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Introduction covrenron (Y

PARTICLE PHYSICS

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» how do we make discoveries, measure or exclude theory parameters, etc.
» how do we get the most out of our data
» how do we incorporate uncertainties
» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.
In these talks | will try to:

- explain some fundamental ideas & prove a few things
> enrich what you already know
> eXxpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading i

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
~ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

Other lectures

Fred James'’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

Gary Feldman “Journeys of an Accidental Statistician”
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTaT Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @307 (CERN) @05 (Oxford) €303 (SLAC) €»02 (Durham)
= Phystat Workshops: @08 (Caltech) @06 (BIRS/Banff) @00 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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http://phystat.org
http://phystat.org
http://www.desy.de/~acatrain/
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
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Probability Density Functions i
When dealing with continuous random variables, need to

introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

X04

PDFs are always normalized °*
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Probability Density Functions Gommoraer Ao -

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

—_~

\q_>-</0.4;| T T T

PDFs are always normalized °*:

0.3F
> 0.2 [ RheaVan aca -8, 1.1,
0.1 [ Rootmumwian pafCTlinashape”, ‘Gauss NLAt);:
_CX) = :
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Parametric PDFs ot
Many familiar PDFs are considered parametric

» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued function of the nodes below
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Parametric PDFs o

Many familiar PDFs are considered parametric

» eg. a Gaussian G(z|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued func__f, n of the nodes below

] 0 e
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The Likelihood Function e @

A Poisson distribution describes a discrete event count » for a real-
valued mean u. o—H
Pois(n|p) = p" ——
n

The likelihood of u given n is the same

~

equation evaluated as a function of u B T T T ]
» Now it's a continuous function S @

» But it is not a pdf! 5_ s _
L(u) = Pois(n|p) N E

Common to plot the -2 In L 2E E
» helps avoid thinking of it as a PDF 'E E

» connection to %2 distribution N R Ea

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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Change of variable x, change of parameter 0

For pdf p(xI0) and change of variable from x to y(x):
p(y(x)I6) = p(x10) / Idy/dxl.

Jacobian modifies probability density, guaranties that
P(y(X,)<y<y(x))) = P(Xx;, <x<X,),i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g.,
criterion of maximum probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x.
(Jacobian in denominator cancels that in numerator).

For likelihood £(0) and reparametrization from 0 to u(0):
L(0) = L(u(6)) ().
— Likelihood £ (0) is invariant under reparametrization of
parameter 0 (reinforcing fact that £ is not a pdf in 0).

Bob Cousins, CMS, 2008
Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 11




Probability Integral Transform

“...seems likely to be one of the most fruitful conceptions
introduced into statistical theory in the last few years”
— Egon Pearson (1938)

Given continuous x € (a,b), and its pdf p(x), let
y(x) =/, p(x)dx .
Theny e (0,1) and p(y) =1 (uniform) for all y. (!)
So there always exists a metric in which the pdf is uniform.

Many issues become more clear (or trivial) after this
transformation®. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(u) for parameter
u is equivalent to the choice of the metric f(u1) in which
the pdf is uniform. This is a deep issue, not always
recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008
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Different definitions of Probability '::zr,z‘f:.:;::;?cf‘{
Frequentist

%
%" 9
® »
» probability of rolling a 3 := limit of (# rolls with 3 / # trials) * . f’

» defined as limit of long term frequency

- you don’t need an infinite sample for definition to be useful
- sometimes ensemble doesn’t exist
« 9. P(Higgs mass = 120 GeV), P(it will snow tomorrow)
» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum
Mechanics. Probability to measure spin projected on x-axis if spin of beam
IS polarized along +z , 1
Subjective Bayesian (=117 =3
- Probability is a degree of belief (personal, subjective)

- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Axioms of Probability

These Axioms are a mathematical starting
point for probability and statistics
1. probability for every element, E, is non-
negative P(E)>0 VECF=2
2. probability for the entire space of
possibilitiesis 1 P(Q2) = 1.
3. If elements E; are disjoint, probability is
additive P(E,UE,uU---)=Y P(E).

Kolmogorov
Consequences: axioms (1933)

P(AU B) = P(A) + P(B) — P(AN B)
P(Q\ E)=1— P(E)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 14




Bayes’ Theorem i

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B

P(B|A) P(A)
P(B)

= P(A) is the prior probability or marginal probability of A. It is "prior" in the sense
that it does not take into account any information about B.

= P(AIB) is the conditional probability of A, given B. It is also called the posterior AETT T
probability because it is derived from or depends upon the specified value of B. £ LS N

= P(BIA) is the conditional probability of B given A. :

= P(B) is the prior or marginal probability of B, and acts as a normalizing constant

P(A|B) =

Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability. The probability of event A given event B is

P(ANB)

P(A|B) = ~P(B)
Equivalently, the probability of event B given event A is

P(AN B)

P(B|A) = A

Rearranging and combining these two equations, we find

P(A|B) P(B) = P(AN B) = P(B|A) P(A).
This lemma is sometimes called the product rule for probabilities. Dividing both sides by P(B), providing that it is non-zero, we obtain Bayes' theorem:
P(ANB) P(B|A)P(A)

P(A]B) = P(B)  P(B)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 15
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http://en.wikipedia.org/wiki/Normalizing_constant
http://en.wikipedia.org/wiki/Normalizing_constant

.. In pictures (from Bob Cousins) cometcer e Y
P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

PA) = —— P(B) =

Whole space

9
‘D P(AIB) = @ P(BIA) = T

P(Aﬁ B): -

‘ 9 ¢
P(A) x P(BIA) = - . = i = P(A N B)
@ :
P(B) x P(AIB) = - = i = P(AnNB)
Bob Cousins, CMS, 2008 = P(BIA) =P(AIB) x P(B)/ P(A)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 16




... in pictures (from Bob Cousins) cometcer e Y
P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

P(A) = L P(B) = %
Whole space

0
'B P(AIB) = " P(BIA) =

P(Aﬁ B): -

.‘-

Don't forget about “Whole space™(2. | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)
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Louis’s Example i

P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 17
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Modeling:
The Scientific Narrative
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Building a model of the data e, @8

PARTICLE PHYSICS '

Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)
- holding parameters fixed gives a PDF for data
- ability to evaluate generate pseudo-data (Toy Monte Carlo)
- holding data fixed gives a likelihood function for parameters

« note, likelihood function is not as general as the full model because it
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» It's the place where our physics knowledge, understanding, and
Intuiting comes in

» building a better model is the best way to improve your statistical
procedure

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 19




PARTICLE PHYSICS

RooFit: A data modeling toolkit CommoLac ane (‘T’

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealvVar
meanl sigma X mean2 argpar cutoff
Histogram ot x\sy__ X y xS y_xy
agn \ 7 Hent=0
. — Composition (‘plug & play’) w10
- Add|t|0n TSI B R x = 2388
T [ — . N N RMS y = 08657
g i Bt 1.002 .
‘%‘"' b Bl 0.002{
E £,F a
.93 z:_ w- 10015
ngn.— g" o%esj .00 - .:
- 5s T p———
Mj .54 s —
Zﬂ- ‘“-:*- om ?
o0 2 o] 25
FAA 21, | | | | ¥ [ 15 F a0
W T e 1 1 L 1 L 1 L n s 1 15 z 25 : ] W 3 I ] 20 2 1 3 B 1 1 ) 2 4
I L ] o ! P
* g(x;m,s)
4 4 .
a(x,y; /S)
Possible in any PDF
No explicit support in PDF code needed
— Multiplication .
P — Convolution
= = 1.0018
ogsn'- £ 10016 & ”
%L gn 1.0014 i 3
4 | e -
‘gp.:. ‘; 1.0008 ’;W :‘::"‘:t“‘“:‘\ '31.1 ‘g
&m *l. - W it 1 4
s b B SR L i 3 L
el e —
LU Lge 199 ey I
3 o 8 : o 0.02
- aonzE i I
T R 0 A o T % ] w2 o
x 0
n

Wouter Verkerke,
Wouter Verkerke, UCSB
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The Scientific Narrative oo
The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a
story about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this
story is and how tightly it is connected to model

| will describe a few “narrative styles”
» The “Monte Carlo Simulation” narrative
» The “Data Driven” narrative
» The “Effective Modeling” narrative

» The "Parametrized Response” narrative

Real-life analyses often use a mixture of these

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 21
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The Monte Carlo Simulation narrative g;m«;;;;;?cf‘{

Let’'s start with “the Monte Carlo simulation narrative”, which is
probably the most familiar

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 22




The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — Lo

do — |M|*dQ)

P =
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The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =
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The simulation narrative gzixﬁeg:g?cs(‘{

Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

1 ) The language of the Standard Model is Quantum Field Theory

P =

‘W, wer —Lp, g Lo g
4 4 4GWG

o J

kinetic energies and self—mteractlons of the gauge bosons

_ 1 1 _ 1
LA*(i0, — 597 W, — EQ/YBM)L + Ry"(i0, — §g'YBN)R

Vo
kinetic energies and electroweak interactions of fermions

1 1

1, . ,
5 |(i8), — 597 Wi = 59 YB,)o|" — V()

-~

7

W=*,Z ~,and Higgs masses and couplings

"= a - _
9" (v Tuq) G, + (G1LoR + G:Rp.L+ h.c.)
~ v o . D . .
interactions between quarks and gluons fermion masses and couplings to Higgs
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Cumulative Density Functions ggime;:;gcf‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

)

—~

< - = < L
=04 - E T 1r ]
0.35 & E Z i
- ] 0.8~ —
0.3 E i ]
0.25 2 E 0.6 ]
0.2 E - ]
0.15 = 04~ B
01E E : :
- - 02 7
0.05 - E _ i
O3 3 %3 3
X X
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Cumulative Density Functions (‘Tf’

Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)de' = F(x)

—~

x [T T T L L L x _l T T
=041 ] T 10

0.8 N
0.6 N

0.4 —

» alternatively, define density
as partial of cumulative:

fla) = 2212
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Cumulative Density Functions cometcer e Y
Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)dz' = F(a)
— 00
S04¢ B - |
08|
06
04l
02l
0
» alternatively, define density » same relationship as total an(X:I
as partial of cumulative: differential cross section:
- 0F(x) (E) = 1 Oo
fla) = ox - 0 0F
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Cumulative Density Functions comereey e 3
Often useful to use a cumulative distribution:
» in 1-dimension: B
| r@)ia’ = Fla)
— OO
oapr- 0 ~C 4 ¥k
0.8
0.6
0.4
02
0L
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:
OF (x) 1 9%
f(z) = f(E,n) =

Ox o OE0n
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Cumulative Density Functions ggmfg;;gc}‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

—~

X

Zoaf ERE 2Rl :
0.35 F = 5 i
- . 0.8 — -
03 E - ]
0.25 ;_f'355—7'."{3:1-"7»““".57""k't ................... e g hr —: 06 :_ _:
0.2 %‘ RooRealVvar 'Tl( E : :
015F sl 0.4~ ~
0.1 RooGaussian pdf("lineSnape”,"Gauss * xaend o f B
0.05 - = T ]
03 S T Y I
X X
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:

OF 1 0%
fla) = 2212 FE) = o

0x
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The simulation narrative gzzmm?cs‘%*

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

g_) e hard scattering

s

e partonic decays, e.g.
t — bW

-

B
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The simulation narrative S s |

2 a) Perturbation theory used to systematically approximate the theory.
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

é 8
e partonic decays, e.g.

O o
: e parton shower

’ \ B
R0 evolution

> ; serturh
\ / e colour singlets

e colourless clusters

. . \ e cluster fission
: ~
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The simulation narrative cowenrer @Y

PARTICLE PHYSICS

3 Next, the interaction of outgoing particles with the detector is simulated.

Detailed simulations of particle interactions with matter.

Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

| I I I | 1 I 1

om iIm m im am sm 6m /im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
= = = - Neutral Hadron (e.g. Neutron)
''''' Photon

47

@l‘ ,' L

Silicon
Tracker

Electrromagnetic
: , " Calorimeter
v

Hadron Superconducting
Calorimeter Solenoid

lron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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A “number counting” model (‘T’

From the many, many collision events, we impose some criteria to

select n candidate signal events. We hypothesize that it is
composed of some number of signal and background events.

Pois(n|s + b)
The number of events that we expect from a given interaction
process is given as a product of

» L : a time-integrated luminosity (units 1/cm?) that serves as a measure of
the amount of data that we have collected or the number of trials we have

had to produce signal events
» 0 : “cross-section” (units cm?) a quantity that can be calculated from theory

» ¢ : fraction of signal events satisfying selection (efficiency and acceptance)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 27
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Including “shape” information gxmm?cf%’

In addition to the rate of interactions, our theories predict the distributions of
angles, energies, masses, etc. of particles produced

- we form functions of these called discriminating variables m,

- and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background
processes.

» thus, the distribution of f(m) is a mixture model
» the full model is a marked Poisson process

- ]

signal process background process

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Incorporating Systematic Effects ST e |

Of course, the simulation has many adjustable parameters and
iImperfections that lead to systematic uncertainties.

» one can re-run simulation with different settings and produce
variational histograms about the nominal prediction

0.25

0.15

. 0.1

- -

|||||||||||||||||||||||||||||||||||||||
0====70 "180 190 200 210 220 230

m

0.05

t
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Explicit parametrization P Tvenes |
Important to distinguish between the source of the systematic
uncertainty (eg. jet energy scale) and its effect.

» The same 5% jet energy scale uncertainty will have different effect
on different signal and background processes

- not necessarily with any obvious functional form
> Usually possible to decompose to independent “uncorrelated” sources

Imagine a table that explicitly quantifies the effect of each source of
systematic.

- Entries are either normalization factors or variational histograms

sSig bkg1 |bkg 2

syst 1

syst 2
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Simulation narrative overview comenren WY

PARTICLE PHYSICS '

Here is an example prediction from search for H—-ZZ and H—->WW
» sometimes multivariate techniques are used

1_'_' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T : : 104 E T T T T | T T T T | T T T T
o) - imi i i . 4 @ fCMS Preliminar ]
= 7E ATLAS Preliminary (simulation) @ Signal - f - y —— Signal, m =170 GeV
2 - H—llvv (mH=300 GeV,\s =7 TeV) — Total BG 1 o ] W+lets, t .
o — — it - Ci3E I di-boson -
S 6 77 — 010" . =
w = = > I Drell-Yan
5 -
n . 10% ¢
4— ]
3 =Y
2 —
= = 1
1— —
- — 7=:|—|_.—| l_l ]
P 50 200 250 300 350 400 450 500 1074 05 0 0.5
TrL, — Transverse Mass [GeV] 771, = Neural Network Output

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Simulation narrative overview comenren WY

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

1:__' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T :
= 7E ATLAS Preliminary (simulation) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — TotalBG 1
iz - — 2z ] sig bkg 1 |bkg 2
5 Wz =
= — WW :
n —Z - syst 1
41— W —
ar E syst 2
2 =
1 =
- I e |

950 | 200 250 300 350 400 450 500
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Simulation narrative overview comenren WY

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

) 7E- ATLAS Preliminary (simulation) Bl signal =
2 EH—>IIW(mH=SOOGeV,\E=7TeV) — TotalBG R ——
L%’ 6 — E N | =
- W2Z .
5S¢ — WW e
- —Z . —~ [ —
41— W — E by
- 1 = C =
- i I
3 -
13 : ____f_J—
1:_ — O:IIIIIIIIIIIIIIIIIIIIIIIIIIIII||||||||||:
- 170 180 190 200
I ey |

950 | 200 250 300 350 400 450 500 m
71l = Transverse Mass [GeV]

s(a)fs(mjle) + b(ev) fo(m]e)
s(a) + b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Simulation narrative overview comenren WY

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter a;

1:__' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T :
= 7E ATLAS Preliminary (simulation) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — TotalBG
2 5 —z
- W2Z .
5S¢ — WW e
- —<Z ]
41— W —
3 =
2 =
1 =

- I e |

950 | 200 250 300 350 400 450 500
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Histogram Interpolation e, @

PARTICLE PHYSICS '

Several interpolation algorithms exist: eg. Alex Read'’s “horizontal”
histogram interpolation algorithm (RoolntegralMorph in RooFit)

» take several PDFs, construct interpolated PDF with additional
nuisance parameter a

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357 360

£ Q07 [

Simple “vertical”

- I DETPHT " " " "
3 #, . DELPHI. interpolation bin-by-bin.
§ 0.05 | S ' l
=004 | :|

0.03 A

) AP T SO i o= | Alternative “horizontal”
I e e interpolation algorithm by
st = Max Baak called
v 3R v “RooMomentMorph” in
sost 3 RooFit (faster and
" £ numerically more stable)
o‘oz;~ :__3\‘.‘:1
RN

- e | e B T R T B T
x
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Simulation narrative overview (‘T’

PARTICLE PHYSICS

Something must ‘constrain’ the nuisance parameters «

» the data itself: sidebands; some control region
“constraint terms” are added to the model this part is subtle.

= - | T | IREREE ]
= 7E ATLAS Prellmlnary (S|mulat|on) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — Total BG 1
¢ 6F — 3
s wz ]
- —< ]

41— W —

3 =

2 =

1 =

'PSO | 200 250 300 350 400 450 500

Transverse Mass [GeV]

Pois(n|s(a) + b()) [| s(a) fs(mj]a) + b(a) fr(m;] )

P(m|a) =
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Simulation narrative overview (‘T’

PARTICLE PHYSICS

Something must ‘constrain’ the nuisance parameters «

» the data itself: sidebands; some control region
“constraint terms” are added to the model this part is subtle.

= - | T | IREREE ]
= 7E ATLAS Prellmlnary (S|mulat|on) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — Total BG 1
¢ 6F — 3
s wz ]
- —< ]

41— W —

3 =

2 =

1 =

'PSO | 200 250 300 350 400 450 500

Transverse Mass [GeV]

Pois(n\s( —|-b ﬁ S fs(mjla) (a)fb(mj|a)

xG(ala, o) J
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Constraint Terms
Auxiliary Measurements and Priors
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What do we mean by uncertainty? :g:,:;f:;g;ecf‘{
Let’s consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty

- in our main measurement we observe non with s+b expected
Pois(non|s + b)

» and the background has some uncertainty
- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf 7T(b)
« then we often do a smearing of the background:

P(n0n]5) = / db Pois(noy|s + b) (b)),

- Where does 7(b) come from?

- did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?
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The Data-driven narrative

Regions in the data with negligible signal
expected are used as control samples

» simulated events are used to estimate

extrapolation coefficients
- extrapolation coefficients may have

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS '

-y
(=]
rS

-y
o
w

events/ bin

-
o
)

C

MS Preliminary

—e— Signal, m =160 Ge
[ | W+dets, tW

™ di-boson

[ tt

I Drell-Yan

e*e’ Channel

IIIII| [ IIIIII| [ IIIIII| [ |<IIII| ]

theoretical and experimental uncertainties  1o¢
1=
CR.(WW -
S.R. si\‘N o u f fl
o ad 11%4%% 10 |
0W4$W 0 20 40 60 80 100 120 140 160 180 20C
H—> WW Top < m, [GeV/c’]
W+jets <
[’[’ "[’ R CR(WW)
- Ni‘i C.R.(Top) B NT;
Orop = JCR Top CR<T o)
T 4 NTOP T N
op >
. Ny
. —— C.R.(W +jets) [ L
W+jets | (N Wﬂ,eizs P = TR
Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The Data-driven narrative CosmoLonr AND “T’

PARTICLE PHYSICS

Regions in the data with negligible signal 510''CMS Preliminary S ST
~ n —e— Signal, mH=160GeV

expected are used as control samples 2 Wty
. . o 103 _ d_i-boson .

- simulated events are used to estimate ° —1 . :
extrapolation coefficients il _e'e Channel ]|

- extrapolation coefficients may have : .

theoretical and experimental uncertainties 10

1=
SR C.R.(WW) ;
W 107 60 180 2
H — WW Top < m, [GeV/c?]
W+jets <
[ { { [ SR. C.R.(WW) . .
= CR.(Top) 5, = ~t3me Notation for next slides:
Top |+ Top #1in S.R. — 7on
S.R. CR.(WW) °
W+' t OCW+jets=% C‘R’(W+jets) l3W+jets=% # ln C.R. 7 nOff
Je S 4 W +jets W+jets W +jets a WW H T

Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The “on/off” problem s:zr::ff.::;;?cf‘%
Now let’s say that the background was estimated from some control
region or sideband measurement.
» We can treat these two measurements simultaneously:
- main measurement: observe non with s+b expected
- sideband measurement: observe nox with 7b expected
P(non, Noft S, bz = ?ois(non\s +b) POiS(nOff‘TbZ

\ . A
VO TV

TV
joint model main measurement sideband

- In this approach “background uncertainty” is a statistical error
- justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?
P(n0n]5) = / db Pois(noy|s + b) 7 (b)),
» while m(b) is based on data, it still depends on some original priorn(b)

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Separating the prior from the objective model i3
Recommendation: where possible, one should express
uncertainty on a parameter as a statistical (random) process

» explicitly include terms that represent auxiliary measurements
In the likelihood

Recommendation: when using a Bayesian technique, one should
explicitly express and separate the prior from the objective part of

the probability density function

Example:
» By writing P (non, nog|s, b) = Pois(non|s 4 b) Pois(n.g|Tb).
- the objective statistical model is for the background uncertainty is clear

» One can then explicitly express a prior n(b) and obtain:

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Constraint terms for our example model e |

For each systematic effect, we associated a nuisance parameter a
- for instance electron efficiency, JES, luminosity, etc.

- the background rates, signal acceptance, etc. are parametrized in
terms of these nuisance parameters

These systematics are usually known (“constrained”) within £ 10.
- but here we must be careful about Bayesian vs. frequentist

- Why is it constrained”? Usually b/c we have an auxiliary
measurement a and a relationship like:

G(ala, o)
- Saying that a has a Gaussian distribution is Bayesian.
- has form “Probability of parameter”
+ The frequentist way is to say that a fluctuates about a

While a is a measured quantity (or “observable”), there is only one
measurement of a per experiment. Call it a “Global observable”
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Common Constraints Terms :g:,:;f:;;;;f‘f
Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice

- quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty,
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

» longer tail, good behavior near boundary, natural choice if auxiliary is based on counting
For “factor of 2” notions of uncertainty log-normal is a good choice
» can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

5 REBRAREERP R AR RN R AR RRRE RS

. . . S 0.1 -

To consistently switch between frequentist, 5 .
Bayesian, and hybrid procedures, need to _§0_08—_ _ 7
be clear about prior vs. likelihood function 8 = Truncated Gaussian .
£ 006 Gamma E

: : - Log-normal .

PDF(y| B) Prior(B) |Posterior(B|y) - ]
Gaussian uniform |Gaussian R B
Poisson uniform |Gamma 02— —
Log-normal |1/ Log-Normal | 3
% 05 1 15 2 25 3 35 4 45 5

beta
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Classification of Systematic Uncertainties =i @

PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution
Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
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Classification of Systematic Uncertainties ::z:,z:f.:ﬁz':?cf‘{

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 42




CENTER FOR

Classification of Systematic Uncertainties ::z:;:zezﬁzz?cs(%’

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
Type lll - “The Ugly”

» arise from uncertainties in underlying theoretical
paradigm used to make inference using the data

- a somewhat philosophical issue
Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 42
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Modeling:
The Scientific Narrative
(continued)
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Constraint terms for our example model (‘T’

PARTICLE PHYSICS

Something must ‘constrain’ the nuisance parameters «

» the data itself: sidebands; some control region
“constraint terms” are added to the model this part is subtle.

= - | T | IREREE ]
= 7E ATLAS Prellmlnary (S|mulat|on) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — Total BG 1
¢ 6F — 3
s wz ]
- —< ]

41— W —

3 =

2 =

1 =

'PSO | 200 250 300 350 400 450 500

Transverse Mass [GeV]

P(m|a) = Pois(n|s(a) 4+ b(a)) H S(Q)fs(m;(|3§ i ZEZ;fb(mﬂa)

J
X H G(CL@’O@;, O'@')
)
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Building the model: HistFactory (RooStats) ggzz;;f;;;?cf‘%
Several analyses have used the tool called hist2workspace to build the model (PDF)

» command line: hist2workspace myAnalysis.xml

- construct likelihood function below via XML + histograms interpolation convention

LU, 04) = H Pois(n,| V) H N(o;) @ = I1 Hasni. nj)
mebins i=€Syst

O-jm(a) = o-?m H I(al l—;m/o- ms zjm/o-]m)
ieSyst

V= UL (o) o1m(0) + Y. Lni(0) Oim(a),| s {1+“<'*-1> o0
jeBkg Samp l—a(~—1) ifa<0

§< Channel SYSTEM 'Config.dtd's
LChannel ="channel1" =" ./data/example.root’ ="" >
<l -——<Data Name—"data" InputFile="" HistoPath="" HistoName=""/>—-=
<Sample ="signal =1 ="signhal">
<Overal lSys =' = ="0.95" />
<NormFactor = = U =" 5" = = />
</ Samp le-
<Sample ="backgroundl' = ="True" ="backgroundl">
<Overal lSys ="syst2" ="@0.95" ="1.65"/>
</ Samp le=
<Saaple ="back ="" ="True' ="backgroundz" >
<Overal lSys ="syst3" ="0.95" 3"
zl—— HistoSys Name_ syst4 HlstoPathngh_ H13t0PathLow="histForSystdr";’}——::-
dS(mlw
</Channe |-

..................................................................................................................................................
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CMS Higgs example '::zr,z‘f:.:;::;?cf‘{
The CMS input:
» cleanly tabulated effect on each background due to each source of systematic
» systematics broken down into uncorrelated subsets
» used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared
the RooStats workspace

111111111111111111111

5555555555555

2EEE

3 observables and
37 nuisance parameters

I :@EUSM

VM\

lll i I

i J .!!!."}!‘..*a. b

!M

i l‘l

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 46




CENTER FOR

The Data-Driven narrative :gzz,;;f;;;;f‘{
In the data-driven approach, backgrounds are estimated by assuming (and
testing) some relationship between a control region and signal region

» flavor subtraction, same-sign samples, fake matrix, tag-probe, ....
Pros: Initial sample has “all orders” theory :-) and all the details of the detector

Cons: assumptions made in the transformation to the signal region can be
questioned

- - . __| x*/ndf 40.11/45
‘o ' e ' - o) C ! ! ! ! : " Prob 0.679
S— — SU3 OSSF 7 = B0 — E Endpoint 99.66 + 1.399
= —— BKG OSSF i g - : Norm.  -0.3882+ 0.02563
> 40— Ittt  --- SU3 OSDF ] % 40 r Smearing 2.273 + 1.339
8 ————— BKG OSDF . O] g g
N ] X 30F E
~ [72] L ]
172 i Q0 C ]
..q:j ] -'E' 20— -
T ATLAS L 0 - ATLAS .
—: (0] Cammns .
1 |. _|.‘_ f- 1 1T I| 1 |' |e| . |:iT{J_ ‘f _|:-l _10__ 1| I 1| 1 I 1| 1 I 1 1 | I 1 1 | I 1| 1 I 1| 1 I 1 1 | I 1| 1 I 1| I_r
100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m(ll) [GeV] m(ll) [GeV]

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 47




CENTER FOR m

Other Examples of data-driven narrative

PARTICLE PHYSICS

All-hadronic searches with MHT

Search for high pT jets, high HT and high MHT (= vector sum of jets)
3 jets, E+>50 |n|<2.5 MET

HT > 350 and MHT > 150 P fqY
Event cleaning cuts. ki

Predict each bkgd separately
QCD: rebalance & smear
W & ttbar from u control
Z—vv from y+jets and Z-uu

i n

m v

_ y4 E W
Z—- |l + jets W - lv + jets y +jets
Strength: very clean Strength: larger statistics Strength: large statistics
Weakness: low statistics Weakness: background and clean at high Er
from SM and SUSY Weakness: background at
low Er, theoretical errors
CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis 19
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Going beyond on/off conren Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

: T | T 17T | T .I T |. T 17T | T 17T T
5 10° ECMS Preliminary E
~ —e— Signal, m, =160 GeV
}é’ ] W+lJets, tW

[ di-boson
@ 1n3
q>) 10 I

I Drell-Yan

e*e’ Channel

—r —
o (=}
N Y
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T IIIIH

10

-1
0% 20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]
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' W
Going beyond on/off T e

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

: T | T 17T | T .I T |. T 17T | T
5 10° ECMS Preliminary E
~ —e— Signal, m, =160 GeV
_.cé: ] W+dets, tW ]
[ di-boson
O 103 _|
2 10 I 1 s
Bl Drell-Yan .
e*e" Channel i
10 . E

10

—
(=}
=y
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T IIIIH

-1
107,

60 180 2
m, [GeV/c?]
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' W
Going beyond on/off T e

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method

: T | T 17T | T .I T |. T 17T | T
5 10° ECMS Preliminary E
~ —e— Signal, m, =160 GeV
_.cé: ] W+dets, tW ]
[ di-boson
O 103 _|
2 10 I 1 s
Bl Drell-Yan .
e*e" Channel i
10 . E

10

—
(=}
=y
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T IIIIH

-1
107,

60 180 2
m, [GeV/c?]
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Going beyond on/off conren Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method

2
: T TT T TT | T TT | T TT | T TT | T TT | T TT | T TT | T TT | T TT -
5 10° ZCMS Preliminary _ E 1.8l CDF Run Il Preliminary
; - —e— Signal, m =160 GeV| A C
4 B [ W+dets, tW i o . -1
S 13l [ di-boson e 1'6; . f L=72pb
D10°E . E E .
> = - tt 3 .9 1 4 . .
o - I Drell-Yan . e g = s EETol
i e*e” Channel I 123 "y o QCD Background _ B
102 g_ ——— _§ (T - . r s »': ;"-'- '.._. ' . C A
F : £ L =y el )
10 -,g 0.8 g
- o 0.6 .
. L, » @ v Candidates
1= Bl
10 20 30 40 50 60 70‘ éO 90 10(

-1
107,

0 160 180 2
m, [GeV/c?] E; (GeV)
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Going beyond on/off conren Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

2
: ||||||| | |.| T |.| T T | T 1T | T 1T | T 1T | T 1T | T 1T | T 1T -
5 10°:CMS Preliminary _ E 1.8 CDF Run Il Preliminary
; - —e— Signal, m =160 GeV . A C
4 B [ W+dets, tW i o . -1
S 13l [ di-boson e 1'6; . f L=72pb
Q10%E . e E .
> - -tt = .9 1 4 . .
© r Il Drell-Yan . T e = R |
i e*e” Channel I 123 "y o QCD Background _ B
10°E El™ et e A - A
: 1 'k
1ok = 0.8 &
- o 0.6 : :
- & 2 0.4l .. : W-— e v Candidates
1= Sl 2
- 0.2 v
- AT --’. * A A Py | oA
107, R 10 20 30 40 50 60 70 80 90 10(
m, [GeV/c?] E; (GeV)
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Going beyond on/off

Often the extrapolation parameter has uncertainty

» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011



Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

(\T\ T T T T T T T [ T T T ] 7)) FT T T T T T T T T T T T T T T T T T T T TTT
(&) - — 2 B 4[]
S 700 = —— CDF dgta (4.3 b = s 016 —— Electron Data (4.3 fb ):
[0) C — Gaussian 2.5% | ] w B
O - B WWAWZ 4.8% | 0.1a
@ 600¢ I W+Jets 78.0% |- B ]
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The Effective Model Narrative «T"
It is common to describe a distribution with some parametric function
» “fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
PHYSICAL REVIEW D 79, 112002 (2009)
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The Effective Model Narrative ((T//
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The Effective Model Narrative coenren WY

PARTICLE PHYSICS

Sometimes the effective model comes from a convincing narrative

- convolution of detector resolution with known distribution
- Ex: MissingET resolution propagated through M. in collinear approximation

- Ex: lepton resolution convoluted with triangular M distribution
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Tools for building effective models

PARTICLE PHYSICS

e RooFit's convolution PDFs can aid in building more effective
models with a more convincing narrative

// Construct landau (x) gauss (10000 samplings 274 order interpolation)
t.setBins (10000, ”cache”) ;
RooFFTConvPdf 1lxg("lxg","landau (X) gauss",t,landau,gauss,2) ;

[LA RooPlot of "x" l [LA RooPlot of "x" I [LA RooPlot of "x" l
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The parametrized response narrative ggmﬁe;;vgcf‘{

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.
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The parametrized response narrative ggmﬁe;;vgcf‘{

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.
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| |

Phase-space Transfer
Integral - Functions
Matrix
Element
, ./P\ NN ™
iy 'a,. LB L N N R .||||||\||!|||||||||‘
w " CDF Runll Preliminary | |
4 ; B E \ _[Ld::ﬂh"'m ts
18T 1745 2279 1371 1745 22ra 1311 1745 221 a (78 events)
~ N ~ = :
iy AN N = 0.1 —
\ o
\ \. o :
1217 1745 2279 1811 1745 2279 1271 745 2278 - : :
E oo -
~ 1 1 ~ S
\.‘- : D i iIIII‘IIIIiIIIIiI\III I
i A N 17 \ 145 150 155 160 165 170 175 180 185
18T 1745 2279 1T 1745 22r9 1877 1745 2279 M, [GeV/c

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 55




CENTER FOR

Examples of parametrized response :g:,:;f:;;g;f‘f
While we often see the parametrized response as overly simplistic, the
parametrizations are often based on some deeper understanding

» and parameters can often be measured in data with in situ calibration
strategies. No reason we can’t propagate uncertainty to next stage.

Muon Energy Loss (Landau) Jet Resolution
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Fast Simulation

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

Fast simulations based on parametrized detector response are very useful and

can often be tuned to perform quite well in a specific analysis context

- For example: tools like PGS, Delphis, ATLFAST, ...

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”,\'s =7 TeV
U L L ror

— 500 _ ]
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9 _ . ]
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CMS SUSY Results, D. Stuart,

April 2011, SUSY Recast, UC Davis

o

Paper includes a simple efficiency model
(i.e. for PGS calibrations) and compares
full limit to limit with simple model.
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Fast Simulation S s |

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parametrized detector response could be
used as a transfer function in Matrix-Element approach
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Narrative styles ::zr::f:.:m;f%’
The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 58




CENTER FOR

Narrative styles s:zr:::‘:;:;;?cf‘f
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)
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Parametric vs. Non-Parametric PDFs (‘T’

No parametric form, need to construct non-parametric PDFs
From Monte Carlo samples one has empirical PDF
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Parametric vs. Non-Parametric PDFs ‘(T‘
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Parametric vs. Non-Parametric PDFs “T’

Classic example of a non-parametric PDF is the histogram
but they depend on bin width and starting position
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Parametric vs. Non-Parametric PDFs (‘T”

Classic example of a non-parametric PDF is the histogram
“Average Shifted Histogram” minimizes effect of binning

fasu(@ ZKw T — x;)
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Kernel Estimation ::zr::;f.:“:';?cf‘{

Kernel estimation is the generalization of Average Shifted
Histograms

=3 e (e

AN\ 1/ 7 s 3|
h(x”:(§> o)

“the data is the model”

K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

[]
iy
| | | | | |

0.94 0.95 0.96 0.97 0.98 0.99 1
Neural Network Output

Adaptive Kernel estimation puts wider kernels in regions of low
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate, non-parametric PDFs “T’

PARTICLE PHYSICS

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N- Correlations 00165 tibar sample. 3??iii'jjj'jj_ijj;"j....________

T e

dim KEYS pdf described Pyt -

in RooFit. pdf from previous S ol ’
slide. —
These pdfs have been = RooNDKeys pdf P 330 230 20 °
used as the basis for a automatically mlh @V
: : models (fine)
”? u '“.Va.r Iate. correlations
discrimination between
technique called “PDE” observables ...
Fo (T
— S
D(F) = — (%) _
fs(Z) + fo(Z)
Max Baak
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