Outline

Lecture 1: Building a probability model
- preliminaries, the marked Poisson process
- incorporating systematics via nuisance parameters
- constraint terms
- examples of different “narratives” / search strategies

Lecture 2: Hypothesis testing
- simple models, Neyman-Pearson lemma, and likelihood ratio
- composite models and the profile likelihood ratio
- review of ingredients for a hypothesis test

Lecture 3: Limits & Confidence Intervals
- the meaning of confidence intervals as inverted hypothesis tests
- asymptotic properties of likelihood ratios
- Bayesian approach

LEP Higgs
A simple likelihood ratio with no free parameters

\[Q = \frac{L(x|H_1)}{L(x|H_0)} = \frac{\prod_{i=1}^{N_{\text{chan}}} \text{Pois}(n_i|s_i + b_i)}{\prod_{i=1}^{N_{\text{chan}}} \text{Pois}(n_i|b_i)} \prod_{i=1}^{N_{\text{chan}}} f_s(x_{ij}) \prod_{i=1}^{N_{\text{chan}}} f_b(x_{ij}) \]

\[q = \ln Q = -s_{\text{tot}} \sum_{i} \sum_{j} \ln \left(1 + \frac{s_i f_s(x_{ij})}{b_i f_b(x_{ij})} \right) \]

LEP

\[m_H = 115 \text{ GeV}/c^2 \]
The Test Statistic and its distribution

Consider this schematic diagram

The "test statistic" is a single number that quantifies the entire experiment, it could just be number of events observed, but often its more sophisticated, like a likelihood ratio. What test statistic do we choose?
And how do we build the distribution? Usually "toy Monte Carlo", but what about the uncertainties... what do we do with the nuisance parameters?

Properties of the Profile Likelihood Ratio

After a close look at the profile likelihood ratio

\[\lambda(\mu) = \frac{P(m, a | \mu, \hat{\nu}(\mu; m, a))}{P(m, a | \hat{\mu}, \hat{\nu})} \]

one can see the function is independent of true values of \(\nu \)

› though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the distribution of \(-2 \ln \lambda(\mu=\mu_0)\) given that the true value of \(\mu \) is \(\mu_0 \) converges to a chi-square distribution

› more on this tomorrow, but the important points are:
 › “asymptotic distribution” is known and it is independent of \(\nu \)!
 › more complicated if parameters have boundaries (eg. \(\mu \geq 0 \))

Thus, we can calculate the p-value for the background-only hypothesis without having to generate Toy Monte Carlo!

An example

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

\[\lambda(\mu = 0) = \frac{P(m, a | \mu = 0, \hat{\nu}(\mu = 0; m, a))}{P(m, a | \hat{\mu}, \hat{\nu})} \]

\[P(m, a | \mu, \hat{\nu}) \]

\[P(m, a | \mu = 0, \hat{\nu}(\mu = 0; m, a)) \]

Toy Monte Carlo

Explicitly build distribution by generating "toys" / pseudo experiments assuming a specific value of \(\mu \) and \(\nu \)

› randomize both main measurement \(m \) and auxiliary measurements \(a \)
› fit the model twice for the numerator and denominator of profile likelihood ratio
› evaluate \(-2 \ln \lambda(\mu)\) and add to histogram

Choice of \(\mu \) is straight forward: typically \(\mu=0 \) and \(\mu=1 \), but choice of \(\nu \) is less clear

more on this tomorrow

This can be very time consuming. Plots below use millions of toy pseudo-experiments on a model with ~50 parameters.
What makes a statistical method

To describe a statistical method, you should clearly specify

- choice of a test statistic
 - simple likelihood ratio (LEP) $Q_{LEP} = \frac{L_{s+b}(\mu = 1)}{L_b(\mu = 0)}$
 - ratio of profiled likelihoods (Tevatron) $Q_{TEV} = \frac{L_{s+b}(\mu = 1, \hat{\nu})}{L_b(\mu = 0, \hat{\nu})}$
 - profile likelihood ratio (LHC) $\lambda(\mu) = \frac{L_{s+b}(\mu, \hat{\nu})}{L_{s+b}(\hat{\mu}, \hat{\nu})}$

- how you build the distribution of the test statistic
 - toy MC randomizing nuisance parameters according to $\pi (\nu)$
 - aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
 - toy MC with nuisance parameters fixed (Neyman Construction)
 - assuming asymptotic distribution (Wilks and Wald, more tomorrow)

- what condition you use for limit or discovery
 - more on this tomorrow

Experimentalist Justification

So far this looks a bit like magic. How can you claim that you incorporated your systematic just by fitting the best value of your uncertain parameters and making a ratio?

It won’t unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if the profile likelihood ratio is still distributed as a chi-square

Here it is pretty stable, but it’s not perfect (and this is a log plot, so it hides some pretty big discrepancies)

For the distribution to be independent of the nuisance parameters your parametrization must be sufficiently flexible.

Confidence Intervals (Limits)

A very important point

If we keep pushing this point to the extreme, the physics problem goes beyond what we can handle practically

The p-values are usually predicated on the assumption that the true distribution is in the family of functions being considered

- eg. we have sufficiently flexible models of signal & background to incorporate all systematic effects
- but we don’t believe we simulate everything perfectly
- ..and when we parametrize our models usually we have further approximated our simulation.

- nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics uncertainties (not statistical ones). Statistics can only help us so much after this point. Now we must be physicists!
Confidence Interval

What is a “Confidence Interval?”

- you see them all the time:

 Want to say there is a 68% chance that the true value of \((m_W, m_t)\) is in this interval

 - but that’s \(P(\text{theory}|\text{data})!\)

Correct frequentist statement is that the interval covers the true value 68% of the time

- remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

Neyman Construction example

Let’s focus on a particular point \(f(x|\theta_0)\)

- we want a test of size \(\alpha\)
- equivalent to a \(100(1 - \alpha)\%\) confidence interval on \(\theta\)
- so we find an acceptance region with \(1 - \alpha\) probability
Let’s focus on a particular point $f(x|\theta_0)$

- No unique choice of an acceptance region
- Here’s an example of a lower limit

\[
1 - \alpha \quad \alpha
\]

Let’s focus on a particular point $f(x|\theta_0)$

- No unique choice of an acceptance region
- And an example of a central limit

\[
\frac{1 - \alpha}{\alpha/2}
\]

Let’s focus on a particular point $f(x|\theta_0)$

- Choice of this region is called an ordering rule
- In Feldman–Cousins approach, ordering rule is the likelihood ratio. Find contour of L.R. that gives size α

\[
f(x|\theta_0) = k_\alpha
\]

Now make acceptance region for every value of θ

\[
\theta_1, \theta_2
\]
Neyman Construction example

This makes a confidence belt for θ

![Diagram showing Neyman Construction example]

Now we make a measurement x_0
the points θ where the belt intersects x_0 a part of the confidence interval in θ for this measurement
eg. $[\theta_-, \theta_+]$
A Point about the Neyman Construction

This is not Bayesian... it doesn’t mean the probability that the true value of θ is in the interval is $1 - \alpha$!

Inverting Hypothesis Tests

There is a precise dictionary that explains how to move from from hypothesis testing to parameter estimation.

- **Type I error**: probability interval does not cover true value of the parameters (e.g., it is now a function of the parameters)
- **Power**: probability interval does not cover a false value of the parameters (e.g., it is now a function of the parameters)
 - We don’t know the true value, consider each point θ_0 as if it were true.

What about null and alternate hypotheses?

- when testing a point θ_0 it is considered the null
- all other points considered “alternate”

So what about the Neyman-Pearson lemma & Likelihood ratio?

- as mentioned earlier, there are no guarantees like before
- a common generalization that has good power is:

$$\frac{f(x | H_0)}{f(x | H_1)} \frac{f(x | \theta_0)}{f(x | \theta_{best}(x))}$$

The Dictionary

There is a formal 1-to-1 mapping between hypothesis tests and confidence intervals:

- some refer to the Neyman Construction as an “inverted hypothesis test”

Table 20.1 Relationships between hypothesis testing and interval estimation

<table>
<thead>
<tr>
<th>Property of test</th>
<th>Property of corresponding confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size = α</td>
<td>Confidence coefficient = $1 - \alpha$</td>
</tr>
<tr>
<td>Power = probability of rejecting a false value of $\theta = 1 - \beta$</td>
<td>Probability of not covering a false value of $\theta = 1 - \beta$</td>
</tr>
<tr>
<td>Most powerful</td>
<td>Uniformly most accurate</td>
</tr>
<tr>
<td>Equal-tails test $\alpha_1 = \alpha_2 = \frac{1}{2}\alpha$</td>
<td>Central interval</td>
</tr>
</tbody>
</table>

Discovery in pictures

Discovery: test b-only (null: $s=0$ vs. alt: $s>0$)

- note, one-sided alternative. larger N is “more discrepant”

aka “CLb”
Sensitivity for discovery in pictures

When one specifies 5σ one specifies a critical value for the data before "rejecting the null".

Leaves open a question of sensitivity, which is quantified as "power" of the test against a specific alternative

- In Frequentist setup, one chooses a "test statistic" to maximize power
 - Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative

Measurements in pictures

Measurement typically denoted $\sigma = X \pm Y$.

- X is usually the "best fit" or maximum likelihood estimate
- $\pm Y$ usually means $[X-Y, X+Y]$ is a 68% confidence interval

Intervals are formally "inverted hypothesis tests": (null: $s=s_0$ vs. alt: $s \neq s_0$)

- One hypothesis test for each value of s_0 against a **two-sided alternative**

Upper limits in pictures

What do you think is meant by "95% upper limit"?

Is it like the picture below?

- ie. increase s, until the probability to have data "more discrepant" is < 5%

Upper-limits are trying to exclude large signal rates.

- form a 95% "confidence interval" on s of form $[0,s_{95}]$

Intervals are formally "inverted hypothesis tests": (null: $s=s_0$ vs. alt: $s<s_0$)

- One hypothesis test for each value of s_0 against a **one-sided alternative**

Power of test depends on specific values of null s_0 and alternate s'

- but "uniformly most powerful" since it is a one-sided alternative
The sensitivity problem

The physicist’s worry about limits in general is that if there is a strong downward fluctuation, one might exclude arbitrarily small values of s.

- with a procedure that produces proper frequentist 95% confidence intervals, one should expect to exclude the true value of s 5% of the time, no matter how small s is!
 - This is not a problem with the procedure, but an undesirable consequence of the Type I / Type II error-rate setup.

Power in the context of limits

Remember, when creating confidence intervals the null is $s=s_0$

- and power is defined under a specific alternative (e.g., $s=0$)

CL$_s$

To address the sensitivity problem, CL$_s$ was introduced

- common (misused) nomenclature: $CL_s = CL_{s+b}/CL_b$
 - idea: only exclude if CL$_s$<5% (if CL$_b$ is small, CL$_s$ gets bigger)

CL$_s$ is known to be “conservative” (over-cover): expected limit covers with 97.5%

- Note: CL$_s$ is NOT a probability

“The CLs ... methods combine size and power in a very ad hoc way and are unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid

The Power Constraint

An alternative to CLs that protects against setting limits when one has no sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

- A clean separation of size and power. (a new, arbitrary threshold for sensitivity)
 - Feldman-Cousins foreshadowed the recommendation sensitivity defined as 50% power against b-only
 - David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]
The Power Constraint

An alternative to CLs that protects against setting limits when one has no sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

- A clean separation of size and power. (a new, arbitrary threshold for sensitivity)
- Feldman-Cousins foreshadowed the recommendation sensitivity defined as 50% power against b-only
- David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

“Power-Constrained” CLs+b limits

Even for \(s=0\), there is a 5% chance of a strong downward fluctuation that would exclude the background-only hypothesis.

- we don’t want to exclude signals for which we have no sensitivity
- idea: don’t quote limit below some threshold defined by an \(N-\sigma\) downward fluctuation of b-only pseudo-experiments (for example: -1\(\sigma\) by convention)

Coverage Comparison with CLs

The CLs procedure purposefully over-covers (“conservative”)

- and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until the constraint is applied, at which point the coverage is 100%

- limits are not ‘aggressive’ in the sense that they under-cover

Both measures are useful quantities that should be reported in order to extract the most science from catalogs*

*Taken from Feldman-Cousins paper

Both measures are useful quantities that should be reported in order to extract the most science from catalogs*

Both measures are useful quantities that should be reported in order to extract the most science from catalogs
Coverage Comparison with CLs

The CLs procedure purposefully over-covers (“conservative”)

- and it is not possible for the reader to determine by how much
- The power-constrained approach has the specified coverage until the constraint is applied, at which point the coverage is 100%
- limits are not ‘aggressive’ in the sense that they under-cover
- recent critique of PCL here: http://arxiv.org/pdf/1109.2023v1

A different way to picture Feldman-Cousins

Most people think of plot on left when thinking of Feldman-Cousins

- bars are regions “ordered by” $R = P(n|\mu)/P(n|\mu_{\text{null}})$, with $\int_{-\infty}^{+\infty} p(x|\mu) dx = \alpha$.

But this picture doesn’t generalize well to many measured quantities.

- Instead, just use R as the test statistic… and R is $\lambda(\mu)$

Now let’s study Feldman-Cousins

Feldman & Cousins “Unified Approach” looks like this:

- Neyman Construction
 - For each μ, find region P_μ with probability $1 - \alpha$
 - Confidence Interval includes all μ consistent with observation at x_0

Ordering Rule specifies what region

F-C ordering rule is the Likelihood Ratio

$F_\mu = \{ x \mid \frac{f(x|\mu)}{f(x|\mu_0)} > k_\alpha \}$

The F-C ordering rule follows naturally from Neyman-Pearson Lemma

Feldman-Cousins with and without constraint

With a physical constraint ($\mu > 0$) the confidence band changes, but conceptually the same. Do not get empty intervals.

$t_\mu = -2 \ln \lambda(\mu)$

$\tilde{t}_\mu = -2 \ln \tilde{\lambda}(\mu) = \begin{cases} -2 \ln \frac{\lambda(\mu)}{\lambda(\mu_0)} , & \mu < 0 , \\ -2 \ln \frac{\tilde{\lambda}(\mu)}{\tilde{\lambda}(\mu_0)} , & \mu \geq 0 . \end{cases}$
Modified test statistic for 1-sided upper limits

For 1-sided upper-limit one construct a test that is more powerful for all \(\mu > 0 \) (but has no power for \(\mu = 0 \)) simply by discarding “upward fluctuations”

\[
q_{\mu} = \begin{cases}
-2 \ln \lambda(\mu) & \hat{\mu} \leq \mu, \\
0 & \hat{\mu} > \mu.
\end{cases}
\]

Coverage

Coverage is the probability that the interval covers the true value.

Methods based on the Neyman-Construction always cover.... by construction.

- sometimes they over-cover (eg. “conservative”)

Bayesian methods, do not necessarily cover

- but that’s not their goal.
- but that also means you shouldn’t interpret a 95% Bayesian “Credible Interval” in the same way

Discrete Problems

In discrete problems (eg. number counting analysis with counts described by a Poisson) one sees:

- discontinuities in the coverage (as a function of parameter)
- over-coverage (in some regions)
- Important for experiments with few events. There is a lot of discussion about this, not focusing on it here

A real life example

Each colored curve is represents a single pseudo-experiment

- the test statistic is changing as \(\mu \), the parameter of interest, changes
Neyman Construction with Nuisance parameters

In the strict sense, one wants coverage for μ for all values of the nuisance parameters (here ϵ)

- The "full construction" one needs
- Challenge for full Neyman Construction is computational time (scan in 50-D isn't practical) and to avoid significant over-coverage

- note: projection of nuisance parameters is a union (eg. set theory) not an integration (Bayesian)

Lecture 4

Asymptotic Properties of likelihood based tests

&

Likelihood-based methods
Likelihood-based Intervals

Wilks’s theorem tells us how the profile likelihood ratio evaluated at \(\theta \) is “asymptotically” distributed when \(\theta \) is true:

- asymptotically means there is sufficient data that the log-likelihood function is parabolic
- does NOT require the model \(f(x|\theta) \) to be Gaussian
- there are some conditions that must be met for this to true

Note common exceptions:

- a parameter has no effect on the likelihood (e.g. \(m_H \) when testing \(s=0 \)) related to look-elsewhere effect
- require \(s \geq 0 \), but this just leads to a \(\delta \)-function at \(0 + \frac{1}{2}y^2 \)

4.1 The median significance from Asimov values of the test statistic

4.2 Combining multiple channels

4.3 We describe how to give statistical error bands for the sensitivity.

The Asimov paper

Recently we showed how to generalize this asymptotic approach:

- generalize Wilks’s theorem when boundaries are present
- use result of Wald to get \(\frac{1}{2} \log \left(L(\mu) \right) \)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

http://arxiv.org/abs/1007.1727v2
Median & bands from asymptotics

Get Median and bands in seconds, not days!

Median(q, 10)

-15.87% quantile (median-1σ)

10^10
0 5 10 15 20

Feldman-Cousins with and without constraint

Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to find threshold on test statistic → MINOS is asymptotic approximation of Feldman-Cousins

- With a physical constraint (μ>0) the confidence band changes

\[t_μ = -2 \ln(\lambda(μ)) \]

\[t_μ = -2\ln(\lambda(μ)) \]

Two-sided unconstrained

Two-sided constrained

The Non-Central Chi-Square

Wald’s theorem allows one to find the distribution of -2logλ(μ) when μ is not true -- the result is a non-central chi-square distribution

Let Xi be k independent, normally distributed random variables with means μi and variances σi. Then the random variable

\[\sum_{i=1}^{k} \left(\frac{X_i}{\sigma_i} \right)^2 \]

is distributed according to the noncentral chi-square distribution. It has two parameters: k which specifies the number of degrees of freedom (i.e. the number of Xi), and λ, which is related to the mean of the random variables Xi by:

\[λ = \sum_{i=1}^{k} \left(\frac{μ_i}{σ_i} \right)^2 \]

λ is sometime called the noncentrality parameter. Note that some references define λ in other ways, such as half of the above sum, or its square root.
The main results

The Model is just a binned version of the marked Poisson we have considered

\[L(\mu, \theta) = \prod_{j=1}^{N} \left(\frac{\mu s_j + b_j}{\nu_j} \right)^{n_j} \frac{e^{-(\mu s_j + b_j)}}{\nu_j!} \]

The “Asimov Data” is an artificial dataset where the “observations” are set equal to the expected values given the parameters of the model

\[n_{i,A} = E[n_i] = \nu_i(\theta) + b_i(\theta) \]
\[m_{i,A} = E[m_i] = n_i(\theta) \]

We proved that fits to the Asimov data can be used to get the non-centrality parameter needed for Wald’s theorem

\[-2 \ln \Lambda(\mu) \approx \frac{(\mu - \mu')^2}{\sigma^2} = \Lambda \]

How well does it work?

Monte Carlo test of asymptotic formula

\[n \sim \text{Poisson}(\mu s + b) \]
\[m \sim \text{Poisson}(\tau b) \]

Here take \(\tau = 1 \).

Asymptotic formula is good approximation to 5σ level (\(q_0 = 25 \)) already for \(b \sim 20 \).

Some non-trivial tests: boundaries

Monte Carlo test of asymptotic formula

\(q_\mu \) and \(\tilde{q}_\mu \) give similar tests to the extent that asymptotic formulae are valid.
Some non-trivial tests: boundaries

Monte Carlo test of asymptotic formulae

\[f(q_j/\mu) = \int \left(\frac{f(q_j|\mu)}{f(\mu)} \right) f(\mu) \, d\mu \]

Same message for test based on \(q_{jA} \)

\(q_j \) and \(q_{jA} \) give similar tests to the extent that asymptotic formulae are valid.

We now can describe effect of the boundary on the distribution of the test statistic.

The Likelihood Principle

Likelihood Principle

- As noted above, in both Bayesian methods and likelihood-ratio based methods, the probability (density) for obtaining the data at hand is used (via the likelihood function), but probabilities for obtaining other data are not used!
- In contrast, in typical frequentist calculations (e.g., a p-value which is the probability of obtaining a value as extreme or more extreme than that observed), one uses probabilities of data not seen.
- This difference is captured by the Likelihood Principle*: If two experiments yield likelihood functions which are proportional, then your inferences from the two experiments should be identical.
- L.P. is built in to Bayesian inference (except e.g., when Jeffreys prior leads to violation).
- L.P. is violated by p-values and confidence intervals.
- Although practical experience indicates that the L.P. may be too restrictive, it is useful to keep in mind. When frequentist results “make no sense” or “are unphysical”, in my experience the underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P., strong and weak forms, etc.

The problem with p-values

The decision to reject the null hypothesis is based on the probability for data you didn’t get to agree less well with the hypothesis...
- doesn’t sound very convincing when you put it that way. Other criticisms:
 - test statistic is “arbitrary” (not really, it is designed to be powerful against an alternative)
 - what is the ensemble? Related to conditioning

Goal of Likelihood-based Methods

Likelihood-based methods settle between two conflicting desires:
- We want to obey the likelihood principle because it implies a lot of nice things and sounds pretty attractive
- We want nice frequentist properties (and the only way we know to incorporate those properties “by construction” will violate the likelihood principle)

The asymptotic results give us a way to approximately cover while simultaneously obeying the likelihood principle and NOT using a prior
Bayesian methods

Bob’s example of Bayes’ theorem

Now that you know:
- \(P(\text{btag}| \text{b-jet}) \), i.e., efficiency for tagging b’s
- \(P(\text{btag}| \text{not a b-jet}) \), i.e., efficiency for background

Question: Given a selection of jets with btags, what fraction of them are b-jets?
 - I.e., what is \(P(\text{b-jet} | \text{btag}) \) ?

Answer: Cannot be determined from the given information!
 - Need to know \(P(\text{b-jet}) \): fraction of all jets that are b-jets.
 - Then Bayes’ Theorem inverts the conditionality:
 - \(P(\text{b-jet} | \text{btag}) \propto P(\text{btag}|\text{b-jet}) P(\text{b-jet}) \)

Note, this use of Bayes’ theorem is fine for Frequentist

Bob’s Example

A b-tagging algorithm gives a curve like this

One wants to decide where to cut and to optimize analysis
 - For some point on the curve you have:
 - \(P(\text{btag}| \text{b-jet}) \), i.e., efficiency for tagging b’s
 - \(P(\text{btag}| \text{not a b-jet}) \), i.e., efficiency for background

An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
 - background expectation is 0.1 events
 - you know \(P(\text{N} | \text{no Higgs}) \)
 - signal expectation is 10 events
 - you know \(P(\text{N} | \text{Higgs}) \)

Question: one observes 8 events, what is \(P(\text{Higgs} | \text{N}=8) \) ?

Answer: Cannot be determined from the given information!
 - Need in addition: \(P(\text{Higgs}) \)
 - no ensemble! no frequentist notion of \(P(\text{Higgs}) \)
 - prior based on degree-of-belief would work, but it is subjective.
 This is why some people object to Bayesian statistics for particle physics
Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a sampling of a parameter space which is proportional to a posterior

- it works well in high dimensional problems
- Metropolis–Hastings Algorithm: generates a sequence of points \(\{ \alpha^{(t)} \} \)
 - Given the likelihood function \(L(\alpha) \) & prior \(P(\alpha) \), the posterior is proportional to \(L(\alpha) \cdot P(\alpha) \)
 - propose a point \(\alpha' \) to be added to the chain according to a proposal density \(Q(\alpha'|\alpha) \) that depends only on current point \(\alpha \)
 - if posterior is higher at \(\alpha' \) than at \(\alpha \), then add new point to chain
 - else: add \(\alpha' \) to the chain with probability
 \[
 \rho = \frac{L(\alpha') \cdot P(\alpha')}{L(\alpha) \cdot P(\alpha)} \cdot \frac{Q(\alpha'|\alpha)}{Q(\alpha'|\alpha')}
 \]
 - (appending original point \(\alpha \) with complementary probability)
- RooStats works with any \(L(\alpha), P(\alpha) \)
- can use any RooFit PDF as proposal function \(Q(\alpha'|\alpha) \)
 - Helper for forming custom multivariate Gaussian, Bank of Clues, etc.
 - New Sequential Proposal function similar to BAT

The Jeffreys Prior

Physicist Sir Harold Jeffreys had the clever idea that we can “objectively” create a flat prior uniform in a metric determined by \(I(\theta) \)

Adds “minimal information” in a precise sense, and results in:

\[
\pi(\theta) \propto \sqrt{I(\theta)}.
\]

It has the key feature that it is invariant under reparameterization of the parameter vector \(\theta \); in particular, for an alternate parameterization \(\tilde{\theta} \) we can derive

\[
\pi(\tilde{\theta}) = \pi(\theta) \cdot \left| \frac{\partial \theta}{\partial \tilde{\theta}} \right|
\]

\[
\propto \sqrt{I(\theta) \cdot \left| \frac{\partial \theta}{\partial \tilde{\theta}} \right|}
\]

\[
= \sqrt{I(\theta) \cdot \left| \frac{\partial \theta}{\partial \tilde{\theta}} \right| \cdot \left| \frac{\partial \theta}{\partial \tilde{\theta}} \right|}
\]

\[
= \sqrt{\sum \left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_i \left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_j \left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_i \left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_j}
\]

\[
= \sqrt{\left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_i \left(\frac{\partial \theta}{\partial \tilde{\theta}} \right)_j}
\]

Unfortunately, the Jeffreys prior in multiple dimensions causes some problems, and in certain circumstances gives undesirable answers.

Reference Priors

Reference priors are another type of “objective” priors, that try to save Jeffreys’ basic idea.

Noninformative priors have been studied for a long time and most of them have been found defective in more than one way. Reference analysis arose from this study as the only general method that produces priors that have the required invariance properties, and is successful with the marginalization paradoxes, and have consistent sampling properties.

Ideally, such a method should be very general, applicable to all kinds of measurements regardless of the number and type of parameters and data involved. It should make use of all available information, and coherently so, in the sense that if there is more than one way to extract all relevant information from data, the final result will not depend on the chosen way. The desiderata of generality, exhaustiveness and coherence are satisfied by Bayesian procedures, but the decisiveness is more problematic due to the Bayesian requirement of specifying prior probabilities in terms of degrees of belief. Reference analysis*, an objective Bayesian method developed over the past twenty-five years, solves this problem by replacing the question “what is our prior degree of belief?” by “what would our posterior degree of belief be, if our prior knowledge had a minimal effect, relative to the data, on the final inference?”

See Luc Demortier’s PhyStat 2005 proceedings

http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
Jeffreys’s Prior

Jeffreys’s Prior is an “objective” prior based on formal rules (it is related to the Fisher Information and the Cramér-Rao bound)

\[\pi(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}. \]

\(\mathcal{I}(\theta) \)_{ij} = -E [\frac{\partial^2 \ln f(X;\theta)}{\partial \theta_i \partial \theta_j}].

Eilam, Glen, Ofer, and I showed in arXiv:1007.1727 that the Asimov data provides a fast, convenient way to calculate the Fisher Information

\[V_{jk}^{-1} = -E \left[\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_k} \right] = \frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_k} + \sum_{i=1}^N \frac{\partial \ln L}{\partial \theta_i} \frac{\partial \ln L}{\partial \theta_k}.

Use this as basis to calculate Jeffreys’s prior for an arbitrary PDF!

\[\text{RooWorkspace } \text{w} \text{("w")}; \]
\[\text{w}.\text{defineSet}(\text{"obs"},\text{"x"}); \]
\[\text{w}.\text{defineSet}(\text{"poi"},\text{"mu"}); \]
\[\text{w}.\text{factory}(\text{"ExtendPdf::p(g,n)"}); \]
\[\text{w}.\text{var}(\text{"sigma"})\rightarrow\text{setConstant}(); \]
\[\text{w}.\text{defineSet}(\text{"pol","mu");} \]
\[\text{w}.\text{defineSet}(\text{"obs","x")}; \]
\[\text{RooJeffreysPrior } \text{pi}(\text{"jeffreys","jeffreys","w.pdf\("p")","w.set\("pol"){","w.set\("obs")});} \]

Validate on a Poisson

\[\text{RooWorkspace } \text{w} \text{("w")}; \]
\[\text{w}.\text{factory}(\text{"Gaussian::q(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])"}); \]
\[\text{w}.\text{factory}(\text{"n[10,1,200]"}); \]
\[\text{w}.\text{var}(\text{"n")}\rightarrow\text{setConstant}(); \]
\[\text{w}.\text{defineSet}(\text{"pol","mu");} \]
\[\text{w}.\text{defineSet}(\text{"obs","x")}; \]
\[\text{RooJeffreysPrior } \text{pi}(\text{"jeffreys","jeffreys","w.pdf\("p")","w.set\("pol"){","w.set\("obs")});} \]

Jeffreys’s Prior

Validate Jeffreys’s Prior on a Gaussian \(\mu, \sigma\), and (\(\mu, \sigma\))

\[\text{RooWorkspace } \text{w} \text{("w")}; \]
\[\text{w}.\text{defineSet}(\text{"pol","mu");} \]
\[\text{w}.\text{defineSet}(\text{"obs","x")}; \]
\[\text{RooJeffreysPrior } \text{pi}(\text{"jeffreys","jeffreys","w.pdf\("p")","w.set\("pol"){","w.set\("obs")});} \]

The Bayesian Solution

Bayesian solution generically have a prior for the parameters of interest as well as nuisance parameters

- 2010 recommendations largely echoes the PDG’s stance.

Recommendation: When performing a Bayesian analysis one should separate the objective likelihood function from the prior distributions to the extent possible.

Recommendation: When performing a Bayesian analysis one should investigate the sensitivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading results.

Recommendation: When performing a Bayesian analysis for a single parameter of interest, one should attempt to include Jeffreys’s prior in the sensitivity analysis.
Coverage & Likelihood principle

Methods based on the Neyman–Construction always cover.... by construction.

- this approach violates the likelihood principle

Bayesian methods obey likelihood principle, but do not necessarily cover

- that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a **calibration of our statistical apparatus**. [explain under-/over-coverage]

What should be the view today:

Objective Bayesian analysis is the best Frequentist tool around. -Jim Berger

Bayesian and Frequentist results answer different questions

- major differences between them may indicate severe coverage problems and/or violations of the likelihood principle

Joke

“Bayesians address the question everyone is interested in, by using assumptions no-one believes”

“Frequentists use impeccable logic to deal with an issue of no interest to anyone”

-L. Lyons

The End

Thank You!