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Scope of this Lecture

2

• Basics of machine learning were introduced in Glen Cowan’s Lecture 
https://indico.cern.ch/event/1132551/ . We will only go over the 
essentials here.  

• Impossible to “learn machine learning” with this lecture. The aim is at 
pointing out key aspects for doing “good machine learning” and the 
specifics to high energy physics applications. 

• Emphasis on what you need to bear in mind while developing 
Machine learning at collider to avoid common pitfalls. 

• Lots of references provided therein for further reading and 
understanding. Also in https://github.com/iml-wg/HEPML-LivingReview 

This work is partially supported by the U.S. DOE, Office of Science, Office of High Energy 
Physics under Award No. DE-SC0011925, DE-SC0019219, and DE-AC02-07CH11359.

https://indico.cern.ch/event/1132551/
https://github.com/iml-wg/HEPML-LivingReview
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Outline

3

I. Physics at the Large Hadron Collider 
II. A glimpse at the Machine Learning Landscape 
III. Motivations for using Machine Learning 
IV. Deep-learning in the HEP data pipeline 
V. Collider-Specific AI
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in a nutshell ...

High Energy Physics 
Endeavor
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The Large Hadron Collider
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8.5 kil
ometers  

     
     

     
     

     
     

     
    

Geneva, Switzerland
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Colliding Hadrons

6

Probing fundamental laws of physics as large spectrum 
of particles (known and unknown) can be produced 
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The Standard Model

7

Well demonstrated effective model  
We can predict most of the observations 
We can use a large amount of simulation
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1 event 
every 

500.000 proton 
 collision

Low probability of producing exotic and interesting signals. 
Observe rare events from a large amount of data.

Size Of The Challenge

8
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The Sea Beyond Standard Model

9

Slide: A. Wulzner [H&N] 

http://www.weizmann.ac.il/conferences/SRitp/Aug2019/
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HEP Data Pipeline

10

LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0 
 Computing Center 

20k cores

CERN Tier-0/Tier-1 
 Tape Storage 
200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106  
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Event Triggering

11

Select what is important to keep for analysis. 
Ultra fast decision in hardware and software.

Reconstruction(s) of the event under limited latency. 
Better resolution help lowering background trigger rates. 

Approximate deep learning surrogates can help.
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Reconstructing Collisions

12

From digital signal, to local hits, to a sequence of objects, and high-level features. 
Complex and computing intensive tasks.

Detector 
DataDetector 
Data

Local 
reconstruction

Jet ClusteringParticle 
representation

High level 
features

Event Processing

Dimensionality reduction

Globalization of information
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Simulating Collisions

13

Event Generator: compute predictions of the standard models to 
several orders of expansion in coupling constants (LO, NLO, 
NNLO, ...) using proton density functions.

Hadronization: phenomenological model of the evolution of 
hadrons under the effect of QCD.

Material simulator: transports all particles throughout meters of 
detector, using high resolution geometrical description of the 
materials.

Electronic emulator: converts simulated energy deposits in 
sensitive material, into the expected electronic signal, including 
noise from the detector.

Madgraph, 
Pythia, 
Sherpa, ...

Pythia, ...

GEANT 4, 
GEANT V

Homegrown 
software

Non-differentiable, computing intensive sequence of complex simulators 
of the signal expected from the detectors. 
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The Computing Cost of Science

14

Ever growing needs for computing resource 
Slowdown of classical architecture 

 Growth of GPU architecture

https://indico.cern.ch/event/822126/contributions/3500169/ 

https://indico.cern.ch/event/822126/contributions/3500169/
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Take home message :  
Measure rare and exotic processes from orders 

of magnitude larger backgrounds. 
The Standard Model predicts with precision 

what to expect from many processes. 
Reconstruct, identify and reject large amount of 

event within resource constraints.
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A Glimpse at the  
Machine Learning Landscape
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What Is Machine Learning

17

“Giving computers the ability to learn without explicitly programming them” 
A. Samuel (1959). 

Is fitting a straight line machine learning ? 
Models that have enough capacity to define its own internal 

representation of the data to accomplish a task : learning from data. 

In practice : a statistical method that can extract information from the 
data, not obviously apparent to an observer. 

➔ Most approach will involve a mathematical model and a cost/reward 
function that needs to be optimized. 

➔ The more domain knowledge is incorporated, the better.

2/22/21
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Overview

18

Yann Le cun, CERN, 2016
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Supervised Learning

19

● Given a dataset of samples, a subset of features is qualified as 
target, and the rest as input 

● Find a mapping from input to target 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 
 

● Finite set of target values :  
➔ Classification 

● Target is a continuous variable :  
➔ Regression

dataset≡ {( xi , yi)}i
find function f s.t. f (xi)= yi
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Unsupervised Learning

20

● Given a dataset of samples, but there is no subset of feature 
that one would like to predict 

● Find mapping of the samples to a lower dimension manifold 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 

● Manifold is a finite set  
➔ Clusterization 

● Manifold is a lower dimension manifold :  
➔ Dimensionality reduction,  

density estimator

dataset≡ {(xi)}i
find f s.t. f (xi)= pi
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Reinforcement Learning

21

● Given an environment with multiple states, given a 
reward upon action being taken over a state 

● Find an action policy to drive the environment toward 
maximum cumulative reward 
 
 
 
 
 

st+ 1= Env(st , at)
rt= Rew (st , at)

π (a∣ s)= P (At= a∣S t= s)
find π s.t.∑

t
r t is maximum
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(Some) Machine Learning Methods

22

http://scikit-learn.org/stable/tutorial/index.html 

http://scikit-learn.org/stable/tutorial/index.html
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Decision Tree

23

● Decision trees is a well known tool in supervised learning. 
● It has the advantage of being easily interpretable 
● Can be used for classification or regression
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Artificial Neural Network

24

● Biology inspired analytical model, but not bio-mimetic 
● Booming in recent decade thanks to large dataset, increased computational 

power and theoretical novelties 
● Origin tied to logistic regression with change of data representation 
● Part of any “deep learning” model nowadays 
● Usually large number of parameters trained with stochastic gradient descent

h= ϕ(Ux+ v)
o(x)= ωT h+ b

pi≡ p( y= 1∣ x)≡ σ (o(x))=
1

1+ e− o( x)

lossXE= −∑
i
yi ln ( pi)+ (1− yi) ln (1− pi)
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Neural Net Architectures

25

http://www.asimovinstitute.org/neural-network-zoo

➢ Does not cover it all : densenet, graph network, ...

http://www.asimovinstitute.org/neural-network-zoo
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Spiking Neural Network

26

● Closer to the actual biological brain 
● Adapted to temporal data 
● Hardware implementation with low power consumption   
● Trained using evolutionary algorithms, recent work on 

gradient-based methods [1706.02609] , [1901.09948], 
[2110.14092]  

● Economical models 
● Python libraries for spiking neural network :  slayer, 

snntorch, spikingjelly, norse, … 

https://arxiv.org/abs/1706.02609
https://arxiv.org/abs/1901.09948
https://arxiv.org/abs/2110.14092
https://lava-nc.org/lava-lib-dl/slayer/
https://snntorch.readthedocs.io/
https://spikingjelly.readthedocs.io/
https://norse.github.io/norse
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Quantum Machine Learning

27

Deep learning is computing intensive, and de-facto enabled by use of 
GPU. People are looking for ways to leverage possible quantum 
advantage to accelerate machine learning techniques. 
Main algorithms used in recent studies 

➡Variational Quantum Circuits (VQC) 
➡Quantum Support Vector Machine (QSVM) 
➡Quantum Restricted Bolztman Machine (QRBM) 
➡Quantum Adiabatic Machine Learning (QAML) 
➡Quantum Generative Adversarial Network (QGAN) 
➡… 

Field in constant evolution. Embedding is crucial. 
Deep implications of kernel methods. 

Software and toolkit available pennylane , tf-quantum 

[1804.11326] 

[2101.11020] 

[2001.03622] 

https://pennylane.ai
https://www.tensorflow.org/quantum
https://arxiv.org/abs/1804.11326
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/2001.03622
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Machine Learning Concept

28

Dataset Model

Objective 
function

Optimization Method

Predictive 
model

All comes down to an optimization problem. 
What follows are some of the things to keep an eye 

on when developing a machine learning solution
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Cross Validation

29

● Model selection requires to have an estimate of the uncertainty on the metric 
used for comparison 

➢ K-folding provides an un-biased way of comparing models 
● Stratified splitting (conserving category fractions) protects from large variance 

coming from biased training 
● Leave-one-out cross validation : number folds ≡ sample size
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Under-fitting

30

● Poor model performance can be explained  
◆ Lack of modeling capacity (not enough parameters,  

inappropriate parametrization, …) 
◆ Model parameters have not reached optimal values
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Need for Data

31

● “What is the best performance one can get ?” rarely has an answer 
● When comparing multiple models, one can answer “what is the best of 

these models, for this given dataset ?” 
● It does not answer “what is the best model at this task ?”  
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Over-fitting

32

● “Too good to be true” model performance can be explained  
➢ Excessive modeling capacity (too many parameters, parametrization is too 

flexible, ...) 
➢ Model parameters have learn the trained data by heart 

● Characterized by very good performance on the training set and (much) lower 
performance on unseen dataset 
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Generalization

33

● Systematic error ≡ bias 
● Sensitivity of prediction ≡ variance 
● A good model is a tradeof of both 
➢ Early stopping can help with halting the model 



Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Figure(s) of Merit(s)

34

● Objective function in optimization might be chosen for 
computational reason (differentiable, …) 

● Objective function might only be a proxy to the actual figure 
of merit of the problem at hand 

● Multi-objective optimization is subject to trade-off between 
objectives 

➢While model optimization is based on the loss function over the 
training set, following the evolution of a more interesting (non-
usable) metric over the validation can help selecting models 
that are better for the use case
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Class Imbalance

35

● In many cases the number of samples varies significantly from class to class 
● Class imbalance biases the performance on the minority class 
● Multiple ways to tackle the issue 

➢ Over-sample the minority class 
➢ Synthetic minority over-sampling 
➢ Under-sample the majority class 
➢ Weighted loss function 
➢ Active learning 

 
 
 

● NB: metrics can be sensitive to class imbalance and be misguiding if not 
correct : e.g. 99% accuracy with 0% recall 
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Training

36

● Training phase or learning phase is when the parameters of the model are 
adjusted to best solve the problem 

● For some model/technique (especially deep learning) this can become 
computationally prohibitive 

● General purpose graphical processing units (GP-GPU) offer an enormous 
amount of parallel compute power, applicable to specific numerical problems 

● Matrix calculation, minibatch computation, deep learning, … can get a 
significant boost from GP-GPU. 

● Further parallelization can be obtained across multiple nodes/GPU using : 
most of the deep learning framework offer distributed training solutions : 
tf.distribute, torch.nn.DataParallel, NNLO, … 

https://www.tensorflow.org/api_docs/python/tf/distribute
https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://github.com/AI-SciLab/NNLO
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Hyper-parameter Optimization

37

● Most optimization methods and models require hyperparameters  
◆ number of layers/nodes in an ANN, number of leaves in a decision 

tree, learning rates, … 
● In most cases these parameters cannot be optimized while the model is 

trained ; i.e not optimized with gradient descent 
● Their values can however significantly influence the final performance 

➢ These can be optimize in various ways 
◆ Simple grid search 
◆ Bayesian optimization 
◆ Evolutionary algorithm 

➢ Model comparison should be done very carefully 
◆ K-folding is a “must” 

➢ Multiple libraries available skOpt, hyperopt, GPyOpt, ray.tune,  
Spearmint, deap, …  

https://scikit-optimize.github.io/stable/
https://github.com/hyperopt/hyperopt
https://sheffieldml.github.io/GPyOpt/
https://docs.ray.io/en/latest/tune/index.html
https://github.com/HIPS/Spearmint
https://deap.readthedocs.io/en/master/
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Cost of Running the Model

38

● Contrary to training, making prediction from a trained model is usually 
rather fast, even on CPU 

● However fast is may be, it might still not be fast enough for the particular 
application 

● Faster inference can be obtained on specialized hardware GP-GPU, TPU, 
FPGA, neuromorphic, … when the application allows it (trigger, onboard 
electronics, …) 

● “Inference as a service” can be a solution to get access to accelerators 
remotely, at the cost of communication

75 ns

https://hls-fpga-machine-learning.github.io/hls4ml/ 

https://hls-fpga-machine-learning.github.io/hls4ml/
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Take Home Message

39

Machine learning applications need to be developed with scientific rigor. 
Lots of interesting studies possible on statistics/theory of learning. 

Keep an eye on cost of making prediction.
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Motivations for Using  
Machine Learning 

 in High Energy Physics
and elsewhere ...
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Machine Learning in Industry

41

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

Prominent skill in industry nowadays. 
Lots of data, lots of applications, lots 
of potential use cases, lots of money. 
Knowing machine learning can open 

significantly career horizons.

https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence
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Learning to Control

42

Mastering the game of Go with deep neural networks and tree search, 
https://doi.org/10.1038/nature16961

Learning to Walk via Deep Reinforcement Learning 
https://arxiv.org/abs/1812.11103

Modern machine learning boosts control technologies. 
AI, gaming, robotic, self-driving vehicle, etc.

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103
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Operation Vectorization

43

ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model 
can be vectorized to a large extend.
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Hyper-Fast Prediction

44

Synthesizing FPGA firmware from trained ANN 
https://fastmachinelearning.org/hls4ml/ 

J. Duarte et al.[1804.06913] 

Artificial neural network model can be 
executed efficiently on FPGA, GPU, TPU, ...

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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Low Power Prediction

45

Neuromorphic hardware dedicated to spiking neural networks 
Low power consumption by design

Slide C. Schumanhttps://indico.fnal.gov/event/13497/contribution/0 

https://indico.fnal.gov/event/13497/contribution/0
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Learning Observables

46

[2010.11998], [2011.01984] 

Electron classification performance

Machine Learning can help understand Physics.

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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Use Physics

47

Let the model include Physics principles to master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia [1909.12790] 

https://arxiv.org/abs/1909.12790
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Learning from Complexity

48

Machine learning model can extract information from complex dataset. 
More classical algorithm counter part may 

 take years of development. 
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AI in HEP

49

LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0 
 Computing Center 

20k cores

CERN Tier-0/Tier-1 
 Tape Storage 
200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106  

AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

➔ Up to date listing of references: 
https://github.com/iml-wg/HEPML-LivingReview 

https://github.com/iml-wg/HEPML-LivingReview


Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Possible Utilizations

50

Accuracy Speed

Interpretable

➔ Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.  
➔ More accurate than existing algorithms (tagging, regression, etc) ; even better if faster. 
➔ Model performing otherwise impossible tasks (operations, etc)
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Growing Literature 

51

Community-based up to date listing of references 
https://iml-wg.github.io/HEPML-LivingReview/

https://inspirehep.net/literature?q=machine learning or deep learning 

https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning
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Take home message :  
Machine Learning is a widely recognized and 

used technology in industry 
Deep Learning has the potential of helping 

Science to make progress 
Neural Networks could help with the computing 

requirements of Science 
Wide range of potential applications
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Deep Learning 
 in High Energy Physics

The 10 miles view.



Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Producing the Data

54

Opportunities in Machine Learning for Particle Accelerators [1811.03172] 
Machine learning for design optimization of storage ring nonlinear dynamics [1910.14220] 
Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report [2001.05461] 
Machine learning for beam dynamics studies at the CERN Large Hadron Collider [2009.08109] 
…

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner  
[2001.05461] 

• Machine learning can be used to 
tune devices, control beams, 
perform analysis on accelerator 
parameters, etc. 

• Already successfully deployed 
on accelerator facilities. 

• More promising R&D to 
increase beam time.

https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461
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Acquiring Data

55

• Machine learning since long 
deployed in the trigger for 
selected signatures. 

• Further potential for background 
trigger rate reduction. 

• Emerging opportunity for 
triggering on unknown 
signatures. 

• More promising R&D and 
experiment adoption.

Use of variational auto-encoders directly on data to marginalize outlier 
events, for anomalous event hotline operation. 

[doi:0.1007/JHEP05(2019)036] 

Hands-on

https://doi.org/10.1007/JHEP05(2019)036
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Compressing Data

56

Use of auto-encoder model  
http://lup.lub.lu.se/student-papers/record/9004751 

• Rich literature on data 
compression of image with 
neural network. 

• Make use of abstract semantic 
space for image compression. 

• Image compression can suffer 
some loss of resolution. 

• Saving on disk/tape cost. 
Potential in scouting data 
analysis. 

• R&D needed to reach the 
necessary level of fidelity.

http://lup.lub.lu.se/student-papers/record/9004751
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Cleaning Data

57

Towards automation of data quality system for CERN CMS experiment [doi:10.1088/1742-6596/898/9/092041]  
LHCb data quality monitoring [doi:10.1088/1742-6596/898/9/092027]  
Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider [1808.00911]  
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment [doi:10.1051/epjconf/
201921406008]  
…

• Data quality is a person power 
intensive task, and crucial for 
swift delivery of Physics 

• Machine learning can help with 
automation. 

• Learning from operators, 
reducing workload. 

• Continued R&D and experiment 
adoption.

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth 
[doi:10.1007/s41781-018-0020-1] 

https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1
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Managing Data

58

• The LHC-grid is key to success 
of the LHC experiments. 

• Complex ecosystem with 
dedicated operation teams. 

• Person power demanding, and 
inefficient in some corner of the 
phase space. 

• Potential for AI-aided operation. 
• Lots of modeling and control 

challenges. 
• R&D to increase operation 

efficiency.

[cds:2709338] 
https://operational-intelligence.web.cern.ch 

Caching suggestions using Reinforcement Learning 
LOD 2020, in proceedings

http://cds.cern.ch/record/2709338/
https://operational-intelligence.web.cern.ch
https://lod2020.icas.xyz/program/
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Reconstructing Data

59

• Event reconstruction is pattern 
recognition to a large extend. 
Advanced machine learning 
techniques can help. 

• Learn from the simulation, and/or 
data. 

• Learn from existing “slow 
reconstruction” or simulation 
ground truth. 

• Automatically adapt algorithm to 
new detector design. 

• Image base methods evolving 
towards graph-based methods. 

• Accelerating R&D to exploit full 
potential.Much more relevant work going on. 

https://iml-wg.github.io/HEPML-LivingReview/ 

Learning graphs from sets, applied to vertexing 
[2002.08772] 

GNN applied to charged particle tracking 
[2007.00149] Hands-on

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149
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Simulating Data

60

• Fully detailed simulation is 
computing intensive. 

• Fast and approximate simulators 
already in operation. 

• Applicable at many levels : 
sampling, generator, detector 
model, analysis variable, etc 

• Generative models can provide 
multiple 1000x speed-up. 

• Careful study of statistical power 
of learned models over training 
samples. 

• Many R&D, experiment adoption 
starting.

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

Generative Adversarial Networks for LHCb Fast Simulation 
[2003.09762]

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762
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Calibrating Data

61

• Energy regression is the most 
obvious use case. 

• Learning calibrating models from 
simulation and data. 

• Parametrization of scale factors 
using neural networks. 

• Reducing data/simulation 
dependency using domain 
adaptation. 

• Continued R&D

A deep neural network for simultaneous estimation of b jet energy and resolution

[1912.06046] 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/


Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Analyzing Data

62

• Machine learning has long 
infiltrated analysis for signal/bkg 
classification. 

• Increasing number of analysis 
with more complex DNN. 

• Application to signal 
categorization, bkg modelling, 
kinematics reconstruction, decay 
product assignment, object 
identification, … 

• Breadth of new model agnostic 
methods for NP searches. 

• Continued R&D and experiment 
adoption initiated.

Use of masked autoregressive density estimator with normalizing flow 
as model-agnostic signal enhancement mechanism. 

[doi:10.1103/PhysRevD.101.075042] 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/
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Theory Behind the Data

63

• Hypothesis testing is the core of 
HEP analysis. 

• Intractable likelihood hinders 
solving the inverse problem. 

• Going beyond the standard 
approach using machine learning 
and additional information from 
the simulator. 

• More precise evaluation of the 
priors on theory's parameters. 

• May involve probabilistic 
programming instrumentation of 
HEP simulator. 

• R&D to bring this in the 
experiment.

The frontiers of simulation-based inference 
[1911.01429] 

https://github.com/probprog/pyprob

Constraining EFT with ML 
[1805.00013] 

Hands-on

https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013
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Take home message :  
Rapid growth of machine learning 

applications in HEP 
(too) Slowly turning proofs of concept into 

production 
Exciting time ahead exploiting further the 

potential of AI
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QML in HEP

65

Applied where “classical machine learning” has already been applied  
•Classification: 
➡[1908.04480], [2002.09935], [2010.07335], [2012.11560], [2012.12177], 
[2103.12257], [2103.03897], [2104.07692], … 

•Event reconstruction 
➡Pattern recognition, tracking : [2003.08126], [2007.06868], [2012.01379], 
[2109.12636], [2202.06874], [2204.06496] … 

•Anomaly detection 
➡[2112.04958] , … 

•Generative Models: 
➡[2101.11132], [2103.15470], [2110.06933], [2201.01547], [2203.03578], … 

• Density Estimation: 
➡[2011.13934], …

Reference list might be incomplete, please let me know …

https://arxiv.org/abs/1908.04480
https://arxiv.org/abs/2002.09935
https://arxiv.org/abs/2010.07335
https://arxiv.org/abs/2012.11560
https://arxiv.org/abs/2012.12177
https://arxiv.org/abs/2103.12257
https://arxiv.org/abs/2103.03897
https://arxiv.org/abs/2104.07692
https://arxiv.org/abs/2003.08126
https://arxiv.org/abs/2007.06868
https://arxiv.org/abs/2012.01379
https://arxiv.org/abs/2109.12636
https://arxiv.org/abs/2202.06874
https://arxiv.org/abs/2204.06496
https://arxiv.org/abs/2112.04958
https://arxiv.org/abs/2101.11132
https://arxiv.org/abs/2103.15470
https://arxiv.org/abs/2110.06933
https://arxiv.org/abs/2201.01547
https://arxiv.org/abs/2203.03578
https://arxiv.org/abs/2011.13934
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HEP-specific  
elements of AI

Where innovation lies.
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Data Representation
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From RAW to High Level Features

68

From digital signal, to local hits, to a sequence of objects, and high-level features. 
Complex and computing intensive task that could find a match in ML application.

Detector 
DataDetector 
Data

Local 
reconstruction

Jet ClusteringParticle 
representation

High level 
features

Event Processing

Dimensionality reduction

Globalization of information
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Image Representation

W vs QCD

Jet-Images – Deep learning edition 
 [1511.05190] 

Calorimeter signal are image-like. 
Projection of reconstructed particle properties onto images possible. 

Potential loss of information during projection.

Deep-learning top taggers or the end of QCD? 
[1701.08784] 

Top vs QCD

69

https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1701.08784
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Sequence Representation

QCD-Aware Recursive Neural Networks for Jet Physics. 
[1702.00748] B-Jet with Recurrent Neural Networks  

[cds:2255226] 

Somehow arbitrary choice on ordering with sequence representation. 
Physics-inspired ordering as inductive bias. 

Ordering can be learned too somehow.

70

https://arxiv.org/abs/1702.00748
http://cds.cern.ch/record/2255226
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Hits in calorimeter detector

Hits in tracking detector

Graph Representation

71

Heterogenous data fits well in graph/set representation. 

Objects in an event

Object sub-structure in an event

Graph Neural Networks in Particle Physics 
[2007.13681] 

https://arxiv.org/abs/2007.13681
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Invariance and Symmetries
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Dataset Degeneracy

73

  

Pre-process the dataset to reduce degeneracy.  
Model training improves as the invariance does not have to be learned.

boost 

≈

𝜂-𝜑 rot. 

≈

https://arxiv.org/abs/2006.04780
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Inductive Bias

74

Embed the symmetry and invariance in the model. 
Economy of model parameters.

Deep set 
[1810.05165] 

Lorentz Learning Layer 
[1707.08966] 

Lorentz group quivariant networks 
[2006.04780] 

https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/2006.04780
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de-correlation
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De-correlation

76

Numerous methods proposed to de-correlate model predictions and 
quantities of interest (pT, mass, … ). 

Usually adding a term in the loss to constrain de-correlation.

Domain adaptation [1409.7495]  
Learn to Pivot [1611.01046] 

Most background estimation methods (side-bands, ABCD, parametrized fit, …) 
will require background shape to somehow be independent of analysis 

selections/processing (not only when using machine learning BTW).

https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1611.01046
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Performance

77

Jenson-Shannon Divergence (JSD) as the comparison metric for shaping. 
Residual shaping needs to enter systematics uncertainty estimation.

ATLAS Collab. [cds:2630973] CMS Collab. 
[doi:10.1088/1748-0221/15/06/P06005] 

DISCO: Distance Correlation 
[2001.05310]

http://cdsweb.cern.ch/record/2630973
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2001.05310
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Background Estimation

78

ABCD + Disco 
[2007.14400] 

Most popular background estimation method (ABCD), can be optimized 
for de-correlation, yielding increased significance.

https://arxiv.org/abs/2007.14400
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Systematic Uncertainties
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Syst. Estimation and Mitigation

80

Learn to pivot [1611.01046] 

Systematic uncertainties can be propagated the usual ways. 
No additional systematic from the model itself.    

Methods to mitigate, propagate and optimize against systematic uncertainties.

INFERNO: Inference-Aware Optimisation [1806.04743] 

Parametrized Learning [1601.07913] 

https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/1601.07913
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Domain Dependence
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Domain in-Dependence

82

Gradient reversal on a domain-classifier to mitigate the discrepancies of 
classifier output between data and simulation.

LLP jet tagger 
[doi:10.1088/2632-2153/ab9023]

flatter

Control region

flatter

Training region

https://doi.org/10.1088/2632-2153/ab9023
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Model Inference



Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant

Inference Engines

84

Growing list of deep learning accelerators. 
Location of the device is driven by the environment (HLT, Grid, … ).

“On-Board accelerator”

“Remote accelerator”

https://arxiv.org/abs/1811.04492  
https://arxiv.org/abs/2007.10359  
https://arxiv.org/abs/2007.14781 

https://arxiv.org/abs/1811.04492
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.14781
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Model Compression

85

Model inference can be accelerated by reducing 
the number and size of operations.

Quantization [2006.10159] Pruning weights [1804.06913] 
Hands-on

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913
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Simulation Surrogate
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Reconstruction ◦ Simulation ∼ Identity

87

Simulation aims at predicting the outcome of collisions. 
Reconstruction aims at inverting it. 

Multiple ways to connect intermediate steps with deep learning.
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https://arxiv.org/abs/2010.01835

Suiting Models

88

https://arxiv.org/abs/2006.06685

Learn the parton➾detector function instead of 
generating samples from vacuum.

https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/2006.06685
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Statistical Power

89

https://arxiv.org/abs/2008.06545 

Generative adversarial network may help producing samples with 
higher statistical power than the one used for training.

x10 x25
x4

https://arxiv.org/abs/2008.06545
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Anomaly Search
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The Sea Beyond Standard Model

91

Slide: A. Wulzner [H&N] 

http://www.weizmann.ac.il/conferences/SRitp/Aug2019/
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“One-Sided” Hypothesis Testing

92

LHC Olympics 2020 [2101.08320] 

• Rigor in calibrating the rate of 
anomaly is HEP specific 
(Anomaly detection is not). 

• Some methods can serve as a 
hotline: notification of odd 
signals. 

• Some methods can serve in 
analysis:  calibrated rate of 
novelty. 

• Also of great importance in data 
quality monitoring/certification.

https://arxiv.org/abs/2101.08320


Machine Learning, CERN Summer Student Lecture 2022, J-R Vlimant 93

Interpretability
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The Black-box Dilemma

94

Deep learning may yield great improvements. 
Having the “best classification performance” is not always sufficient. 

Forming an understand of the processes at play is often crucial.

Deep Learning
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Learning Observables

95

https://arxiv.org/abs/2010.11998 
https://arxiv.org/abs/2011.01984 

Search in the space of functions using decision ordering. 
Simplified to the energy flow polynomial subspace. 
Extract set of EFP that matches DNN performance.

Electron classification performance

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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Taking Control
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HEP Instruments

97

https://home.cern/science/computing/grid

https://home.cern/science/accelerators/ 

DAQ [IEEE:7111380] 

Unique set of complex apparatus for doing Science.

https://home.cern/science/computing/grid
https://home.cern/science/accelerators/
https://ieeexplore.ieee.org/document/7111380
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Summary

98

➡Physics at collider is a computing intensive endeavor. 
Extracting, simulating, reconstructing rare signal from large 
amount of data. 
➡Deep learning offers great prospects for Science and 
Physicists. Fast and efficient data processing. 
➡Doing AI at colliders requires to keep an eye on 
particular aspects. Also relevant to other fields of Science. 
➡Deep learning is entering High Energy Physics data 
processing at all levels. A lot done, a long way to go. You 
can make a difference

This work is partially supported by the U.S. DOE, Office of Science, Office of High Energy 
Physics under Award No. DE-SC0011925, DE-SC0019219, and DE-AC02-07CH11359.
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Classification Task

100

Slide: S. Vallecorsa

• QA and QC approaches applied to various classification tasks 
• Recurring hint of advantage a small training dataset size
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Tracking with Q-GNN

101

https://qiskit.org/ 

https://pennylane.ai/ 

[2007.06868] 

• Quantum/Classical hybrid graph neural network inspired by exatrkx work. 
• Promising performance. 
• However limites by large number of circuits and training time.

https://qiskit.org/
https://pennylane.ai/
https://arxiv.org/abs/2007.06868
https://exatrkx.github.io
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PDF with Variational Quantum Circuit

102

•VQC optimized at each energy scale value 
•Parametrization of VQC on x 
•Each qbit used represent a parton fraction 
•Trained with standard NNPDF procedure  
•Remarkable capability to produce PDF with 
much less parameters than DNN

[2011.13934] 

https://arxiv.org/abs/2011.13934
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Generative Models

103

 [2110.06933]

•Quantum Generative Adversarial Models inspired 
from “classical” Generative Adversarial Networks 

•Models use various latent vector embedding 
•Multiple ways of mapping qbits value/
expectations to original sample format 

•Good fidelity of model, slightly decreased due to 
hardware noise

 [2103.15470] 

https://arxiv.org/abs/2110.06933
https://arxiv.org/abs/2103.15470
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Optimization Methods
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Gradient Descent Optimization

105

● For a differentiable loss function f, the first Taylor expansion 
gives 

● The direction to locally maximally decrease the function value is 
anti-collinear to the gradient  

● Amplitude of the step   to be taken with care to prevent 
overshooting 

f ( x+ ε)= f ( x)+ ε∇ f ( x)

ε=− γ∇ f ( x)
γ
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Non-Convex Optimization

106

● The objective functions optimized in machine 
learning are usually non-convex 

● Non guaranteed convergence of gradient 
descent 

● Gradients may vanish near local optimum and 
saddle point
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Stochastic Gradient Descent

107

● Application of one gradient descent is expensive. Can be 
prohibitive with large datasets 

● Following the gradient update from each and every sample of a 
dataset leads to tensions 

◆ In binary classification, samples from opposite categories 
would have “opposite gradients” 

● Gradients over multiple samples are independent, and can be 
computationally parallelyzed 

➔ Estimate the effective gradient over a batch of samples

∇ eff f ( x)=
1
N ∑

i∈ batch
∇ i f ( x)
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Non Analytical SGD

108

● Some valuable loss function might not be analytical and 
their gradients cannot be derived  

● Used finite element method to estimate the gradient 
numerically 
 

● Method can be extended to using more sampling and 
better precision 

● Quite expensive computationally in number of function 
calls and impractical in large dimension 

● Robust methods available in most program library

∇ f (x)= f ( x+ ε)− f ( x)ε
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Second Order Methods

109

ε∼ − H (x)− 1∇ f ( x)

● Newton-Raphson method defines a recursive procedure to find 
the root of a function, using its gradient. 

● Finding optimum is equivalent to finding roots of the gradient, 
hence applying NR method to the gradient using the Hessian 

 
 
 

● Convergence guaranteed in certain conditions 
● Alternative numerical methods tackle the escape of saddle points 

and computation issue with inverting the Hessian 
● In deep learning “hessian-free” methods are prohibitive 

computationally wise

f ( x+ ε)= f ( x)+ ε∇ f ( x)+ 1
2
εT H ( x)ε
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Approximate Bayesian Computation

110

● ABC is applicable when the likelihood                         is 
intractable/unknown 

● The method requires a simulator or surrogate model 
● Generate simulated data for models drawn from the prior, 

accept/reject whether matching data 

● Overly expensive in calls to simulator 
➢ Introduce summary statistics to enhance border cases 
➢ Efficient sampling to boost acceptable models 
➢ Generalized methods for comparing simulated samples with 

data 

➔ Principle for likelihood-free inference in HEP : [1805.12244] , …

π(model∣data)= π(data∣model )π(model )
π(data)

π(data∣model )

https://arxiv.org/abs/1805.12244
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Bayesian Optimization

111

● Applicable to optimize function 
without close form and that are 
expensive to call (numerical 
gradient impractical) 

● Approximate the objective function 
with Gaussian processes (GP) 

● Start at random points, then sample 
according to optimized acquisition 
function 

➢ Expected improvement 

➢ Lower confidence bound 

➢ Probability of improvement 

− EI (x)=− E ( f GP ( x)− f ( xbest))

LCB (x)= μGP ( x)+ κσGP ( x)

− PI (x)=− P ( f GP ( x)⩾ f (xbest)+ κ)
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Evolutionary Algorithms

112

● Applicable to function in high 
dimensions, with a non regular 
landscape 

● Start from random population 
● Estimate fittest fraction of individuals 
● Bread and mutate individuals 

● Direction of optimization is given by 
the cross-over and mutation 
definition 

● Multiple over algorithms : particle 
swarn, ... 
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Adiabatic Quantum Annealing 

113

➢ System setup with trivial Hamiltonian H(0) and ground state 
➢ Evolve adiabatically the Hamiltonian towards the desired 

Hamiltonian Hp 
➢ Adiabatic theorem : with a slow evolution of the system, the state 

stays in the ground state.

https://arxiv.org/abs/quant-ph/0001106 
https://arxiv.org/abs/quant-ph/0104129

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129
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Simulated Annealing

114

● Monte-Carlo based method to find ground state of 
energy functions 

● Random walk across phase space  
➔ accepting descent 
➔ accepting ascent with probability e-ΔE/kT 

● Decrease T with time


