Field Theory and the Standard Model

Outline

1. Quantum fields and Symmetries.
 - 1.1. Symmetries and the Noether theorem.
 - 1.2. Quantization and perturbation theory.
2. Gauge theories.
 - 2.1. Minimal coupling and gauge invariance of Schrodinger eq.
 - 2.2. From Dirac and Maxwell eqs. to QED.
 - 2.3. Non-abelian gauge theories.
 - 3.1. The Goldstone theorem.
 - 3.2. Higgs mechanism.
4. The electroweak sector of the Standard Model.
 - 4.1. Gauge group and matter content.
 - 4.2. Weak mixing angle and gauge boson masses.
 - 4.3. Neutral and charged currents.
 - 4.4. The Cabibbo-Kobayashi-Maskawa matrix and the GIM mechanism.
 - 4.5. Custodial symmetry.
5. Quantum corrections and renormalization.
 - 5.1. UV divergences and regularization.
 - 5.2. Renormalizable and non-renormalizable theories.
 - 5.3. Renormalization and running of couplings.
 - 6.1. Stability and triviality bounds on the Higgs mass.
 - 6.2. $W W$ scattering and unitarity.

- Quantum anomalies.

- 5.4. Quantum anomalies.

- 5.4. Quantum anomalies.
1. Quantum fields and Symmetries.

Symmetries are fundamental in our understanding in nature.

- Continuous spacetime symmetries, ex. rotations:

 Atomic orbital

- Continuous and discrete internal symmetries in particle physics:

 Ex. the eightfold way: $SU(3)$ Gell-Mann classification of hadrons

- Discrete symmetries in crystals

 ![Symmetry examples](image)

The importance of symmetries in nature is to a large extent due to the Noether theorem: To any continuous symmetry corresponds a conserved charge.

Examples:

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Conserved charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time translation</td>
<td>Energy</td>
</tr>
<tr>
<td>Space translation</td>
<td>Momentum</td>
</tr>
<tr>
<td>Rotations</td>
<td>Angular momentum</td>
</tr>
<tr>
<td>Phase rotations wave function</td>
<td>Electric charge</td>
</tr>
</tbody>
</table>

- Symmetries are manifest in the spectrum and interactions. Their study greatly simplifies the dynamics.

- In nature, local symmetries determine the fundamental interactions!
1.2. Quantization and perturbation theory.

We start from Schrödinger versus interaction/Heisenberg picture in Quantum Mechanics.

\[H = H_0 + H_{\text{int}} \]

free hamiltonian \(\not\lor \) interaction

Schrödinger eq. is

\[i \frac{d}{dt} |\Psi_S(t)\rangle = (H_0 + H_{\text{int}}) |\Psi_S(t)\rangle \]

time dep. \(\not\lor \) time-indep. operators.

In the interaction picture

\[|\Psi_I(t)\rangle = e^{iH_0t} |\Psi_S(t)\rangle, \quad H_{\text{int}}(t) = e^{iH_0t} H_{\text{int}}(t) e^{-iH_0t} \]

where the time-ordered product is defined as

\[TA(t_1)B(t_2) = \theta(t_1-t_2)A(t_1)B(t_2) + \theta(t_2-t_1)B(t_2)A(t_1) \]

The S-matrix is defined as

\[S = \lim_{t_1 \to \infty, t_2 \to -\infty} U(t, t_i) = T e^{-i \int dt H_{\text{int}}(t)} = T e^{i \int d^4x L_{\text{int}}(x)} \]

whereas transition amplitudes are

\[S_{if} = \langle \Psi_f | S | \Psi_i \rangle = \langle p'_1 \cdots p'_m, \text{ out} | p_1 \cdots p_n, \text{ in} \rangle \]

no interaction term

\[+ i (2\pi)^4 \delta^4(\sum_{j=1}^m p'_j - \sum_{i=1}^n p_i) A_{if} \]

Feynman rules are given for the matrix \(A_{if} \).

the Schrodinger eq. becomes (Ex:)

\[i \frac{d}{dt} |\Psi_I(t)\rangle = H_{\text{int}}(t) |\Psi_I(t)\rangle \]

We define the evolution operator by

\[|\Psi_I(t)\rangle = U(t, t_i) |\Psi_I(t_i)\rangle, \quad U(t_i, t_i) = 1 \]

Ex: \(U \) satisfies the eq.

\[i \frac{\partial U(t, t_i)}{\partial t} = H_{\text{int}}(t) U(t, t_i) \]

It can be shown that (Ex:)

\[U(t, t_i) = T e^{-i \int_{t_i}^t dt' H_{\text{int}}(t')} \]

Scattering amplitude \(\langle p'_1 \cdots p'_m, \text{ out} | p_1 \cdots p_n, \text{ in} \rangle \)
Let us consider for illustration a scalar theory

\[\mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial t} - m \right)^2 - \frac{\lambda}{4!} \phi^4 = \frac{1}{2} \frac{\partial \phi}{\partial t}^2 - \frac{1}{2} (\nabla \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \]

\[= \mathcal{L}_0 + \mathcal{L}_{int} \quad \text{where} \quad \mathcal{L}_{int} = - \frac{\lambda}{4!} \phi^4 \]

- Metric convention \(\eta_{mn} = \text{diag}(1, -1, -1, -1) \). Conjugate momentum : \(\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \dot{\phi} \) and hamiltonian

\[H = \int d^3x \left[\frac{\partial \mathcal{L}}{\partial \dot{\phi}} - \mathcal{L} \right] = \int d^3x \left[\frac{1}{2} \dot{\phi}^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4!} \phi^4 \right] \]

\[= H_0 + H_{int} \quad \text{where} \]

\[\begin{cases} H_0 = \int d^3x \left[\frac{1}{2} \dot{\phi}^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{m^2}{2} \phi^2 \right] \\ H_{int} = \int d^3x \frac{\lambda}{4!} \phi^4 \end{cases} \]

and the energy/hamiltonian

\[H_0 = \int d^3k \, \omega_k (a_k^\dagger a_k) + \frac{1}{2} \]

is one of a collection of quantum oscillators. Therefore (no interaction in the asymptotic past and future)

\[\begin{cases} |\psi_i \rangle = |p_1 p_2 \cdots p_n \rangle = a_1^\dagger a_2^\dagger \cdots a_n^\dagger |0\rangle \\ |\psi_f \rangle = |p_1' p_2' \cdots p_m' \rangle = a_1^\dagger' a_2^\dagger' \cdots a_m^\dagger' |0\rangle \end{cases} \]

Feynman rules in perturbation theory then follow from the expanding in powers of the interaction

\[\langle p_1' \cdots p_m' | S | p_1 \cdots p_n \rangle = \langle 0 | a_{p_1'} \cdots a_{p_m'} T e^{\frac{i}{\hbar} \int d^4x \mathcal{L}_{int}(x) a_{p_1}^\dagger \cdots a_{p_n}^\dagger} |0 \rangle \]

Eqs. and solutions for the free-theory :

\[(\square + m^2) \phi(x) = 0 \Rightarrow \]

\[\phi(x) = \int \frac{d^3k}{(2\pi)^{3/2} \sqrt{2\omega_k}} \left(e^{ikx} a_k^\dagger + e^{-ikx} a_k \right) \]

where \(k_0 = \omega_k = \sqrt{k^2 + m^2} \). The solution \(\phi(x) \) is the operator in the Heisenberg picture. Quantization proceeds as usual:

\[[a_k, a_k^\dagger] = \delta^3(k-k') \quad [\phi(t, x, \pi(t, y)] = i\delta^3(x-y) \]

The one-particle states are

\[|k\rangle = a_k^\dagger |0\rangle \Rightarrow \langle k'|k\rangle = \delta^3(k-k') \]

\[\begin{array}{ccc}
\text{2-2 scattering at 1-loop order} & \frac{g^2}{(2\pi)^3} \int \frac{d^4k}{\sqrt{2\omega_k}} \int \frac{d^4p}{\sqrt{2\omega_p}} \int \frac{d^4l}{\sqrt{2\omega_l}} & \frac{1}{(p^2-m^2)^2} \frac{1}{(p-n)^2+m^2} \\
\end{array} \]

Obs. Integrals haveUV divergence. We will
Perturbation theory is now one of the cornerstones of QFT. The anomalous magnetic moment of the electron was computed for the first time by Schwinger at one-loop in 1948 (the factor below, $\frac{\alpha}{2\pi}$, is engraved on Schwinger’s tombstone). Today it is known up to four-loops!

$$a_e = \frac{g-2}{2} = \frac{\alpha}{2\pi} + \ldots$$

$$a_e^{\text{exp}} = (1159652185.9 \pm 3.8) \times 10^{-12},$$

$$a_e^{\text{th}} = (1159652175.9 \pm 8.5) \times 10^{-12}$$

The agreement is very impressive!

There are however still mysteries. For the muon, the measure value at BNL disagrees by 3.4σ from the theoretical SM calculation

$$a_\mu^{\text{exp}} = a_\mu^{\text{QED}} + a_\mu^{\text{EW}} + a_\mu^{\text{had}}$$

$$a_\mu^{\text{exp}} \simeq 0.00116592089$$

It is likely that the hadronic contribution is not known accurately enough. This is a very hot research topic nowadays.

2. Gauge theories.

The four fundamental interactions in nature have a common feature: they are gauge interactions.
2.1. Gauge invariance of Schrödinger eq.

Simplest example of gauge symmetry: particle mass m and charge q in quantum mechanics, hamiltonian

$$H = \frac{1}{2m}(p - qA)^2 + qV,$$
(2)

where the vector A and the scalar V potential are related to the electric/magnetic fields via

$$E = -\nabla V - \frac{\partial A}{\partial t}, \quad B = \nabla \times A.$$
(3)

Maxwell eqs. invariant under gauge transformations

$$A' = A + \nabla \alpha, \quad V' = V - \frac{\partial \alpha}{\partial t}.$$
(4)

The Schrödinger eq. is covariant, with $H = H(A, V)$, $H' = H(A', V')$

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi \rightarrow i\hbar \frac{\partial \psi'}{\partial t} = H'\psi'$$
(5)

if the wave function transforms as

$$\psi'(r, t) = e^{iq\alpha}\psi(r, t).$$
(6)

- The mean value of any physically measurable quantity is gauge invariant, ex. $P(r) = |\psi|^2 = |\psi'|^2$.

Exercise: Defining the velocity operator $v = \frac{1}{m}(p - qA)$, check that $\langle \psi | v | \psi \rangle = \langle \Psi | v' | \Psi' \rangle$.

Gauge principle: Postulate that physical laws are invariant under (4)+(6) → the hamiltonian is determined to be (2). (6) + (4) define an $U(1)$ transformation. Therefore, $U(1)$ gauge invariance determines the electromagnetic interaction.

2.2. From Dirac and Maxwell eqs. to QED.

Maxwell eqs. in terms of $A_m = (A, V)$ are invariant under gauge transformations

$$A_m \rightarrow A'_m = A_m - \partial_m \alpha.$$
(7)

Relativistic spin 1/2 fermion described by the Dirac eq. $(i\gamma^m \partial_m - M)\psi = 0$.

Gauge invariance postulate: physics invariant under (7), supplemented with

$$\psi(x) \rightarrow \psi'(x) = e^{i\alpha(x)}\psi(x).$$
(8)

Dirac eq. not invariant unless we replace the derivative with a covariant derivative

$$(D_m\psi')' = (\partial_m + i q A'_m)\psi' = e^{i\alpha(x)}(D_m\psi(x)).$$
(9)

Dirac eq. in an electromagnetic field becomes

$$(i\gamma^m D_m - M)\psi = (i\gamma^m \partial_m - q \gamma^m A_m - M)\psi = 0.$$
(10)