Beyond the Standard Model

Lecture 5

Bogdan Dobrescu (Fermilab)

Outline:

• Electroweak symmetry breaking (Lecture 1)
• Quark and lepton masses; vectorlike quarks (Lecture 2)
• New gauge bosons (Lecture 3)
• Extra dimensions (Lecture 4)
• Supersymmetry; how to search for new phenomena (Lecture 5)

September 2011 - European School of HEP
Minimal Supersymmetric Standard Model

Many new particles, many new parameters
→ prototype for “New Physics”

Nice theoretical features:

• No quadratic divergences ($\langle H \rangle \sim M_{\text{SUSY}}, \mu$)
• Gauge couplings unify
• Lightest superpartner (LSP) is a dark matter candidate
• …
Quadratic divergences in the Higgs self-energy due loops with SM particles are exactly cancelled by those due loops with superpartners: requires mass of \tilde{t} (and probably of \tilde{g}) to be near the electroweak scale.

Most powerful test of MSSM: $\tilde{t}\tilde{t}^\dagger$ production.
Fermion masses in the Standard Model

All Standard Model fermions are chiral \Rightarrow they get masses from interactions with the vacuum:

$$Q^3_L \equiv \langle H^0 \rangle, H^+$$

Hierarchy of Yukawa couplings: $y_t \approx 1$

$$m_b \approx 2.7 \text{ GeV at the weak scale} \Rightarrow y_b \approx 0.016$$
Fermion masses in the MSSM

The supersymmetric Higgs sector is a Two-Higgs-Doublet model of type-II (only up-type quarks get masses from H_u).

This is imposed by holomorphy, i.e., the superpotential is a function of fields and not their Hermitian conjugates.

Superpotential: \[W = y_u \hat{u}^c \hat{H}_u \hat{Q} - y_d \hat{d}^c \hat{H}_d \hat{Q} - y_\ell \hat{\ell}^c \hat{H}_d \hat{L} + \mu \hat{H}_u \hat{H}_d \]
Lagrangian \(\mathcal{L} \supset -y_b \bar{b}_R Q^3_L H_d - y_\tau \bar{\tau}_R L^3_L H_d \) (due to the superpotential)

The MSSM allows \(y_b = O(1) \) if \(\tan \beta \equiv \frac{v_u}{v_d} \approx 50 \).

\(\tan \beta \) is determined by the minimization of the potential:

\[
\left(|\mu|^2 + m^2_{H_u} \right) |H_u|^2 + \left(|\mu|^2 + m^2_{H_d} \right) |H_d|^2 + b H_u H_d
+ \frac{1}{8} \left(g^2 + g'^2 \right) \left(|H_u|^2 - |H_d|^2 \right)^2
\]

\(m^2_{H_u}, m^2_{H_d} \) and \(b \) (\(\equiv B\mu \)) are soft susy-breaking parameters.

Note: \(y_\tau/y_b = m_\tau/m_b \) in the MSSM is independent of \(\tan \beta \), so that

\[
\frac{B(A^0 \rightarrow \tau^+\tau^-)}{B(A^0 \rightarrow b\bar{b})} \approx \frac{y_\tau^2}{3y_b^2} = \frac{m_\tau^2}{3m_b^2} \approx 10\%
\]
Limits on A^0, H^0 mass from FCNC ($b \to s\gamma,...$), ...

At the LHC: $b\bar{b}H^0$ associated production.

\[
\frac{y_b}{\sqrt{2}} \left(A^0 \bar{b} \gamma_5 b - H^0 \bar{b} b \right)
\]

Background to $b\bar{b}\tau^+\tau^-$ from $t\bar{t}$ production.

usual MSSM

A. Djouadi, hep-ph/0503173
There is also s-channel production via gluon fusion:

b and \tilde{b} loops \Rightarrow

Cross section depends on the masses and mixing of \tilde{b} squarks.
Importance of discrete symmetries:

Standard model must be extended in order to include dark matter: a new electrically-neutral stable particle.

Stability of dark matter must be ensured by some symmetry. Simplest possibility: a new discrete symmetry.

Examples:

- Supersymmetry with R parity
- Universal extra dimensions (KK parity)
- Little Higgs models with T parity

Bonus:

If new particles couple only in pairs to standard model ones, then the contributions to electroweak observables are loop-suppressed!

⇒ new particles may be light enough for being discovered soon at colliders!
At the Tevatron and the LHC:
pair production of colored odd particles,
followed by cascade decays through lighter odd particles,
until a pair of dark matter candidates escapes the detector.

⇒ Generic signal: missing $E_T + \text{jets} + \text{leptons}$

E.g., squark production and cascade decays to neutralinos:

Look for: $3 \text{ leptons} + 2 \text{jets} + E_T$
Similarity between supersymmetry, little Higgs with KK parity, and one universal extra dimension is not accidental:

- $N = 1$ supersymmetry is an extra dimension with anticommuting coordinate
- Little Higgs with T parity is a deconstructed extra dimension.

An important distinction: spins of partners are different
(squarks have spin 0, KK quarks have spin 1, etc.)

Measuring spins at the LHC is challenging but not impossible.
Energy

$\sim 1 \text{ TeV}$

$\sim 100 \text{ GeV}$

New Physics

Gauge and flavor sectors of the Standard Model

very weakly interacting particles???
• Probing the unknown ...

CMS and ATLAS are exploring physics at distances of \(\sim 10^{-19} \text{m} \).
This may be qualitatively different than the physics at larger distances, probed by CDF and D0.

• **It is hard to make predictions!**

There are many theories for physics beyond the SM.
No theory is sufficiently successful so far in explaining the puzzles of the SM \(\rightarrow \) we should consider a wide range of theories.

Even within well defined models, a small change in parameters may lead to widely different collider signatures.

• **Best attitude:** search as many final states as possible, try to be “model independent”.

Similar situation for LHCb, Belle, ...
Search for two-body resonances

Try all combinations of two objects: jj, $\mu\mu$, ee, $\gamma\gamma$, $t\bar{t}$, tb, $\tau\mu$, ...

Don’t make simplifying assumptions such as lepton universality or gauge coupling unification ...

Example – WZ resonance:

\begin{center}
\begin{tikzpicture}[baseline=(current bounding box.center)]
 \node (q1) at (0,0) [crossed dot] {q};
 \node (W) at (1.5,0) [crossed dot] {W};
 \node (Z) at (2,0) [crossed dot] {Z};
 \node (Wp) at (1,1) [crossed dot] {W'};
 \draw (q1) -- (Wp);
 \draw (Wp) -- (W);
 \draw (Wp) -- (Z);
\end{tikzpicture}
\end{center}
Search for resonances $+ X$

E.g., 2 universal extra dimensions:
s-channel production of a KK gluon followed by a cascade decay

$\rightarrow t\bar{t}$ resonance $+ 2$ jets

$\rightarrow t\bar{b}$ resonance $+ 2$ jets
Search for pairs of resonances

E.g., leptoquarks:

E.g., nonstandard Higgs decays:
Conclusions

Many possibilities for what you could discover:

- Vectorlike fermions
- New gauge bosons (Z', W', G', ...)
- Extended Higgs sectors
- UED, little Higgs, susy, warped ED, ...

Unitarity of longitudinal WW scattering requires a Higgs boson (may have non-SM production/decays) or a new strong interaction.
Find out what theory describes physics at the TeV scale.

Energy

? ??

∼ 1 TeV ?

New Physics

∼ 100 GeV

Standard Model

Bogdan Dobrescu (Fermilab): September 2011 - European School of HEP