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Statistics plays a vital role in science, it is the way that we:
‣ quantify our knowledge and uncertainty
‣ communicate results of experiments

Big questions:
‣ how do we make discoveries, measure or exclude theory parameters, etc.
‣ how do we get the most out of our data
‣ how do we incorporate uncertainties
‣ how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.  
In these talks I will try to:

‣ explain some fundamental ideas & prove a few things
‣ enrich what you already know
‣ expose you to some new ideas 

I will try to go slowly, because if you are not following the logic, then it is not very 
interesting.  

‣ Please feel free to ask questions and interrupt at any time
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Further Reading
By physicists, for physicists

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006; 

‣ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

My favorite statistics book by a statistician:
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http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/
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Other lectures
Fred James’s lectures

Glen Cowan’s lectures

Louis Lyons

Bob Cousins gave a CMS lecture, may give it more publicly 
Gary Feldman “Journeys of an Accidental Statistician”

The PhyStat conference series at PhyStat.org:
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http://www.desy.de/~acatrain/

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799

http://indico.cern.ch/conferenceDisplay.py?confId=a063350

http://www.hepl.harvard.edu/~feldman/Journeys.pdf

http://phystat.org
http://phystat.org
http://www.desy.de/~acatrain/
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
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Lecture 1
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What do these plots mean?
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Preliminaries  
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Probability Density Functions
When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 
(PDF... not parton distribution function)

Note,          is NOT a probability

PDFs are always normalized to unity:
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P (x ∈ [x, x + dx]) = f(x)dx
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Parametric PDFs

9

G(x|µ, σ) (µ, σ)
Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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Parametric PDFs
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G(x|µ, σ) (µ, σ)

G

x mu sigma

Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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Parametric PDFs
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G(x|µ, σ) (µ, σ)
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Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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The Likelihood Function
A Poisson distribution describes a discrete event count n for a real-
valued mean !.

The likelihood of ! given n is the same
equation evaluated as a function of !
‣ Now it’s a continuous function
‣ But it is not a pdf!

Common to plot the -2 ln L
‣ helps avoid thinking of it as a PDF
‣ connection to !2 distribution

10

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

!"(µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2ln! = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

!"#$%&'(%)*'+,'-)$."/.0'''''''''''''

1*,'2,'345.,'67'789':;88<=

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e−µ

n!
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Change of variable x, change of parameter θ

• For pdf p(x|θ) and change of variable from x to y(x): 

p(y(x)|θ) = p(x|θ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that            

P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), i.e., that

Probabilities are invariant under change of variable x.

– Mode of probability density is not invariant (so, e.g., – Mode of probability density is not invariant (so, e.g., 

criterion of maximum probability density is ill-defined).

– Likelihood ratio is invariant under change of variable x. 

(Jacobian in denominator cancels that in numerator).

• For likelihood !(θ) and reparametrization from θ to u(θ):

!(θ)  =  !(u(θ))   (!).

– Likelihood ! (θ) is invariant under reparametrization of 

parameter θ (reinforcing fact that !"is not a pdf in θ).
Bob Cousins, CMS, 2008 15
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Probability Integral Transform

“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   

− Egon Pearson (1938) 

Given continuous x ∈ (a,b), and its pdf p(x), let

y(x) = !a
x 

p(x′) dx′ .

Then y ∈ (0,1) and p(y) = 1 (uniform) for all y. (!)

So there always exists a metric in which the pdf is uniform.  So there always exists a metric in which the pdf is uniform.  

Many issues become more clear (or trivial) after this 

transformation*. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(µ) for parameter 

µ is equivalent to the choice of the metric f(µ) in which 

the pdf is uniform.  This is a deep issue, not always 

recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008 16
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Different definitions of Probability

13

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

|�→ | ↑�|2 =
1
2

Frequentist
‣ defined as limit of long term frequency
‣ probability of rolling a 3 := limit of (# rolls with 3 / # trials)

● you don’t need an infinite sample for definition to be useful
●  sometimes ensemble doesn’t exist

• eg. P(Higgs mass = 120 GeV), P(it will snow tomorrow)
‣ Intuitive if you are familiar with Monte Carlo methods
‣ compatible with orthodox interpretation of probability in Quantum 

Mechanics.  Probability to measure spin projected on x-axis if spin of beam 
is polarized along +z

Subjective Bayesian
‣ Probability is a degree of belief (personal, subjective)

● can be made quantitative based on betting odds
● most people’s subjective probabilities are not coherent and do not obey 

laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Axioms of Probability

These Axioms are a mathematical starting 
point for probability and statistics 
1. probability for every element, E, is non-

negative
2. probability for the entire space of 

possibilities is 1
3. if elements Ei are disjoint, probability is 

additive

Consequences:

14

Kolmogorov 

axioms (1933)
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Bayes’ Theorem
Bayes’ theorem relates the conditional and 
marginal probabilities of events A & B

" ▪" P(A) is the prior probability or marginal probability of A. It is "prior" in the sense 
that it does not take into account any information about B.

" ▪" P(A|B) is the conditional probability of A, given B. It is also called the posterior 
probability because it is derived from or depends upon the specified value of B.

" ▪" P(B|A) is the conditional probability of B given A.
" ▪" P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

15

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant
http://en.wikipedia.org/wiki/Normalizing_constant
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... in pictures (from Bob Cousins)

16

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7
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... in pictures (from Bob Cousins)

16

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7

Don’t forget about “Whole space”    .  I will drop it from the 
notation typically, but occasionally it is important.

Ω
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Louis’s Example

17

16

!"#$%&%'()*+,-."""""""""!"#()*+,-'$%&%.!

()*+,-""/"0%1*"+,"2*0%1*

$%&%"/"""3,*45%5&"+,"5+&"3,*45%5&

!"#3,*45%5&"'"2*0%1*."6"78

9:&

!"#2*0%1*"'"3,*45%5&.";;;78
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Modeling:
The Scientific Narrative

18
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Before one can discuss statistical tests, one must have a “model” for 
the data.  
‣ by “model”, I mean the full structure of P(data | parameters)

● holding parameters fixed gives a PDF for data
● ability to evaluate generate pseudo-data (Toy Monte Carlo)
● holding data fixed gives a likelihood function for parameters

• note, likelihood function is not as general as the full model because it 
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
‣ it’s the objective part that everyone can agree on
‣ it’s the place where our physics knowledge, understanding, and 

intuiting comes in
‣ building a better model is the best way to improve your statistical 

procedure
19

Building a model of the data
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RooFit: A data modeling toolkit

20
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

! =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.
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The Scientific Narrative
The model can be seen as a quantitative summary of the analysis
‣ If you were asked to justify your modeling, you would tell a 

story about why you know what you know
● based on previous results and studies performed along the way

‣ the quality of the result is largely tied to how convincing this 
story is and how tightly it is connected to model

I will describe a few “narrative styles”
‣ The “Monte Carlo Simulation” narrative
‣ The “Data Driven” narrative
‣ The “Effective Modeling” narrative
‣ The “Parametrized Response” narrative

Real-life analyses often use a mixture of these

21



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

The Monte Carlo Simulation narrative

22

Let’s start with “the Monte Carlo simulation narrative”, which is 
probably the most familiar 

November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

P = 
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The simulation narrative

P =
|�f |i�|2

�f |f��i|i�
P → Lσ

dσ → |M|2dΩ

The language of the Standard Model is Quantum Field Theory
Phase space ! defines initial measure, sampled via Monte Carlo1)
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The simulation narrative

P =
|�f |i�|2

�f |f��i|i�
P → Lσ

dσ → |M|2dΩ

The language of the Standard Model is Quantum Field Theory
Phase space ! defines initial measure, sampled via Monte Carlo1)

LSM =
1

4
Wµν · W

µν
−

1

4
BµνB

µν
−

1

4
Ga

µνG
µν
a

︸ ︷︷ ︸

kinetic energies and self-interactions of the gauge bosons

+ L̄γµ(i∂µ −
1

2
gτ · Wµ −

1

2
g′Y Bµ)L + R̄γµ(i∂µ −

1

2
g′Y Bµ)R

︸ ︷︷ ︸

kinetic energies and electroweak interactions of fermions

+
1

2

∣
∣(i∂µ −

1

2
gτ · Wµ −

1

2
g′Y Bµ) φ

∣
∣
2
− V (φ)

︸ ︷︷ ︸

W±,Z,γ,and Higgs masses and couplings

+ g′′(q̄γµTaq) Ga
µ

︸ ︷︷ ︸

interactions between quarks and gluons

+ (G1L̄φR + G2L̄φcR + h.c.)
︸ ︷︷ ︸

fermion masses and couplings to Higgs

R̄φcL

W,Z H
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

24
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

24

f(x) =
∂F (x)

∂x
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‣ alternatively, define density 
as partial of cumulative:
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

24

f(x) =
∂F (x)

∂x

x
-3 -2 -1 0 1 2 3

F(
x)

0

0.2

0.4

0.6

0.8

1

x
-3 -2 -1 0 1 2 3

f(x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

� x

−∞
f(x�)dx� = F (x)

‣ alternatively, define density 
as partial of cumulative:

‣ same relationship as total and 
differential cross section:

f(E) =
1
σ

∂σ

∂E
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

24

f(x) =
∂F (x)

∂x
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‣ alternatively, define density 
as partial of cumulative:

‣ same relationship as total and 
differential cross section:

f(E, η) =
1
σ

∂2σ

∂E∂η
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

24

f(x) =
∂F (x)
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a) Perturbation theory used to systematically approximate the theory.  
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

2)
The simulation narrative
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Generation of an e+e−

→ tt̄ → bb̄W +W − event

• hard scattering

• (QED) initial/final
state radiation

• partonic decays, e.g.
t → bW

• parton shower
evolution

• nonperturbative
gluon splitting

• colour singlets

• colourless clusters

• cluster fission

• cluster → hadrons

• hadronic decays

a) Perturbation theory used to systematically approximate the theory.  
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

2)
The simulation narrative
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Next, the interaction of outgoing particles with the detector is simulated.  
Detailed simulations of particle interactions with matter.  
Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

3)
The simulation narrative
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A “number counting” model
From the many, many collision events, we impose some criteria to 
select n candidate signal events.  We hypothesize that it is 
composed of some number of signal and background events.

The number of events that we expect from a given interaction 
process is given as a product of 
‣ L : a time-integrated luminosity (units 1/cm2) that serves as a measure of 

the amount of data that we have collected or the number of trials we have 
had to produce signal events

‣ ! : “cross-section” (units cm2) a quantity that can be calculated from theory
‣ " : fraction of signal events satisfying selection (efficiency and acceptance)

27

Pois(n|s+ b)
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In addition to the rate of interactions, our theories predict the distributions of 
angles, energies, masses, etc. of particles produced

● we form functions of these called discriminating variables m, 
● and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background 
processes.
‣ thus, the distribution of f(m) is a mixture model
‣ the full model is a marked Poisson process

28

Including “shape” information

P (m|s) = Pois(n|s+ b)
n�

j

sfs(mj) + bfb(mj)

s+ b

signal process background process
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Incorporating Systematic Effects
Of course, the simulation has many adjustable parameters and 
imperfections that lead to systematic uncertainties.
‣ one can re-run simulation with different settings and produce 

variational histograms about the nominal prediction

29
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Explicit parametrization
Important to distinguish between the source of the systematic 
uncertainty (eg. jet energy scale) and its effect.
‣ The same 5% jet energy scale uncertainty will have different effect 

on different signal and background processes
● not necessarily with any obvious functional form

‣ Usually possible to decompose to independent “uncorrelated” sources
Imagine a table that explicitly quantifies the effect of each source of 
systematic.  

‣ Entries are either normalization factors or variational histograms

30

sig bkg 1 bkg 2 ...
syst 1
syst 2
...



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Simulation narrative overview
Here is an example prediction from search for H!ZZ and H!WW
‣ sometimes multivariate techniques are used

31

A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

6 3 Control of background rates from data
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Figure 5: NN outputs for signal (blue squares) and background (red circles) events for
mH = 130 GeV (left) and mH = 170 GeV (right). Both distributions are normalized to 1 fb−1

of integrated luminosity.

is performed. The background measurement in the normalization region is used as a reference
to estimate the magnitude of the background in the signal region by multiplying the measured
background events in the normalization region (NN

bkg) by the ratio of the efficiencies:

NS
bkg =

εS
bkg

εN
bkg

NN
bkg. (1)

For the estimation of the tt background, events has to pass the lepton- and pre-selection cuts
described in section 2. Then, since in all Higgs signal regions the central jet veto is applied, in
this case, the presence of two jets are required.

Table 4 shows the expected number of tt and other background events after all selection cuts
are applied for an integrated luminosity of 1 fb−1. The ratio between signal and background
is quite good for all three channels and the uncertainty in the tt is dominated by systematics
uncertainties for this luminosity.

Final state tt WW Other background
µµ 1090 14 82
ee 680 10 50
eµ 2270 40 125

Table 4: Expected number of events for the three final states in the tt normalization region
for an integrated luminosity of 1 fb−1. It is worth noticing that the expected Higgs signal
contribution applying those selection requirements is negligible.

Defining R =
�S

CJV
�C

2jets
,

∆NS
tt

NS
tt

=
∆R
R
⊕

∆NC
tt+background

NC
tt

⊕
∆NC

background

NC
tt

(2)

m = m =

P (m|s) = Pois(n|s+ b)
n�

j

sfs(mj) + bfb(mj)

s+ b
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

m =

sig bkg 1 bkg 2 ...

syst 1

syst 2

...

Tabulate effect of individual variations of sources of systematic uncertainty
‣ use some form of interpolation to parametrize ith variation in terms of 

nuisance parameter #i 

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly
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Histogram Interpolation
Several interpolation algorithms exist: eg. Alex Read’s “horizontal” 
histogram interpolation algorithm (RooIntegralMorph in RooFit)
‣ take several PDFs, construct interpolated PDF with additional 

nuisance parameter #

‣ Now in RooFit

33

Simple “vertical” 
interpolation bin-by-bin.

Alternative “horizontal” 
interpolation algorithm by 
Max Baak called 
“RooMomentMorph” in 
RooFit  (faster and 
numerically more stable)
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

Simulation narrative overview
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Something must ‘constrain’ the nuisance parameters # 
‣ the data itself: sidebands; some control region
‣ “constraint terms” are added to the model... this part is subtle.

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

Simulation narrative overview
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Something must ‘constrain’ the nuisance parameters # 
‣ the data itself: sidebands; some control region
‣ “constraint terms” are added to the model... this part is subtle.

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
×G(a|α,σ)
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Constraint Terms
Auxiliary Measurements and Priors
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ATLAS Statistics Forum

DRAFT
7 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Let’s consider a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems
‣ number counting with background uncertainty

● in our main measurement we observe non with s+b expected

‣ and the background has some uncertainty
● but what is “background uncertainty”?  Where did it come from?
● maybe we would say background is known to 10% or that it has some pdf

• then we often do a smearing of the background: 

● Where does           come from?
• did you realize that this is a Bayesian procedure that depends on some prior 

assumption about what b is?

What do we mean by uncertainty?

36

π(b)

Pois(non|s+ b)

π(b)
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The Data-driven narrative
Regions in the data with negligible signal 
expected are used as control samples

‣ simulated events are used to estimate 
extrapolation coefficients

‣ extrapolation coefficients may have 
theoretical and experimental uncertainties 
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.
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3.1 tt and WW normalization from data
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Figure 10: Flow chart describing the four data samples used in the H →WW (∗) → !ν!ν analysis. S.R
and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the

23



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

The Data-driven narrative
Regions in the data with negligible signal 
expected are used as control samples

‣ simulated events are used to estimate 
extrapolation coefficients

‣ extrapolation coefficients may have 
theoretical and experimental uncertainties 
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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Figure 10: Flow chart describing the four data samples used in the H →WW (∗) → !ν!ν analysis. S.R
and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

The “on/off” problem
Now let’s say that the background was estimated from some control 
region or sideband measurement.  
‣ We can treat these two measurements simultaneously:

● main measurement: observe non with s+b expected
● sideband measurement: observe noff with      expected

● In this approach “background uncertainty” is a statistical error
● justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?

‣ while        is based on data, it still depends on some original prior 
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results. These comments are quite general, and each experiment is expected to have

well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b)� �� �
jointmodel

= Pois(non|s+ b)
� �� �
mainmeasurement

Pois(noff |τb)� �� �
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence

intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =
�

dbPois(non|s+ b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

1

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

π(b) η(b)
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Separating the prior from the objective model
Recommendation: where possible, one should express 
uncertainty on a parameter as a statistical (random) process
‣ explicitly include terms that represent auxiliary measurements 

in the likelihood
Recommendation: when using a Bayesian technique, one should 
explicitly express and separate the prior from the objective part of 
the probability density function

Example: 
‣By writing 

● the objective statistical model is for the background uncertainty is clear

‣One can then explicitly express a prior        and obtain:
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If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1
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Constraint terms for our example model
For each systematic effect, we associated a nuisance parameter #
‣ for instance electron efficiency, JES, luminosity, etc.
‣ the background rates, signal acceptance, etc. are parametrized in 

terms of these nuisance parameters
These systematics are usually known (“constrained”) within ± 1".  
‣ but here we must be careful about Bayesian vs. frequentist
‣ Why is it constrained? Usually b/c we have an auxiliary 

measurement a and a relationship like:

● Saying that # has a Gaussian distribution is Bayesian.  
• has form “Probability of parameter”

● The frequentist way is to say that a fluctuates about #
While a is a measured quantity (or “observable”), there is only one 
measurement of a per experiment.  Call it a “Global observable”
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Common Constraints Terms
Many uncertainties have no clear statistical description or it is impractical to provide

Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice
‣ quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty, 
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

‣ longer tail, good behavior near boundary, natural choice if auxiliary is based on counting

For “factor of 2” notions of uncertainty log-normal is a good choice
‣ can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

41

Truncated Gaussian
Gamma
Log-normal

PDF(y| #) Prior(#) Posterior(#|y)
Gaussian uniform Gaussian
Poisson uniform Gamma
Log-normal 1/# Log-Normal

To consistently switch between frequentist, 
Bayesian, and hybrid procedures, need to 
be clear about prior vs. likelihood function
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Classification of Systematic Uncertainties
Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity
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Classification of Systematic Uncertainties
Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity

Type II - “The Bad”
‣ arise from model assumptions in the 

measurement or from poorly understood features 
in data or analysis technique
● don’t necessarily scale with luminosity
● eg: “shape” systematics
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Classification of Systematic Uncertainties
Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity

Type II - “The Bad”
‣ arise from model assumptions in the 

measurement or from poorly understood features 
in data or analysis technique
● don’t necessarily scale with luminosity
● eg: “shape” systematics

Type III - “The Ugly”
‣ arise from uncertainties in underlying theoretical 

paradigm used to make inference using the data
● a somewhat philosophical issue
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Modeling:
The Scientific Narrative

(continued)
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9
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Something must ‘constrain’ the nuisance parameters # 
‣ the data itself: sidebands; some control region
‣ “constraint terms” are added to the model... this part is subtle.

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
×
�

i

G(ai|αi,σi)

Constraint terms for our example model
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Several analyses have used the tool called hist2workspace to build the model (PDF)
‣ command line:  hist2workspace myAnalysis.xml
‣ construct likelihood function below via XML + histograms

Building the model: HistFactory (RooStats)
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8 Exclusion limits on H→ ZZ(∗) → 4!227

The results presented in Section 6 indicate that no excess is observed beyond background expectations

and consequently upper limits are set on the Higgs boson production cross section relative to its predicted

Standard Model value as a function of MH . For each Higgs mass hypothesis a one-sided upper-limit is

placed on the standardized cross-sections µ = σ/σSM at the 95% confidence level (C.L.). The upper
limit is obtained from a binned distribution of M4!. The likelihood function is a product of Poisson

probabilities of each bin for the observed number of events compared with the expected number of

events, which is parametrized by µ and several nuisance parameters αi corresponding to the various
systematic effects. The likelihood function is given by

L (µ,αi) = ∏
m∈bins

Pois(nm|νm) ∏
i=∈Syst

N(αi) (3)

where m is an index over the bins of the template histograms, i is an index over systematic effects, nm is

the observed number of events in bin m, N(αi) is the normal distribution for the nuisance parameter αi
and νm is the expected number of events in bin m given by

νm = µLη1(α) σ1m(α)+ ∑
j∈Bkg Samp

Lη j(α) σ jm(α), (4)

µ = σ/σSM, L is the integrated luminosity, η j(α) parametrizes relative changes in the overall normaliza-
tion, and σ jm(α) contains the nominal normalization and parametrizes uncertainties in the shape of the
distribution of the discriminating variable. Here j is an index of contributions from different processes

with j = 1 being the signal process. The nuisance parameters αi are associated to the source of the sys-
tematic effect (e.g. the muon momentum resolution uncertainty), while η j(α) and σ jm(α) represent the
effect of that uncertainty. The αi are scaled so that αi = 0 corresponds to the nominal expectation and
αi = ±1 correspond to the ±1σ variations of the source, thus N(αi) is the standard normal distribution.
The effect of these variations about the nominal predictions η j(0) = 1 and σ0jm is quantified by dedicated
studies that provide η±

i j and σ±
i jm, which are then used to form

η j(α) = ∏
i∈Syst

I(αi;η+
i j , η−

i j ) (5)

and

σ jm(α) = σ0jm ∏
i∈Syst

I(αi;σ+
i jm/σ0jm, σ−

i jm/σ0jm) (6)

with

I(α ; I+, I−) =











1+α(I+−1) if α > 0

1 if α = 0

1−α(I−−1) if α < 0

(7)

enabling piece-wise linear interpolation in the case of asymmetric response to the source of systematic.228

The exclusion limits are extracted using a fully frequentist technique based on the Neyman Con-229

struction. The test statistic used in the construction is based on the profile likelihood ratio, but it is230

modified for one-sided upper-limits by only considering downward fluctuations with respect to a given231

signal-plus-background hypothesis as being discrepant. Since the limits are based on CLs+b, a “power-232

constraint” is imposed to avoid excluding very small signals for which we have no sensitivity [25]. The233

power-constraint is chosen such that the CLb must be at least 16% (e.g. the −1σ expected limit band).234

The procedure followed is described in more detail in Ref. [26].235
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interpolation convention
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CMS Higgs example
The CMS input:
‣ cleanly tabulated effect on each background due to each source of systematic 
‣ systematics broken down into uncorrelated subsets
‣ used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared 
the RooStats workspace
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3

Input tables

• txt tables are attached to the agenda
• snippet:

• comments will help understand which nuisance 
parameter corresponds to what:

although for technical combination all we need to know is which ones have to be correlated between ATLAS and CMS

4
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The Data-Driven narrative
In the data-driven approach, backgrounds are estimated by assuming (and 
testing) some relationship between a control region and signal region
‣ flavor subtraction, same-sign samples, fake matrix, tag-probe, ....

Pros: Initial sample has “all orders” theory :-) and all the details of the detector
Cons: assumptions made in the transformation to the signal region can be 
questioned
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Table 3: Number of lepton pairs passing the selection cuts optimized for the SUSY sample SU1 (above),
SU3 (middle) and SU4 (below), for 1 fb−1 of integrated luminosity. The contribution from t t̄ produc-
tion is indicated separately as it constitutes most of the Standard Model background. The remaining
background events are from W, Z and WW, WZ, ZZ production. The background due to QCD jets is
negligible.

Sample e+e− µ+µ− OSSF OSDF
SUSY SU1 56 88 144 84
Standard Model (tt̄) 35 (35) 65 (63) 101 (99) 72 (68)
SUSY SU3 274 371 645 178
Standard Model (tt̄) 76 (75) 120 (115) 196 (190) 172 (165)
SUSY SU4 1729 2670 4400 2856
Standard Model (tt̄) 392 (377) 688 (657) 1081 (1035) 1104 (1063)
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Figure 1: Left: distribution of the invariant mass of same-flavour and different-flavour lepton pairs for
the SUSY benchmark points and backgrounds after the cuts optimized from data in presence of the SU3
signal (left), and the SU4 signal (right). The integrated luminosities are 1 fb−1 and 0.5 fb−1 respectively.

The invariant mass distribution after flavour subtraction is shown in the left plot of Fig. 2 in the
presence of the SU3 signal and for an integrated luminosity of 1 fb−1. The distribution has been fitted
with a triangle smeared with a Gaussian. The value obtained for the endpoint is (99.7±1.4±0.3) GeV
where the first error is due to statistics and the second is the systematic error on the lepton energy scale
and on the β parameter [2]. This result is consistent with the true value of 100.2 GeV calculated from
Eq. (5).
The right plot of Fig. 2 shows the flavour-subtracted distribution in the presence of the SU4 signal for

an integrated luminosity of 0.5 fb−1. The fit was performed using the function from [5] which describes
the theoretical distribution for the 3-body decay in the limit of large slepton masses, smeared for the
experimental resolution. This function vanishes near the endpoint and is a better description of the true
distribution for SU4 than the triangle with a sharp edge. The endpoint from the fit is (52.7± 2.4±
0.2) GeV, consistent with the theoretical endpoint of 53.6 GeV.
Since the true distribution will not be known for data, the distribution was also fitted with the smeared

triangle expected for the 2-body decay chain. This also gives a good χ 2 with an endpoint of (49.1±
1.5± 0.2) GeV. A larger integrated luminosity will be required to use the shape of the distribution to
discriminate between the two-body and the three-body decays.
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Figure 2: Left: Distribution of invariant mass after flavour subtraction for the SU3 benchmark point with
an integrated luminosity of 1 fb−1. Right: the same distribution is shown for the SU4 benchmark point
and an integrated luminosity of 0.5 fb−1. The line histogram is the Standard Model contribution, while
the points are the sum of Standard Model and SUSY contributions. The fitting function is superimposed
and the expected position of the endpoint is indicated by a dashed line.
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Figure 3: Distribution of invariant mass after flavour subtraction for the SU1 point and for an integrated
luminosity of 1 fb−1 (left) and 18 fb−1 (right). The points with error bars show SUSY plus Standard
Model, the solid histogram shows the Standard Model contribution alone. The fitted function is super-
imposed (right), the vertical lines indicate the theoretical endpoint values.

In Fig. 3 the flavour-subtracted distribution of the dilepton mass is shown for the SU1 point at an
integrated luminosity of 1 fb−1 (left) and 18 fb−1 (right) 3). While there is already a clear excess of
SF-OF entries at 1 fb−1 , a very convincing edge structure cannot be located. At 18 fb−1 the two
edges are visible. A fit function consisting of a double triangle convoluted with a Gaussian, the latter
having a fixed width of 2 GeV, returns endpoint values of 55.8± 1.2± 0.2 GeV for the lower edge and
99.3± 1.3± 0.3 GeV for the upper edge, consistent with the true values of 56.1 and 97.9 GeV. As can
be seen from Fig. 3 (right) the m!! distribution also contains a noticeable contribution from the leptonic
decay of Z bosons present in SUSY events. Even though the upper edge is located close to the Z mass,
3)Only 1 fb−1 of simulated Standard Model background was available. To scale the Standard Model contribution to higher

luminosities a probability density function for the m(ll) distribution was constructed by fitting a Landau function to the 1 fb−1
distribution, assuming statistically identical shapes for e+e−, µ+µ− and e±µ∓ and normalisation according to a β of 0.86. The
systematic uncertainty on the endpoint determination from this procedure was estimated to be a small fraction of the statistical
uncertainty.
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Other Examples of data-driven narrative
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CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 19!

All-hadronic searches with !"# 

3 jets, ET>50 |$|<2.5 

HT > 350 and MHT > 150 

Event cleaning cuts. 

Predict each bkgd separately 
QCD: rebalance & smear 
W & ttbar from µ control 
Z⟶%% from &+jets and Z⟶µµ    

Search for high pT jets, high HT and high MHT (= vector sum of jets) 



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Going beyond on/off
Often the extrapolation parameter has uncertainty
‣ introduce a new measurement to constrain it as in the ABCD method
‣ what if..., what if ..., what if..., what if ..., what if..., what if ...
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

#WW
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Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and
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shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.
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there is no region completely free of background. Vertical lines indicate the cut values used.
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Data driven estimates
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics.  Using the simulation narrative over 
the data-driven is a choice.  If you trust that narrative, it’s a good choice.
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the

fits for known processes only (a) and with the addition of a hypothetical Gaussian component (c). On the right plots we show,

by subtraction, only the resonant contribution to Mjj including WW and WZ production (b) and the hypothesized narrow

Gaussian contribution (d). In plot (b) and (d) data points differ because the normalization of the background changes between

the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described

in the text. The distributions are shown with a 8 GeV/c
2
binning while the actual fit is performed using a 4 GeV/c

2
bin size.

resonance with definite mass. The width of the Gaus-
sian is fixed to the expected dijet mass resolution by
scaling the width of the W peak in the same spectrum:

σresolution = σW

�
Mjj

MW
= 14.3 GeV/c2, where σW and

MW are the resolution and the average dijet invariant
mass for the hadronic W in the WW simulations respec-
tively, and Mjj is the dijet mass where the Gaussian tem-
plate is centered.

In the combined fit, the normalization of the Gaus-
sian is free to vary independently for the electron and

muon samples, while the mean is constrained to be the
same. The result of this alternative fit is shown in Figs. 1
(c) and (d). The inclusion of this additional component
brings the fit into good agreement with the data. The
fit χ2/ndf is 56.7/81 and the Kolmogorov-Smirnov test
returns a probability of 0.05, accounting only for statis-
tical uncertainties. The W+jets normalization returned
by the fit including the additional Gaussian component is
compatible with the preliminary estimation from the �ET

fit. The χ2/ndf in the region 120-160 GeV/c2 is 10.9/20.
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We compare the Mjj distribution of data Z+jets events to ALPGEN MC. Fig. 8.17

shows the two distributions for muons and electrons respectively. Also in this case,

within statistics, we do not observe significant disagreement.
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Figure 8.17: Mjj in Z+jets data and MC in the muon sample (a) and in in the

electron sample (b).

In addition, we compare several kinematic variables between Z+jets data and

ALPGEN MC (see Fig. 8.18) and find that the agreement is good.

8.2.3 ∆Rjj Modeling

In Fig. 8.4, we observed disagreement between data and our background model in

the ∆Rjj distribution of the electron sample.

The main difference between muons and electrons is the method used to model

the QCD contribution: high isolation candidates for muons and antielectrons for

electrons. However, if we compare the ∆R distribution of antieletrons and high

isolation electrons, Fig. 8.19, we observe a significant difference and, in particular,

high isolation electrons seems to behave such that they may cover the disagreement

we see in ∆R. Unfortunately, we cannot use high isolation electrons as a default

because they don’t model well other distribution such as the��ET and quantities re-

lated to the��ET . However, as already discussed in Sec. 8.2.1, high isolation electrons

will be used to assess systematics due to the QCD multijet component.

To further prove that ALPGEN is reproducing the ∆Rjj distribution, we have shown

in Fig. 8.18 that there is a good agreement between the Z+jets data and ALPGEN
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

d#

dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:
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dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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laid, and the bin-by-bin significance of the data-background
difference is shown.

each ν, the backgrounds in the bins bνi were evaluated
from a simultaneous five-parameter fit of the signal and
background distributions to ensure that the background
determination would not be biased by the presence of
any signal. The four background parameters were those
in Eqn. 1; the fifth parameter consisted of the normaliza-
tion of the predicted νth q∗ signal template. To avoid ac-
ceptance bias, the lowest q∗ test mass used was 300 GeV.
For every q∗ mass, Eqn. 2 was computed for a range of
possible signal yields, s, and the resulting likelihood func-
tion was multiplied by a flat prior in s to give a posterior
probability density in s. The 95% probability region was
then determined by integration of the posterior proba-
bility distribution. This Bayesian technique was found
to yield credibility intervals that corresponded well with
frequentist confidence intervals. This was verified by per-
forming a series of pseudo-experiments to determine, by
way of a standard frequentist calculation, the coverage,
or the fraction of times that the 95% Bayesian credibility
interval contained the true number of signal events.
The dominant sources of systematic uncertainty, in de-

creasing order of importance, were the absolute jet en-
ergy scale (JES), the background fit parameters, the in-
tegrated luminosity, and the jet energy resolution (JER).
The JES uncertainty was quantified as a function of pT
and ηjet, with values in the range 6 ∼ 9% [20, 33, 34].
The jet calibration relied on the MC simulation of the
response of the ATLAS detector; its uncertainty was con-
strained by varying the ATLAS simulation and from in

situ information. The systematic uncertainty on the de-
termination of the background was taken from the uncer-
tainty on the parameters resulting from the fit of Eqn. 1
to the data sample. The uncertainty on σ · A due to
integrated luminosity was estimated to be ±11% [35].
The JER uncertainty was treated as uniform in pT and
ηjet with a value of ±14% on the fractional pT resolu-
tion of each jet [36]. The effects of JES, background
fit, integrated luminosity, and JER were incorporated
as nuisance parameters into the likelihood function in
Eqn. 2 and then marginalized by numerically integrating
the product of this modified likelihood, the prior in s,
and the priors corresponding to the nuisance parameters
to arrive at a modified posterior probability distribution.
In the course of applying this convolution technique, the
JER was found to make a negligible contribution to the
overall systematic uncertainty.
Figure 2 depicts the resulting 95% CL upper limits on

σ ·A as a function of the q∗ resonance mass after incorpo-
ration of systematic uncertainties. Linear interpolations
between test masses were used to determine where the
experimental bound intersected with a theoretical pre-
diction to yield a lower limit on allowed mass. The cor-
responding observed 95% CL excited-quark mass exclu-
sion region was found to be 0.30 < mq∗ < 1.26 TeV us-
ing MRST2007 PDFs in the ATLAS default MC09 tune.
Table I shows the results obtained using CTEQ6L1 [37]
and CTEQ5L [38] PDF sets. The variations in the ob-
served limit associated with the error eigenvectors of
a CTEQ PDF set were found to be smaller than the
spread displayed in Table I. The excluded regions were
∼30 GeV greater when only statistical uncertainties were
taken into account. The expected limits corresponding to
the data sample were computed using an analogous ap-
proach, but replacing the actual data with pseudo-data
generated by random fluctuations around the smooth
function described by fitting the data with Eqn. 1; these
are shown in Fig. 2, with a resulting expected q∗ mass
exclusion region of 0.30 < mq∗ < 1.06 TeV using
MRST2007 PDFs. As indicated in Table I, the two other
PDF sets yielded similar results, with expected exclusion
regions extending to near 1 TeV. An indication of the de-
pendence of the mq∗ limits on the theoretical prediction
for the q∗ signal was obtained by simultaneously vary-
ing both the renormalization and factorization scales by
factors of 0.5 and 2, which was tantamount to modifying
the predicted cross section by approximately ±20%; this
changed the observed MRST2007 limit of 1.26 TeV to
1.32 TeV and 1.22 TeV, respectively.
In conclusion, a model-independent search for new

heavy particles manifested as mass resonances in dijet
final states was conducted using a 315 nb−1 sample of
7 TeV proton-proton collisions produced by the LHC and
recorded by the ATLAS detector. No evidence of a res-
onance structure was found and upper limits at the 95%
CL were set on the products of cross section and signal
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Zbb̄ ZZ H Zbb̄ ZZ H Zbb̄ ZZ H

4e 4µ 2e2µ
Scale +0.5% (+1%) +1.5 +0.1 +0.9 +2.4 +0.4 +1.3 +1.9 +0.1 +0.9

Scale -0.5% (-1%) -1.1 -0.2 -0.5 -2.3 -0.3 -2.5 -1.7 -0.2 -1.4

Resolution -0.5 -0.1 -0.4 +0.1 -0.1 -2.6 -0.2 -0.1 -0.5

Rec. efficiency -1.0 -0.7 -0.5 -3.8 -4.0 -3.8 -2.0 -2.1 -1.7

Luminosity 3 3 3

Total 3.6 3.1 3.2 5.4 5.0 6.0 4.1 3.7 3.8

Table 13: Impact, in %, of the systematic uncertainties on the overall selection efficiency, as obtained for

a mH = 130 GeVin the 4e,4µ , and 2e2µ final states.

the results obtained after varying the background shape, the fit range and even including background-

only fits without the signal hypothesis, are the main subject of this section. An alternative approach with

a global two-dimensional (2D) fit on the (mZ∗ ,m4�) plane is also briefly discussed.

The baseline method used as input to the combination of all ATLAS Standard Model Higgs boson

searches, is based on a fit of the 4-lepton invariant mass distribution over the full range from 110 to

700 GeV. The method, whose details are described in [21], is summarized below.

The 4-lepton reconstructed invariant mass after the full event selection (except the final cut on the

4-lepton reconstructed mass) is used as a discriminating variable to construct a likelihood function. The

likelihood is calculated on the basis of parametric forms of signal and background probability density

functions (pdf) determined from the MC. For a given set of data, the likelihood is a function of the

pdf parameters �p and of an additional parameter µ defined as the ratio of the signal cross-section to

the Standard Model expectation (i.e. µ = 0 means no signal, and µ = 1 corresponds to the signal rate

expected for the Standard Model). To test a hypothesized value of µ the following likelihood ratio is

constructed:

λ (µ) =
L(µ, ˆ̂�p)
L(µ̂,�̂p)

(1)

where
ˆ̂�p is the set of pdf parameters that maximize the likelihood L for the analysed dataset and for

a fixed value of µ (conditional Maximum Likelihood Estimators), and (µ̂,�̂p) are the values of µ and

�p that maximise the likelihood function for the same dataset (Maximum Likelihood Estimators). The

profile likelihood ratio is used to reject the background only hypothesis (µ = 0) in the case of discovery,

and the signal+background hypothesis in the case of exclusion. The test statistic used is qµ =−2lnλ (µ),
and the median discovery significance and limits are approximated using expected signal and background

distributions, for different mH , luminosities and signal strength µ . The MC distributions, with the content

and error of each bin reweighted to a given luminosity (in the following referred to as “Asimov data”,

see [21]), are fitted to derive the pdf parameters: in the fit, mH is fixed to its true value, while σH is allowed

to float in a ±20% range around the value obtained from the signal MC distributions. All parameters

describing the background shape are floating within sensible ranges. The irreducible background has

been modelled using a combination of Fermi functions which are suitable to describe both the plateau

in the low mass region and the broad peak corresponding to the second Z coming on shell. The chosen

model is described by the following function:

f (mZZ) =
p0

(1+ e

p6−mZZ

p7 )(1+ e

mZZ−p8

p9 )
+

p1

(1+ e

p2−mZZ

p3 )(1+ e

p4−mZZ

p5 )
(2)
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The first plateau, in the region where only one of the two Z bosons is on shell, is modelled by the first

term, and its suppression, needed for a correct description at higher masses, is controlled by the p8 and

p9 parameters. The second term in the above formula accounts for the shape of the broad peak and the

tail at high masses. This function can describe with a negligible bias the ZZ background shape with good

accuracy over the full mass range. The Zbb̄ contribution is relevant to the background shape only when

searching for very light Higgs boson (in this study, only at mH = 120 GeV). In this case, an additional

term is added to the ZZ continuum, with a functional form similar to the second part of equation 2. For

the signal modelling a simple gaussian shape has been used for mH ≤ 300 GeV, while a relativistic Breit-

Wigner formula is needed at higher values of the Higgs boson mass. In Figs. 34 and 35 two examples of

pseudo-experiments with the resulting fit functions for signal and background are shown.
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Figure 34: A pseudo-experiment corresponding to

30 fb
−1

of data for a Higgs boson mass of 130 GeV.

The functions fitting the signal and the background

are shown.
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Figure 35: A pseudo-experiment corresponding to

30 fb
−1

of data for a Higgs boson mass of 180 GeV.

The functions fitting the signal and the background

are shown.

The results presented in the following approximate the significance from the test statistics as

�
−2lnλ (µ).

In order for the results of the method to be valid, the test statistic qµ =−2lnλ (µ) should be distributed

as a χ2
with one degree of freedom. The results obtained with the strategy described above must thus

be validated using toy MC. Such validation tests show a good agreement of the test statistic with the

expected χ2
distribution, as discussed in detail in [21]. This allows to approximate the significance from

the test statistic as

�
−2lnλ (µ). The significances obtained as the square root of the median profile

likelihood ratios for discovery, −2lnλ (µ = 0) are shown in Table 14 for all mH values considered in this

paper, and for various luminosities. In Fig. 36, the significance obtained from the profile likelihood ra-

tio, after the fit of signal+background is shown. The significance is compared to the Poisson significance

shown in Section 4. The slightly reduced discovery potential is due to the fact that several background

shape and normalization parameters are derived from the data-like sample.

Concerning exclusion, the median profile likelihood ratios are calculated under the background only

hypothesis, and the integrated luminosity needed to exclude the signal at 95% C.L. is the one correspond-

ing to

√
−2lnλ=1.64. The integrated luminosity needed for exclusion is shown in Fig. 37.

The median significance estimation with Asimov data can be validated using toy MC pseudo-exp-

eriments. For each mass point, 3000 background-only pseudo-experiments are generated. For each

experiment, the profile likelihood ratio method is used to find which µ value can be excluded at 95%

CL. The resulting distributions are then analysed to find the median and ±1σ and ±2σ intervals. The

outcome of this test is summarized in Fig. 38, where the 95% CL exclusion µ obtained from single fits

on the full MC datasets is plotted as well. As shown, the agreement is good over the full mass range.

Fitting the 4-lepton mass distribution with all parameters left free in function 2 allows the fit to absorb
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The Effective Model Narrative
Sometimes the effective model comes from a convincing narrative

‣ convolution of detector resolution with known distribution
● Ex: MissingET resolution propagated through M!! in collinear approximation
● Ex: lepton resolution convoluted with triangular Mll distribution
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where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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Wouter Verkerke, NIKHEF 

Tools for building effective models
• RooFit’s convolution PDFs can aid in building more effective 

models with a more convincing narrative

–

// Construct landau (x) gauss (10000 samplings 2nd order interpolation)
t.setBins(10000,”cache”) ;
RooFFTConvPdf lxg("lxg","landau (X) gauss",t,landau,gauss,2) ;
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The parametrized response narrative
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November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

November 8, 2006 Daniel Whiteson/Penn

Data
20 example events…

November 8, 2006 Daniel Whiteson/Penn

Measurement!

Mt = 164.5 ± 3.9 stat ± 3.9syst GeV/c2

L = 350 pb-1 

Phys. Rev. Lett             96, 152002 (2006)
Phys. Rev. D                 Accepted (2006)
Thesis, A. Kovalev     Penn (2005)

L= 1000 pb-1 

Thesis, B. Jayatilaka  Michigan, 2006
Phys. Rev. Lett,            In preparation

The Matrix-Element technique is conceptually similar to the simulation narrative, 
but the detector response is parametrized.
‣ Doesn’t require building parametrized PDF by interpolating between non-

parametric templates. 
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Examples of parametrized response
While we often see the parametrized response as overly simplistic, the 
parametrizations are often based on some deeper understanding
‣ and parameters can often be measured in data with in situ calibration 

strategies.  No reason we can’t propagate uncertainty to next stage.
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The results show that the linearity is recovered over a wide energy range, both in the central (|η | < 0.5)
and in the intermediate (1.5 < |η | < 2) regions. For the cone algorithm, at low energy (E = 20−30GeV),
the linearity differs by up to 5% from 1 in the central region. At low energy, there is a 5% residual non
linearity, not fully recovered by the parametrization chosen for the scale factor.

Concerning the intermediate pseudorapidity region, we can see a similar behavior around 100 GeV
(note that in this region E ∼ 100GeV corresponds to ET = E/coshη ∼ 35GeV).

The linearity plot for the kT algorithm shows a more pronounced deviation from 1 at low energy
(�Erec/Etruth� = 5% at 50GeV, 8% at 30GeV). The linearity is fully recovered above ∼ 100GeV in the
central region, ∼ 300GeV in the intermediate region.

The uniformity of the response over pseudorapidity is also satisfactory. Figure 4 shows the depen-
dence of the ratio E rec

T /E truth
T on the pseudorapidity of the matched truth jet for three different transverse

energy bins. Again, the left plot refers to cone 0.7 jets, while the right one refers to kT jets with R = 0.6.
We can observe that for the lowest considered transverse energy bin, the ratio increases with the pseudo-
rapidity. This is a consequence of the fact that energy increases with η at fixed ET and that the linearity
improves with increasing energy.
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Figure 4: Dependence of the ratio Erec
T /E truth

T on the pseudorapidity for the cone algorithm with
Rcone = 0.7 (on the left) and for the kT algorithm with R = 0.6 (on the right). An ideal detector geometry
has been used to simulate the events.

We can also observe (in particular for the kT algorithm) the remnants of the calorimeter structure,
which is not completely corrected by the procedure. There is a first, small dip at |η | ∼ 1.5, in corre-
spondence with the gap between the TileCal barrel and extended barrel [2]. A second dip is observed in
correspondence with the calorimeter crack between the End-Cap and the forward calorimeters.

Even if the effect is smaller when higher ET bins are considered, it is still present in the crack region.
Jets with ET ∼ 400GeV still show a slight η dependence in their response. As a last indicator of the
quality of the correction factors, we consider the energy resolution σ(Erec)/Erec. The dependence of the
energy resolution on the jet energy is shown in Fig. 5 for the cone (left) and kT (right) algorithms in two
pseudorapidity bins. The fit to the data is done considering three terms contributing independently to the
resolution:

σ
E

=
a�

E (GeV)
⊕b⊕ c

E
. (9)

The sampling term (a) is due to the statistical, poissonian, fluctuations in the energy deposits in the
calorimeters. The constant term (b) reflects the effect of the calorimeter non-compensation and all the
detector non-uniformities involved in the energy measurement. The noise term (c) is introduced to de-
scribe the noise contribution to the energy measurement. Although the physics origin of the different

7
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Jet ResolutionMuon Energy Loss (Landau)

However, when passing through materials made of high-Z elements the radiative effects can be already
significant for muons of energies ≈10 GeV [9].

Ionization energy losses have been studied in detail, and an expression for the mean energy loss per
unit length as a function of muon momentum and material type exists in the form of the Bethe-Bloch
equation [10]. Other closed-form formulae exist to describe other properties of the ionization energy loss.
Bremsstrahlung energy losses can be well parameterized using the Bethe-Heitler equation. However,
there is no closed-form formula that accounts for all energy losses. Nevertheless, theoretical calculations
for the cross-sections of all these energy loss processes do exist. With these closed-form cross-sections,
simulation software such as GEANT4 can be used to calculate the energy loss distribution for muons
going through a specific material or set of materials.

The fluctuations of the ionization energy loss of muons in thin layers of material are characterized
by a Landau distribution. Here “thin” refers to any amount of material where the muon loses a small
percentage of its energy. Once radiative effects become the main contribution to the energy loss, the
shape of the distribution changes slowly into a distribution with a larger tail. Fits to a Landau distribution
still characterize the distribution fairly well, with a small bias that pushes the most probable value of the
fitted distribution to values higher than the most probable energy loss [11]. These features are shown
for the energy loss distributions of muons going from the beam-pipe to the exit of the calorimeters in
Figure 4.
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Figure 4: Distribution of the energy loss of muons passing through the calorimeters (|η | < 0.15) as
obtained for 10 GeV muons (left) and 1 TeV muons (right) fitted to Landau distributions (solid line).

As can be seen in Figure 4 the Landau distribution is highly asymmetrical with a long tail towards
higher energy loss. For track fitting, where most of the common fitters require gaussian process noise,
this has a non-trivial consequence: in general, a gaussian approximation has to be performed for the
inclusion of material effects in the track fitting [12].

In order to express muon spectrometer tracks at the perigee, the total energy loss in the path can be
parameterized and applied to the track at some specific position inside the calorimeters. As the detector
is approximately symmetric in φ , parameterizations need only be done as a function of muon momentum
and η . The η-dependence is included by performing the momentum parameterizations in different η
bins of width 0.1 throughout the muon spectrometer acceptance (|η | < 2.7). The dependence of the most
probable value of the energy loss, Empv

loss , as a function of the muon momentum, pµ , is well described by

Empv
loss (pµ) = ampv

0 +ampv
1 ln pµ +ampv

2 pµ , (2)

where ampv
0 describes the minimum ionizing part, ampv

1 describes the relativistic rise, and ampv
2 describes

the radiative effects. The width parameter, σloss, of the energy loss distribution is well fitted by a linear
function σloss(pµ) = aσ

0 + aσ
1 pµ . Some of these fits are illustrated in Figure 5. This parameterization is

5

MUONS – MUONS IN THE CALORIMETERS: ENERGY LOSS CORRECTIONS AND MUON . . .

29

189

 (GeV)µp10 210 310

 (G
eV

)
lo

ssm
pv

E

0
1
2
3
4
5
6
7
8
9

10

|<0.5η0.4<|
|<1.3η1.2<|
|<2.1η2.0<|

 (GeV)µp10 210 310

 (G
eV

)
lo

ss
σ

0

0.5

1

1.5

2

2.5

|<0.5η0.4<|
|<1.3η1.2<|
|<2.1η2.0<|

Figure 5: Parameterization of the Empv

loss
(left) and σloss (right) of the Landau distribution as a function of

muon momentum for different η regions. One sees a good agreement between the GEANT4 values and

the parameterization.

used as part of the Muid algorithm for combined muon reconstruction [3].

An alternative approach exists in the ATLAS tracking. In this approach, the energy loss is param-

eterized in each calorimeter or even calorimeter layer. The parameterization inside the calorimeters is

applied to the muon track using the detailed geometry described in Section 2.

The most probable value and width parameter of the Landau distribution are not affected by radiative

energy losses in thin materials in the muon energy range of interest (∼5 GeV to a few TeV). This justifies

treating energy loss in non-instrumented material, such as support structures, up to the entrance of the

muon spectrometer as if it was caused by ionization processes only. The most probable value of the

distribution of energy loss by ionization can be calculated if the distribution of material is known [13].

Since material properties are known in each of the volumes in the geometry description used, it is easy

to apply this correction to tracks being transported through this geometry.

For the instrumented regions of the calorimeters, a parameterization that accounts for the large radia-

tive energy losses is required. To provide a parameterization that is correct for the full η range and for

track transport inside the calorimeters, a study of energy loss as a function of the traversed calorimeter

thickness, x, was performed. Two parameters that characterize fully the pdf of the energy loss for muons

were fitted satisfactorily using several fixed momentum samples as

Empv,σ
loss

(x, pµ) = bmpv,σ
0

(pµ)x+bmpv,σ
1

(pµ)x lnx. (3)

The momentum dependence of the bi(pµ) parameters was found to follow the same form as in Equa-

tion 2. Fits for some of the absorber materials are shown in Figure 6. These parameterizations have

been validated over the η range from -3 to 3. A direct comparison of the most probable energy loss in

GEANT4 simulation and in the geometry of the ATLAS tracking algorithms is shown in Figure 7 for

muons propagating from the beam-pipe to the exit of the electromagnetic calorimeters and to the exit of

the hadronic calorimeters.

3.2 Measurements of the Energy Deposited in the Calorimeters

In this section the measurement of the muon energy loss in the calorimeters is discussed. Understanding

this measurement is important because it allows for an improvement in the energy loss determination.

This section provides a basic description of the ATLAS calorimeters and their measurements which is

important for understanding the topics discussed in Sections 3.3, 3.4 and 4.

6
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Fast Simulation
Fast simulations based on parametrized detector response are very useful and 
can often be tuned to perform quite well in a specific analysis context

‣ For example: tools like PGS, Delphis, ATLFAST, ...

57

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 36!

Same sign di-lepton + jets + MET search 
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Fast Simulation
Fast simulations based on parametrized detector response are very useful and 
can often be tuned to perform quite well in a specific analysis context

‣ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

‣ Would be much more useful if the parametrized detector response could be 
used as a transfer function in Matrix-Element approach

57

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 36!

Same sign di-lepton + jets + MET search 
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Narrative styles
The Monte Carlo Simulation narrative (MC narrative)

‣ each stage is an accept/reject Monte Carlo based on P(out|in) of some 
microscopic process like parton shower, decay, scattering

‣ PDFs built from non-parametric estimator like histograms or kernel estimation
● need to supplement with interpolation procedures to incorporate systematics
● smearing approach fundamentally Bayesian

‣ pros: most detailed understanding of micro-physics 
‣ cons: computationally demanding, loose analytic scaling properties, relies on 

accuracy of simulation
‣ new ideas: improved interpolation, Radford Neal’s machine learning, “design of 

experiments”
The Data-driven narrative

‣ independent data sample that either acts as a proxy for some process or can be 
transformed to do so

‣ pros: nature includes “all orders”, uses real detector 
‣ cons: extrapolation from control region to signal region requires assumptions, 

introduces systematic effects.  Appropriate transformation may depend on many 
variables, which becomes impractical
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Narrative styles
Effective modeling narrative

‣ parametrized functional form: eg. Gaussian, falling exponential para polynomial fit 
to distribution, etc.

‣ pros: fast, has analytic scaling, parametric form may be well justified (eg. phase 
space, propagation of errors, convolution)

‣ cons: approximate, parametric form may be ad hoc (eg. polynomial from)
‣ new ideas: using non-parametric statistical methods 

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element 
method, ~fast simulation)

‣ pros: fast, maintains analytic scaling, response usually based on good 
understanding of the detector, possible to incorporate some types of uncertainty in 
the response analytically, can evaluate P(out|in) for arbitrary out,in.

‣ cons: approximate, best parametrized detector response is often not available in 
convenient form

‣ new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geant5)
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Parametric vs. Non-Parametric PDFs
No parametric form, need to construct non-parametric PDFs

60

From Monte Carlo samples, one has empirical PDF

femp =
1
N

N�

i

δ(x− xi)
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Classic example of a non-parametric PDF is the histogram
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fw,s
hist(x) =

1
N

�

i

hw,s
i

Parametric vs. Non-Parametric PDFs
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but they depend on bin width and starting position

fw,s
hist(x) =

1
N
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hw,s
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Classic example of a non-parametric PDF is the histogram

Parametric vs. Non-Parametric PDFs
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“Average Shifted Histogram” minimizes effect of binning

fw

ASH
(x) =

1
N

N�

i

Kw(x− xi)

Classic example of a non-parametric PDF is the histogram
Parametric vs. Non-Parametric PDFs
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Kernel Estimation

“the data is the model”

Adaptive Kernel estimation puts wider kernels in regions of low 
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Neural Network Output
Pr

ob
ab

ili
ty

 D
en
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f̂1(x) =
n

∑

i

1

nh(xi)
K

(

x − xi

h(xi)

)

h(xi) =

(

4

3

)1/5 √

σ

f̂0(xi)
n−1/5

Kernel estimation is the generalization of Average Shifted 
Histograms

K.Cranmer, Comput.Phys.Commun. 136 (2001). 
[hep-ex/0011057]
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Multivariate, non-parametric PDFs
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Max Baak 6

Correlations

! 2-d projection of  
pdf from previous 
slide.

! RooNDKeys pdf
automatically 
models (fine) 
correlations 
between 
observables ...

ttbar sample

higgs sample

Kernel Estimation has a nice generalizations to higher 
dimensions
‣ practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N-
dim KEYS pdf described 
in Comput.Phys.Commun. 136 (2001) 
in RooFit.

These pdfs have been 
used as the basis for a 
multivariate 
discrimination 
technique called “PDE”

D(�x) =
fs(�x)

fs(�x) + fb(�x)


