughput Cost’Read on hit ratio Band sat.|CPU Eﬂ'.‘

|SCDL y 79.43%|50.68% | 21.22%|  58.94%|  58.75%| Challenges

|LFU y 65.01%|104.73%| 33.29%| 51.00%| 60.92%)|

|Size Big y 49.02%|111.73%| 28.55%|  54.40%|  60.41%| ° R&D . .

|LRU y 47.15%|112.84% | 27.64%|  54.93%|  59.90%| tO Increasc Op eratlon
|Size Small | 46.71%|113.01%| 27.39%|  55.01%|  59.73%)| efﬁCIGIlcy

Caching suggestions using Reinforcement Learning
, In proceedings

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ?l;.f ~p o8



http://cds.cern.ch/record/2709338/
https://operational-intelligence.web.cern.ch
https://lod2020.icas.xyz/program/

Reconstructing Data

Set—Set , |, Set—ledges | , , * Event reconstruction is pattern
Fr'ole 0" | e oo F & }X}& GNN applied to charged particle tracking ..
N I recognition to a large extend.
R A Advanced machine learning
““““““““““““ Setogmph | Setodedges :
Fi.}} > 5 - GJ9 e 2ot techniques can help.
a 7 et T e, N et aiewwnt | EdpeNeton e [earn from the simulation, and/or
| data.
r_{.scl — graph|_, .—\'-,. . .
< 3 * Learn from existing “slow
g:ﬂ gﬁ, v | P 4 reconstruction” or simulation
18 @ i ground truth.
nxd,, nxd, nxnxd, i i ; i ‘;: . .
« Automatically adapt algorithm to
Learning graphs from sets, applied to vertexing ; new detector design.
]
/ » Image base methods evolving
7
/ towards graph-based methods.
" « Accelerating R&D to exploit full

potential.



https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149

Data

[DL

Lx, P, ETA,
nTracks

rocessing

(Normal)

‘ Quantile Transformer

Latent space

DLLx, P, ETA,
nTracks

P, ETA, , ,

nTracks

Normal, 64

Concatenate

Dense, 128, Rel.U

Dense, 128, RelL.U

Dense, 128, ReLU

Dense, 256, Linear

x10

Generator

Dense, 128, RelL.U

Dense, 128, RelL.U
x10

Dense, 128, ReLU

LP Cramér GAN Loss

© o &m- & & &5 &5 o o
$2:3::::%
8 B 2 3 8 B 8 8

Simulating Data

(((((((

50
RichDLLk

LHCb preliminary

LHCb preliminary

LHCb preliminary

50
RichDLLk

111111

RichDLLk

Generative Adversarial Networks for LHCb Fast Simulation

Much more relevant work going on.

0.020

RichDLLk

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Fully detailed simulation 1s
computing intensive.

Fast and approximate simulators
already 1n operation.

Applicable at many levels :
sampling, generator, detector
model, analysis variable, etc

Generative models can provide
multiple 1000x speed-up.

Careful study of statistical power
of learned models over training
samples.

Many R&D, experiment adoption
starting.


https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762

Calibrating Data

(13 TeV) (13 TeV) (13 TeV)
— -

10 018 r—r e  0.18 (r=r=r=r—=r T 1 0.18 e
CMS Simulation Preliminary CMS Simulation Preliminary CMS Simulation Preiminary . .
0.16}F - 016} - 016} -
* Basaeline *Baseline * Baseline [ ] E gy g th t
e | oane | ot nergy regression 1s the mos
. ]
1 o vt o R obvious use case.
0.Aferfee - P SRR SO SN S S I L . ot il e hos L 1
[} w e T -

s e = I | oo  Learning calibrating models from

06} - 0.06 - R 0.06} | . .
e T S simulation and data.
m0501oo1502002503003;ooo ) moo1 ‘““,‘.5“‘1'5"‘;(;“‘;g“s‘a“a‘g‘.‘;z“;‘g .
5% (Gev) | > GeV) » Parametrization of scale factors
$ | oM simutaton using neural networks.
| —— * Reducing data/simulation
[ Ry dependency using domain
- rarmao adaptation.
)
: e Continued R&D
.
001 ;5..‘;(;.610 .|810 100150 14110 A?é:(’):

m; (GeV)

A deep neural network for simultaneous estimation of b jet energy and resolution

Much more relevant work going on.
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https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/

Analyzing Data

SignalRegion

EEl Background
Signal

1©

l0g(pbackgrounda(x|m))

Signal Region, Shifted Dataset Signal Region, Shifted Dataset

—~10° .
= : — Supervised —— Supervised
g | CWola(Svs.B) | E20f | CWola (S vs. B)
.GZJ 10%} ¢ CWola (SR vs. SB) uE) 1 CWola (SR vs. SB)
IR TS\.  — ANODE 3 15| / —— ANODE
a 10 Q Random
Q S
0 =
© @ 10t
& 102 v
d =
< 2
210! € 5
[y o
QL n
[

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate) Signal Efficiency (True Positive Rate)

Use of masked autoregressive density estimator with normalizing flow

as model-agnostic signal enhancement mechanism.

Much more relevant work going on.

Machine learning has long
infiltrated analysis for signal/bkg
classification.

Increasing number of analysis
with more complex DNN.

Application to signal
categorization, bkg modelling,
kinematics reconstruction, decay
product assignment, object
1dentification, ...

Breadth of new model agnostic
methods for NP searches.

Continued R&D and experiment
adoption initiated.
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https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/

W“; — r(z, 2|0)

— t(z, 2|0)

aramete:
l observable

latent /Z))\\\\\\\\o - _, €Tr —> :

wigmented data

Theory Behind the Data

argmin L[g] — 7(z|0) —>
g .

approximate
likelihood

—2Y log r(x|6, Osm)
IS £y

2D histogram

Constraining EFT with ML

/ RNN

probprog/pyprob

simulator C++
Pythia / Sherpa / GEANT

Inference

Approximate Bayesian Computation Approximate Bayesian Computation
with Monte Carlo sampling

Probabilistic Programming
with Monte Carlo sampling

Probabilistic Programming

with learned summary statistics with Inference Compilation

Amortized surrogates

Amortized likelihood ratio trained with augmented data

The frontiers of simulation-based inference

Hypothesis testing is the core of
HEP analysis.

Intractable likelihood hinders
solving the inverse problem.

Going beyond the standard
approach using machine learning
and additional information from
the simulator.

More precise evaluation of the
priors on theory's parameters.

May involve probabilistic
programming instrumentation of
HEP simulator.

* R&D to bring this in the
experiment.
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https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013

Take home message :

Rapid growth of machine learning
applications in HEP

(too) Slowly turning proofs of concept into
production

Exciting time ahead exploiting further the
potential of Al

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant



QML in HEP

Applied where “classical machine learning” has already been applied

 Classification:
=)

I I ) )

J b ) y = =nm

* Event reconstruction
= Pattern recognition, tracking :

* Anomaly detection
[

, " N

* Generative Models:
[

b J J I

* Density Estimation:

Reference list might be incomplete, please let me know ...

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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https://arxiv.org/abs/1908.04480
https://arxiv.org/abs/2002.09935
https://arxiv.org/abs/2010.07335
https://arxiv.org/abs/2012.11560
https://arxiv.org/abs/2012.12177
https://arxiv.org/abs/2103.12257
https://arxiv.org/abs/2103.03897
https://arxiv.org/abs/2104.07692
https://arxiv.org/abs/2003.08126
https://arxiv.org/abs/2007.06868
https://arxiv.org/abs/2012.01379
https://arxiv.org/abs/2109.12636
https://arxiv.org/abs/2202.06874
https://arxiv.org/abs/2204.06496
https://arxiv.org/abs/2112.04958
https://arxiv.org/abs/2101.11132
https://arxiv.org/abs/2103.15470
https://arxiv.org/abs/2110.06933
https://arxiv.org/abs/2201.01547
https://arxiv.org/abs/2203.03578
https://arxiv.org/abs/2011.13934
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From RAW to High Level Features

\

\\\ 17"
6C FF C2 E¢ \\\ W &///////
I

“a

ition

ADC1B3 3B
36 36 E4 EE
97 13 16 FA
1B 68 FF ES8
6A41C1 1A
£8 E4 CD 99 3
1A 16 76 C5 l///,,.; T l,m"\““ % Caoje

2 ES // //l/ o LY > ae /DT:46GGV
. * & f '}
aC FF C« HH
J N <

3 3B

PF jet
pT= 69 GeV

¥

Event Processing

From digital signal, to local hits, to a sequence of objects, and high -level features.
Complex and computing mtenswe task that could find a match in ML application.
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Image Representation

[

Deep-learning top taggers or the end of QCD?

4 )

10 5 )
= 10 =
1003 0 3
S, 15 S
& @ &
. 10*'2 20 i 0
250 <p,/GeV <260 GV, 65 < mass/GeV <95 Pythla 8, ﬁ = 13 TeV 22 25 i
N, We WZ, G 3TV .-
s - 0 s s 250 <p_/GeV <300 GeV, 65 < mass/GeV <95 U 30 g
I " w8 g ' © ©
§ * 0 & £ E % 1073 35 10
£ T H 1 £ &
2 05 (1T \ 2 03] c 150
IE - ] - IO . TR . g —— mass %10 15 20 25 36 35 40 510 15 20 25 30 3 40
g o =! * != 00 % o = ¢' pixels ¢’ pixels
AR i —, )
sl g :2: “»0 '8 AR 10 T T T L A T
3 Fish % SOFTDROP+ N-subjettiness ----------
o 100 SOK 5% MOTHEROFTAGGERS -+
S Maxout W DeepToP full
= Convnet 103 DEeEPTOP minimal ------ J
=

~ Random

102

e~
TR

Background rejection 1/ep

Ju—y
o
T

Top vs QCD S

Signal Efficiency

0 0.2 0.4 0.6 0.8 1

Signal efficiency eg

- J

Calorimeter signal are image-like.
Projection of reconstructed particle properties onto images possible.
Potential loss of information during projection.
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https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1701.08784

Sequence Representation

\_

Unrolled RNN

Fully Connected

+
SoftMax

Track 4

2
o

w
D
)
0]
| Track1

o
<

B

s

£

-

\__ordercdivisdol __/ yet

B-Jet with Recurrent Neural Networks

~

J

\_

% 7 -

7N 7N
AR AN VAN
?/"\ 1 T T

QCD-Aware Recursive Neural Networks for Jet Physics.

7N

J

Somehow arbitrary choice on ordering with sequence representation.
Physics-inspired ordering as inductive bias.

Ordering can be learned too somehow.
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https://arxiv.org/abs/1702.00748
http://cds.cern.ch/record/2255226

Graph Representation

Lepton

Jet

Jet

@

MET

Hits in tracking detector

Objects in an event

Hits in calorimeter detector

Graph Neural Networks in Particle Physics

Object sub-structure in an event

Heterogenous data fits well in graph/set representation.
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https://arxiv.org/abs/2007.13681

Invariance and Symmetries
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Dataset Degeneracy

Pre-process the dataset to reduce degeneracy.

Model training improves as the invariance does not have to be learned.

o.:
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https://arxiv.org/abs/2006.04780

Inductive Bias

ColLa ) 1
l";l.z l‘;z ] = I";l.z .
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L‘ L()Lalz pl(l‘J)
i — Ry = (E) /1
‘ ‘ u'.jy” L(l‘”l)
(d)
w . L
jm jm

() (_' N+2 l M \ ( Particles
2 Cayng2 0 Oam
0 : /‘ |
1 CnyNy2 - ('_\'._\1)
\ Lorentz Learning Layer / 7

MMMMM
llllll

Energy/Particle Flow Network

J PN

Deep set

In
(

— W

\

F@FP @ Z-’C(”;) Py ® 7,
j )

Out

Lorentz group quivariant networks

Embed the symmetry and invariance in the model.

Economy of model parameters.
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https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/2006.04780
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De-correlation

Most background estimation methods (side-bands, ABCD, parametrized fit, ...)
will require background shape to somehow be independent of analysis
selections/processing (not only when using machine learning BTW).

+4Da¢4 LKS H

"’4&604 S H

\
\
—
\

QCO Jeis
QCO Jeis

Domain adaptation
Learn to Pivot

ch} "bc}

Numerous methods proposed to de-correlate model predictions and
quantities of interest (pt, mass, ... ).
Usually adding a term in the loss to constrain de-correlation.

Machine Learning, CERN Summer Student Lecture 2022, J-R Viimant M=\, °



https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1611.01046
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10?

DISCO: Distance Correlation

Jenson-Shannon Divergence (JSD) as the comparison metric for shaping.
Residual shaping needs to enter systematics uncertainty estimation.
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http://cdsweb.cern.ch/record/2630973
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2001.05310

Background Estimation

103 * Double DisCo
C A c Single DisCo
5 e Scan with ATLAS features
Q
(o)
oa
©
D B % 102 i
o &
(@)
~ S
f— é 5 i
_ ABCD closure within 10% ;
ABCD + Disco 1| RPV stop search g
1055 02 0.4 06 0.8 1.0

Normalized Signal Contamination (r)

Most popular background estimation method (ABCD), can be optimized
for de-correlation, yielding increased significance.

LN ¢
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https://arxiv.org/abs/2007.14400

Systematic Uncertainties
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Syst. Estimation and Mitigation

( compute via automatic differentiation \
4 c T N N (] N (T N
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3 pAX)NZ= —0)
M= wax)Iz=0) 2 stochastic gradient update ¢''' = ¢ + n(t) VU
3.0l WAX)Z= +0) 2.0 ...
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[
500 1000 00 00
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\_ Parametrized Learning )

Systematic uncertainties can be propagated the usual ways.
No additional systematic from the model itself.
Methods to mitigate, propagate and optimize against systematic uncertainties.

> AN ‘ - H e)
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https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/1601.07913
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Domain in-Dependence

Training region
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Gradient reversal on a domain-classifier to mitigate the discrepancies of
classifier output between data and simulation.
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https://doi.org/10.1088/2632-2153/ab9023
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Inference Engines

\
@ " CPU ) “Remote accelerator”
- = * Small models
= - » Small datasets
L LI 0 -
N Useful for design space exploration )
( GPU A
m]m)] = * Medium-to-large models, datasets
O0)f * |Image, video processing
\ * Application on CUDA or OpenCL )
/ [ TPU \
= = * Matrix computations
n E’l 5 * Dense vector processing
\_ * No custom TensorFlow operations )
“On-Board accelerator”
¢ " FPGA A
E:D'D = * Large datasets, models
- - = * Compute intensive applications
N * High performance, high perf./cost ratio D

Growing list of deep learning accelerators.
Location of the device is driven by the environment (HLT, Grid, ... ).

=l ¢ 84
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https://arxiv.org/abs/1811.04492
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.14781

Model Compression
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Parallelisation
Firmware generation

-

~

HLS project

Model inference can be accelerated by reducing

the number and size of operations.
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https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913
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Reconstruction - Simulation ~ ldentity

Information

Simulation Analysis Reconstruction
Comparison
- - N

Particles

Track
candidates

its Track

segments
Summable digits

Reconstructed

Digits .
points

>

Rawidata Processing

Simulation aims at predicting the outcome of collisions.
Reconstruction aims at inverting it.
Multiple ways to connect intermediate steps with deep learning.
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Suiting Models
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Learn the parton=>detector function instead of
generating samples from vacuum.
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https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/2006.06685

Statistical Power

batch B

E —L X F(O(B-x))1
\ " “_;<> E}”

batch B

training samples

3x3x3x3x3 quantiles
500 data points

lx4

+

§—|—>[x, F(¢(B-x))]—
|—> X ¢

I\GAN

w

wn)

= 2

~10-

v

s}

|

m

=

o

o

)]

E ‘5g”qﬂu

= 750

o [ 1000

&) | ———y

1500

172000
101 10?

10° 104 10° 10° 10’

number GANed

d+m

discriminator
=256 ™™

0 true/fake

\—§ : , O
102{\GAN 4x4x4x4x4 quantiles
" 500 data points
("))
=
@
I=
m
=
o
- sample
2 |
=.~-3]| 1000
glo 2000 XIO
S
5000 ' ' !
107 107 10° 10° 10° 10° 10’

number GANed

200

-
w
o

GAN amplification factor
o o
o o

ol *

3 4 5 6 7 8 9 10
quantiles per dimension

\GAN 6x6x6x6x6 quantiles
w 500 data points
v
b
w1073
=
g [|.'!"7".‘1|'1'f‘
_g 1000
e 2000
o x25
= 5000
o 10000
1074 20000 ! t t
101 107 10° 10* 10° 10° 10’

number GANed

Generative adversarial network may help producing samples with

higher statistical power than the one used for training.
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https://arxiv.org/abs/2008.06545

Anomaly Search
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The Sea Beyond Standard Model

Slide: A. Wulzner

HEP yesterday HEP today

_SUSY, etc.

To p e dP N TS T g !mmm_a T

W boson
“Almost” Simple H+ “Very” Composite Hj
Focus on few sharply-defined Huge set of alternatives

alternative models (e.g., the Higgs) Case-by-case optimisation unfeasible

Case-by-case design of optimal test | The right H4 likely not yet formulated
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http://www.weizmann.ac.il/conferences/SRitp/Aug2019/

"One-Sided” Hypothesis Testing

Rigor in calibrating the rate of
anomaly is HEP specific
(Anomaly detection is not).

Some methods can serve as a
hotline: notification of odd
signals.

Some methods can serve Iin
analysis: calibrated rate of
novelty.

Also of great importance in data
quality monitoring/certification.

Individual Approaches

LHC Olympics 2020

3 Unsupervised

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9

Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1
4.2

4.3
4.4
4.5

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N’ Train

Simulation Assisted Likelihood-free Anomaly Detection

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1
0.2
5.3

5.4
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Deep Ensemble Anomaly Detection

Factorized Topic Modeling

QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
Simple Supervised learning with LSTM layers
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https://arxiv.org/abs/2101.08320
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The Black-box Dilemma

Depth of
thinking

Practical results

Deep learning may yield great improvements.

Having the “best classification performance” is not always sufficient.

Forming an understand of the processes at play is often crucial.
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Learning Observables

Electron classification performance liso:
Base Additions (k,3) (AUC) 3122 )
7HL 0.945
7HL +Mjet 0956 0.50
7THL S (L) 0.970
THL +Mije. [+.2 (1,1) |17 (1,1) | 0.971 R
7HL . (2, _) 0.970 log,o [EFP Observable]
THL  +Mjet (2,1) | = (2,—)| 0.971 | ckground 2 "
CNN 0.972 : L

logio [EFP Observable]

Search in the space of functions using decision ordering.
Simplified to the energy flow polynomial subspace.
Extract set of EFP that matches DNN performance.

e
S5
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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HEP Instruments
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LHCONE L3VPN: A global infrastructure for High Energy Physics data analysis (LHC, Belle II, Pierre Auger Observatory, NOVA)

Canads.
w1 CMontreal
viee ot
sim

usc

»

Surface Counting room

—

48 x 12 (10/40 GbE)

GTP

Timing, Trigger and Control (TTC) front-end distribution system

=0

New

Detector Front-End Drivers ( FED x ~700 ) FEDS

S

igger Throttle System (TTS). Fast Merging Module (FMM)

4 (’3bs 400 MBs

10 GbE 185m OM3

(6x8 FEROLS)

40 GbE |

evwrus. a4 P [T UL DL OG0 DU DU DU

56 Gbps IB-FDR P

Input: old FED copper 400 MBs Slink, new FED 4/10 Gbs optical

576 Front-End Readout Optical Link (FEROL-PCIx)

Patch panels

Data to Surface ~ (2 x) 576 x 10 GbE links (5.8 Tbs)

P50 Mini DAQ

Event Builder 84 x 64 (3.5 Tbs.

84%.64/(58 bpe) & Data Backbone

)
(216 external ports)

InfiniBand-FDR CLOS-216 network ’

56 Gbps IB-FDR 1
BU,| BU,| [BU.
40GbE  pea=|Tom 8x40GbE = = 64 BUFU S[® ;.u0ce =] ==
36 x 40 GbE b4 36 x 40 GbE switch appliances P 36x40GbE switch | - SN | [SEss
ke ~ 15000 cores

ot #5 e b o thhchhioh 7 e S
10 GbE b 54032 (1/10 GbE) E48x1DGbE FUs| 10 GBS 10

1 Technical
FU PCs [ Data backbone (10/40 GbE) ] ( Network

BU-FU appliance
-1BU (256 GB RAM, 2TB magnetic disks)
- 16 FU nodes
- FU: Dual E5-2670 8 core (2 x1 GbE)
- FU: Dual X5650 6 core (2 x1 GbE)

(.cms)

BU-FU appliance
-1BU (256 GB RAM, 2TB magnetic disks)

-8 FU nodes
- FU: Dual Haswell with 14 cores (10 GbE) CDR backbone

DAQ

10toN

r 10 — 40 to 100 Gb/s
v/

Tier0
300-1500 —» CERN
MB/s Computer Center

A

10 — 40 to 100 Gb/s

e x

10 — 40 to 100 Gb/s
L4

v ™
L oy

x10 Gb/s * Hundreds of computer centers (100-10k cores per site)

Real time data processing at TierO
» Data and Simulation production at Tier1 and Tier2
High bandwidth networks between disk storage

2 * Increased use as a cloud resources (any job anywhere)
T3 T3 * Increasing use of additional cloud and HPC resource
. \J
BEEEE

Unique set of complex apparatus for doing Science.
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https://home.cern/science/computing/grid
https://home.cern/science/accelerators/
https://ieeexplore.ieee.org/document/7111380

Summary

= Physics at collider is a computing intensive endeavor.
Extracting, simulating, reconstructing rare signal from large
amount of data.

=Deep learning offers great prospects for Science and
Physicists. Fast and efficient data processing.

= Doing Al at colliders requires to keep an eye on
particular aspects. Also relevant to other fields of Science.

=Deep learning is entering High Energy Physics data
processing at all levels. A lot done, a long way to go. You
can make a difference

This work is partially supported by the U.S. DOE, Office of Science, Office of High Energy
Physics under Award No. DE-SC0011925, DE-SC0019219, and DE-AC02-07CH11350.
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Classification Task
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Slide: S. Vallecorsa

* QA and QC approaches applied to various classification tasks
* Recurring hint of advantage a small training dataset size

LN ¢
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Tracking with Q-GNN

[Ho. Ho] [H1 Ho] [H]
Input Graph Graph Output
Network || Network 7| Network | °° ‘| Network
omom el il X
fdee i
Information [ \ | 7 | Node
/ ’: :“_ _E“__R*__R“_ —Information

c0

* Quantum/Classical hybrid graph neural network inspired by

* Promising performance.

« However limites by large number of circuits and training time.

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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https://qiskit.org/
https://pennylane.ai/
https://arxiv.org/abs/2007.06868
https://exatrkx.github.io

xg(x)

Quantum Circuit *—————

EDF with Variational Quantum Circuit

*VVQC optimized at each energy scale value
Pt > L: . * Parametrization of VQC on x
optimti funing * Each gbit used represent a parton fraction
Comergencer - * Trained with standard NNPDF procedure
| ves *Remarkable capability to produce PDF with
sogez ol much less parameters than DNN
Quantum Hardware <—— qPDF fit from data
g at 17 Gev s at 17 Gev ‘ot 17 Gev
(a) Gluon pdf. (b) u quark pdf.
/ @

(c) s quark pdf.
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https://arxiv.org/abs/2011.13934
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*Quantum Generative Adversarial Models inspired

eeeeeeeeeeeeeeeeeeee

—————

___________

_____

from “classical” Generative Adversarial Networks
*Models use various latent vector embedding

* Multiple ways of mapping qgbits value/
expectations to original sample format

* Good fidelity of model, slightly decreased due to

hardware noise
@ 103
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https://arxiv.org/abs/2110.06933
https://arxiv.org/abs/2103.15470
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Gradient Descent Optimization

Initial

J(w) ! Gradient
We|ght \ lll/
/]
J
'

7

/]
/]
l . .
LA Global cost minimum

_____{___—-———/” Jmin(W)

>

w

- For a differentiable loss function f, the first Taylor expansion

gives f(x+¢€)= f(x)+eV f(x)
- The direction to locally maximally decrease the function value is

anti-collinear to the gradient e=—-YV f(x)
- Amplitude of the stepY to be taken with care to prevent

overshooting
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Non-Convex Optimization

)))))))

,.‘ 0 AF b Ii}Ou start /‘

ient descent

- The objective functions optimized in machine
learning are usually non-convex
- Non guaranteed convergence of gradient

descent
- Gradients may vanish near local optimum and
saddle point
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Stochastic Gradient Descent

- Application of one gradient descent is expensive. Can be
prohibitive with large datasets

- Following the gradient update from each and every sample of a
dataset leads to tensions

« In binary classification, samples from opposite categories
would have “opposite gradients”

- Gradients over multiple samples are independent, and can be
computationally parallelyzed

> Estimate the effective gradient over a batch of samples

1

veﬁ‘f(x)=ﬁ.g hvif(x)
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Non Analytical SGD

- Some valuable loss function might not be analytical and
their gradients cannot be derived
- Used finite element method to estimate the gradient

numerically f(x+€)—- f(x)
g

V f(x)=

- Method can be extended to using more sampling and
better precision

- Quite expensive computationally in number of function
calls and impractical in large dimension

- Robust methods available in most program library
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Second Order Methods

- Newton-Raphson method defines a recursive procedure to find
the root of a function, using its gradient.

- Finding optimum is equivalent to finding roots of the gradient,
hence applying NR method to the gradient using the Hessian

Flx+8)= f(x)+ eV f(x)+%8TH(x)8

e~—H(x)'V f(x)

- Convergence guaranteed in certain conditions

- Alternative numerical methods tackle the escape of saddle points
and computation issue with inverting the Hessian

- In deep learning “hessian-free” methods are prohibitive
computationally wise

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant ‘|:'.6‘
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Approximate Bayesian Computation

T(datal model ) Ti(model)
T(data)

T(modell data)=

- ABC is applicable when the likelihood Ti(datalmodel)s
intractable/unknown

- The method requires a simulator or surrogate model

- Generate simulated data for models drawn from the prior,
accept/reject whether matching data

-+ Overly expensive in calls to simulator
= Introduce summary statistics to enhance border cases
- Efficient sampling to boost acceptable models

- Generalized methods for comparing simulated samples with
data

> Principle for likelihood-free inference in HEP :

Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant
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https://arxiv.org/abs/1805.12244

Bayesian Optimization

- Applicable to optimize function (=2
without close form and that are R X
expensive to call (numerical R T e i
gradient impractical)

- Approximate the objective function
with Gaussian processes (GP)

- Start at random points, then sample
according to optimized acquisition
function

- Expected improvement

— EI (w)=— EX(cfm(ec)— wir(ecpes))

¥ acquisition max

T~_ _— acquisition function (u())

t=3

LCB(x)= bz (x)+ Ik o se(xayznt

/ posterior mean (u(-))

posterior uncertainty

O — /v\ B
= PL(x)==P(fp(x)= [ (Xpe5)+ K)
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Evolutionary Algorithms

® © A Genetic Diversity - Applicable to function in high
Qo0 T %7 dimensions, with a non regular
0

o © landscape
- Start from random population
Cione s Mutate Next B.Evaluate, Estimate fittest fraction of individuals
Sur.vwor; °e"e'°*‘°"|> _ e O: Bread and mutate individuals
®s 0 ‘o @
* o ® o ®. Direction of optimization is given by

C. Selection the cross-over and mutation

Kill UnﬁtNetworks « g
definition
- Multiple over algorithms : particle
swarn, ...

. Network O Unfit Network . Cloned Network
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Adiabatic Quantum Annealing

- System setup with trivial Hamiltonian H(0) and ground state
- Evolve adiabatically the Hamiltonian towards the desired
Hamiltonian H,

- Adiabatic theorem : with a slow evolution of the system, the state
stays in the ground state.

Setup Hamiltonian: H(0) Problem Hamiltonian: H,

Uniform superposition of State minimizing the energy
possible qubit states of the problem
Hamiltonian

100% -
90% -
80%
70%
60% -
50% A
40%

30%

20% -
10% -

T=tfina|
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https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129

Simulated Annealing

- Monte-Carlo based method to find ground state of
energy functions
- Random walk across phase space
> accepting descent
> accepting ascent with probability e-AE/KT
» Decrease T with time

% % D
Temperature
A

NN

LAY ~
~

» Time

£
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