QCD in Heavy Ion Collisions

Edmond IancuInstitut de Physique Théorique de Saclay

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 1

Au+Au collisions at RHIC

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

• Au+Au collision at STAR: longitudinal projection

CERN Summer School 2011

 $\bullet\,\sim\,3000$ produced particles streaming into the detector

Heavy Ion Collisions @ RHIC & the LHC

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 2/70 Au+Au collisions at RHIC

• Au+Au collision at STAR: transverse projection

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 4 / 7

Pb+Pb collisions at the LHC: ALICE

- ullet Pb+Pb collision at ALICE: ~ 1600 hadrons per unit rapidity
- How to describe/understand such a complex system ?

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiştei, Romania 5
Pb+Pb collisions at the LHC: CMS

- The concept of particle is not so useful anymore ...
- One should rather speak about QCD matter

Pb+Pb collisions at the LHC: ATLAS

 Traditional perturbative methods become inappropriate (collective phenomena, multiple scattering ...)

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 6 / 70

QCD matter: from hadrons ...

 At low energies, QCD matter exists only in the form of hadrons (mesons, baryons, nuclei)

QCD in Heavy Ion Collisions

QCD matter: ... to partons

- At sufficiently high energies, the relevant degrees of freedom are partonic (quarks & gluons)
- True for both p+p collisions and A+A collisions ...

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

Cheile Grădiștei, Romania

9 / 70

New forms of QCD matter produced in HIC

- Prior to the collision: 2 Lorentz-contracted nuclei ('pancakes')
 - 'Color Glass Condensate' (CGC)
- Right after the collision: non-equilibrium partonic matter
 - 'Glasma' (from 'Glass' + 'Plasma')
- ullet At later stages ($\Delta t \gtrsim 1$ fm/c) : local thermal equilibrium
 - 'Quark-Gluon Plasma' (QGP)
- Final stage ($\Delta t \gtrsim 6 \text{ fm/c}$) : hadrons
 - 'final event', or 'particle production'

QCD matter: ... to partons

- At sufficiently high energies, the relevant degrees of freedom are partonic (quarks & gluons)
- ... but HIC give us access to new forms of partonic matter

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

ia 9

How to study these new forms of matter?

• Standard perturbation theory in QCD (= expansion in powers of the coupling 'constant' α_s) fails even at weak coupling, because of the high parton density.

• High-density effects (multiple scattering, parton saturation, Debye screening etc) must be resummed to all orders in α_s .

QCD in Heavy Ion Collisions

• This results into effective theories.

The possibility of a strong coupling

• Besides, there is no guarantee that the coupling is weak!

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

Monday, April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the guarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peerreviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

- 'Perfect fluid' = $\alpha_s \to \infty$
- Interesting connection with string theory ('AdS/CFT correspondence').

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

Lecture 0: A QCD Primer

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \sum_f \bar{\psi}_f \Big(i \gamma^\mu D_\mu - m \Big) \psi_f$$

Effective theories for Heavy Ion Collisions

• A space-time picture of a heavy ion collision

- Different effective theories apply at different stages.
- But they refer all to QCD!

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

13 / 70

QCD: Quarks & Gluons

- Electromagnetic interactions: Quantum Electrodynamics (QED)
 - matter : electron; interaction carrier : photon
 - interaction vertex :

- Strong interactions: Quantum Chromodynamics (QCD)
 - matter : quarks; interaction carriers : gluons
 - interaction vertices :

- i, j: color indices of the quarks ($N_c = 3$ possible values)
- a, b, c: color indices of the gluons $(N_c^2 1 = 8 \text{ possible values})$

CERN Summer School 2011

QCD in Heavy Ion Collisions Cheile Grădiștei, Romania

Running coupling: QED

• An electric charge polarizes the surrounding medium:

- ullet The effective charge depends upon the distance R from the bare one.
- Normally this leads to screening: $e_{\rm eff}(R)$ decreases with R.

Asymptotic freedom

• The coupling is weak at short distances, or large transferred momenta:

$$Q \sim 1/R \gg \Lambda_{
m QCD} \simeq 200 \; {
m MeV}$$

Running coupling: from QED to QCD

• The vacuum itself is a polarisable 'medium'!

$$QED:$$
 $\alpha_{\text{eff}}(R) = \frac{\alpha}{1 - \frac{2\alpha}{3\pi} \ln(1/mR)}, \quad \alpha \equiv \frac{e^2}{\hbar c} \approx \frac{1}{137}$

• In QCD, the (longitudinal) gluons yield antiscreening!

$$QCD:$$
 $\alpha_s(R) \equiv \frac{g^2(R)}{4\pi} = \frac{2\pi N_c}{(11N_c - 2N_f)\ln(1/\Lambda_{QCD}R)}$

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei. Romania

17 / 70

Confinement

- The quark-antiquark potential increases linearly with the distance.
- Quarks (and gluons) are confined into colorless hadrons

Romania 18 / 70 CERN Summer

16 / 70

QCD in Heavy Ion Collisions

Quark-antiquark potential at finite T

ullet With increasing the temperature T, the potential flattens at shorter and shorter distances.

ullet This eventually leads to a phase transition at some critical temperature T_c

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

20 / 70

Quark-Gluon Plasma

ullet Lattice calculations of the pressure in QCD at finite T

- Rapid increase of the pressure
 - ullet at $T < T_c$: 3 light mesons (π^0, π^\pm)
 - at $T < T_c$: 52 d.o.f. (gluons: $8 \times 2 = 16$; quarks: $3 \times 3 \times 2 \times 2 = 36$)
- Interpreted as a rise in the number of active degrees of freedom due to the liberation of quarks and gluons

Quark-Gluon Plasma

ullet Lattice calculations of the pressure in QCD at finite T

- Rapid increase of the pressure
 - \bullet at $T \simeq 270$ MeV with gluons only
 - ullet at $T\simeq 150$ to 180 MeV with light quarks
- Interpreted as a rise in the number of active degrees of freedom due to the liberation of quarks and gluons

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

21 / 70

Debye screening

- Quark-Gluon Plasma (QGP) : a system of quarks and gluons which got free of confinement !
- How is that possible ???

- In a dense medium, color charges are screened by their neighbors
- ullet The interaction potential decreases exponentially beyond the Debye radius $r_{
 m Debye}=1/m_{
 m Debye}$
- ullet Hadrons whose sizes are larger than r_{Debue} cannot bind anymore

CERN Summer School 2011

QCD in Heavy Ion Collisions Ch

Deconfinement phase transition

- When the nucleon density increases, they merge, enabling quarks and gluons to hop freely from a nucleon to its neighbors
- This phenomenon extends to the whole volume when the phase transition ends
- Note: if the transition was first-order, it would go through a mixed phase containing a mixture of nucleons and plasma

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 23 / 70 The actual scenario is a 'cross-over'

 ▷ This was firmly established by the Wuppertal–Budapest lattice group (Aoki et al., Nature, 443 (2006) 675)

Possible first-order scenario with critical bubbles

... but this is not what really happens!

QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 24 / 70 Phase-diagram for QCD

• ... as explored by the expansion of the Early Universe ...

CERN Summer School 2011

QCD in Heavy Ion Collisions

The Big Bang

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

27 / 70

The Little Bang

• The subject of these lectures

Phase-diagram for QCD

• ... as explored by the expansion of the Early Universe ...

• ... and in the ultrarelativistic heavy ion collisions.

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grădiștei, Romania 28 / 70 Lecture I: Initial conditions z = -ctz = ct $\rightarrow z$ (beam axis)

- ullet au < 0: hadronic wavefunctions prior to the collision
 - high-energy evolution & the Color Glass Condensate
 - it applies to any highly energetic hadron (proton or nucleus)

Cheile Grădiștei, Romania **CERN Summer School 2011**

Lecture I: Initial conditions

- ullet au < 0: hadronic wavefunctions prior to the collision
- \bullet $au\sim0$ fm/c : the hard scattering
 - production of hard particles: jets, direct photons, heavy quarks
 - calculable within (standard) perturbative QCD ('leading twist')

Color Glass Condensate

Cheile Grădiștei, Romania 30 / 70

Lecture I: Initial conditions

- \bullet $\tau < 0$: hadronic wavefunctions prior to the collision
- \bullet $\tau \sim 0$ fm/c : the hard scattering
- \bullet $au\sim0.2$ fm/c : strong color fields (or 'glasma')
 - semi-hard quanta ($p_{\perp} \lesssim 2$ GeV): gluons, light quarks
 - make up for most of the multiplicity
 - sensitive to the physics of saturation ('higher twist')

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

30 / 7

Parton picture

• When an energetic hadron is probed on a hard resolution scale (momentum transfer $Q^2 \gg \Lambda_{\rm OCD}^2$), one sees a bunch of partons ...

- with transverse area $\sim 1/Q^2$...
- and longitudinal momentum fraction $x = k_z/P$ fixed by the kinematics

CERN Summer School 2011

• E.g.: in Deep Inelastic Scattering (DIS)

$$x = \frac{Q^2}{s}$$
 $s = \text{center-of-mass energy squared}$

• N.B.: high energy \iff small x

CERN Summer School 2011 QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

31 / 70

QCD in Heavy Ion Collisions

Particle production in hadron-hadron collisions

• The partons relevant for the process under consideration carry the longitudinal momentum fractions

$$x_1 = \frac{p_{a\perp}}{\sqrt{s}} e^{Y_a} + \frac{p_{b\perp}}{\sqrt{s}} e^{Y_b}, \qquad x_2 = \frac{p_{a\perp}}{\sqrt{s}} e^{-Y_a} + \frac{p_{b\perp}}{\sqrt{s}} e^{-Y_b}$$

ullet p_{\perp} : transverse momenta of the produced particles

• Y: their rapidities • \sqrt{s} : collision energy

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

33 / 70

AA collisions at RHIC & LHC

- 99% of the total multiplicity lies below $p_{\perp} = 2$ GeV
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200$ GeV)
- $x \sim 4 \times 10^{-4}$ at the LHC ($\sqrt{s} = 5.5$ TeV)

 \triangleright partons at small x are the most important

Kinematical domain for the LHC

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

34 / 70

Parton distributions at HERA

The gluon distribution rises very fast with increasing energy

• Gluon distribution $xg(x,Q^2)$: # of gluons with transverse size $\Delta x_{\perp} \sim 1/Q$ and longitudinal momentum $k_z = xP$

Bremsstrahlung

$$\mathrm{d}\mathcal{P}_{\mathrm{Brem}} \sim \alpha_s(k_\perp^2) \, C_R \, \frac{\mathrm{d}^2 k_\perp}{k_\perp^2} \, \frac{\mathrm{d}x}{x}$$

- Phase-space enhancement for the emission of
 - collinear $(k_{\perp} \rightarrow 0)$
 - and/or soft (low-energy) $(x \to 0)$ gluons
- The parent parton can be either a quark or a gluon

$$C_F = t^a t^a = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}, \quad C_A = T^a T^a = N_c = 3$$

• The daughter gluon can in turn radiate an even softer gluon!

CERN Summer School 2011 QCD in Heavy Ion Collisions

Gluon cascades

- \bullet n gluons strictly ordered in x
- The *n*-gluon cascade contributes

$$\frac{1}{n!} \left(\alpha_s Y \right)^n$$

 The sum of all the cascades exponentiates:

$$xg(x,Q^2)\,\propto\,{\mathrm e}^{\omega\alpha_s Y}$$
 BFKL evolution

(Balitsky, Fadin, Kuraev, Lipatov, 75–78)

This evolution is linear: the emitted gluons do not interact with each other

2 gluons

• The 'cost' of the addition gluon:

$$\alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x}$$

Formally, a process of higher order in α_s , but which is enhanced by the available rapidity interval

- $Y \equiv \ln(1/x)$: rapidity difference between the parent quark and the last emitted gluon
- When $\alpha_s Y \gtrsim 1 \Longrightarrow$ need for resummation!

QCD in Heavy Ion Collisions Gluon recombination

- Eventually gluons start overlapping with each other and then they interact: $2 \rightarrow 1$ gluon recombination
- These interactions stop the growth: saturation

Saturation momentum

• Number of gluons per unit area:

$$\mathcal{N} \sim \frac{x g_A(x, Q^2)}{\pi R_A^2}$$

Recombination cross-section

$$\sigma \sim \frac{\alpha_s}{Q^2}$$

• Recombination happens if $N\sigma \gtrsim 1$, i.e. $Q^2 \lesssim Q_s^2$, with

$$Q_s^2(x,A) \simeq \alpha_s \frac{xg_A(x,Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.25}}$$

• Low $Q^2 \implies \text{large area} \sim 1/Q^2 \implies \text{strong overlapping}$

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

Multiplicities at the LHC: p+p

- In a high-energy scattering, the saturated gluons are released in the final state
 - typical transverse momentum $\langle p_T \rangle \sim Q_s(E)$
 - ullet average multiplicity $\mathrm{d}N/\mathrm{d}\eta \, \sim \, Q_s^2(E)$

Saturation scale as a function of x and A

• $x \sim 10^{-5}$: $Q_s \sim 1$ GeV for proton and ~ 3 GeV for Pb or Au

QCD in Heavy Ion Collisions Cheile Grădistei, Romania 42 / 70

Multiplicities in HIC: RHIC & LHC

- Logarithmic growth (ln s) excluded by the LHC data
- Larger energy exponent (E^{λ}) for A+A than for p+p
 - \triangleright this difference is theoretically understood

Geometric scaling

- A very robust, qualitative, prediction of saturation: DIS at HERA, Au+Au at RHIC, p+p at the LHC ... (looking forward to the relevant Pb+Pb data at the LHC)
- The single-inclusive spectra for particle production depend...
 - ullet ... upon the particle transverse momentum p_T
 - ... and the COM energy of the collision \sqrt{s}

... only via the ratio of p_T to the saturation momentum Q_s :

$$rac{\mathrm{d}N}{\mathrm{d}\eta\,\mathrm{d}^2p_T}\,\simeq\,F(au) \qquad ext{with} \qquad au\,\equiv\,rac{p_T^2}{Q_s^2(p_T/\sqrt{s})}$$

• At high energy, Q_s is the only intrinsic scale in the problem !

QCD in Heavy Ion Collisions Cheile Grădistei, Romania The need for an effective theory

• How to compute the saturation scale from first principle ?

- Relatively hard scale $(Q_s \gg \Lambda_{\rm QCD}) \Longrightarrow$ weak coupling!
- ... but high density \Longrightarrow strong non-linear effects
- Solution: a reorganization of perturbation theory! (McLerran and Venugopalan, 94; E.I., McLerran, and Leonidov, 00)

Geometric scaling at the LHC: p+p

$$R_{s_1/s_2} \,=\, \frac{\left(\mathrm{d}N/\mathrm{d}\eta\,\mathrm{d}^2p_T\right)\big|_{s_1}}{\left(\mathrm{d}N/\mathrm{d}\eta\,\mathrm{d}^2p_T\right)\big|_{s_2}} \,\to\, 1 \quad \text{as a function of }\tau\;\dots\;\text{if scaling}$$

Cheile Grădistei, Romania

Color Glass Condensate

- Small-x gluons: classical color fields A_a^{μ} radiated by fast color charges ρ_a with $x' \gg x$, frozen in some random configuration
- $W_Y[\rho]$: probability distribution for the charge density at Y
- Evolution equation for $W_Y[\rho]$ with increasing $Y = \ln 1/x$

$$\frac{\partial}{\partial Y}W_Y[\rho] = HW_Y[\rho]$$
 (JIMWLK)

45 / 70

How to scatter 2 CGC's?

A heavy ion collision at high energy

• Main difficulty: How to treat collisions involving a large number of partons?

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

49 / 70

Proton-nucleus collisions (1)

$$x_1 \sim \frac{p_\perp}{\sqrt{s}} e^Y \sim \mathcal{O}(1)$$

$$x_2 \sim \frac{p_\perp}{\sqrt{s}} e^{-Y} \ll 1$$

- ullet Most interesting situation: forward particle production ($Y\gtrsim 3$) at 'semi-hard' momenta ($p_{\perp} \sim 1 \div 5$ GeV)
 - very small $x_2 \ll 1$ in the nucleus
 - \bullet p_{\perp} comparable to $Q_s(A,x_2)$
- Dilute-Dense: new factorization scheme needed \triangleright similar to deep inelastic scattering at small x

Proton-proton collisions

- Dilute-Dilute: one parton from each projectile interact
- Collinear factorization scheme of perturbative QCD
 - usual pdf's + DGLAP evolution
 - partonic cross-sections
- \triangleright Caution: forward rapidity $(Y \gg 1)$ & not too hard $p_{\perp} \Rightarrow x_2 \ll 1$

QCD in Heavy Ion Collisions Cheile Grădistei, Romania Proton-nucleus collisions (2)

- How to include both multiple scattering and saturation ?
 - proton = collinear factorization (large x_1)
 - nucleus = described as a CGC
 - parton—CGC cross-section to all orders in the gluon density

50 / 70

factorization for 'dilute-dense'

- The color charges in the target (ρ_a) are 'frozen' during the collision (by Lorentz time dilation)
 - compute the scattering between the parton and a fixed configuration of color charges
 - average over all the configurations by integrating over ρ_a with the CGC weight function

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_{\perp}} \right\rangle_{V} = \int [\mathcal{D}\rho] \; W_{Y}[\rho] \; \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_{\perp}}[\rho]$$

• The target color field A_a^{μ} (as generated by ρ_a) is strong and must be resummed to all orders

Nuclear modification factor in d+Au at RHIC

$$R_{\mathrm{d+Au}} \equiv rac{1}{2A} rac{\mathrm{d}N_{\mathrm{d+Au}}/\mathrm{d}^2 p_{\perp} \mathrm{d}\eta}{\mathrm{d}N_{\mathrm{pp}}/\mathrm{d}^2 p_{\perp} \mathrm{d}\eta}$$

• R_{d+Au} would be one in the absence of nuclear effects

- \bullet R_{d+Au} decreases with increasing rapidity
- Strong suppression ($R \sim 0.5$) for $\eta = 3$: coherent scattering

Eikonal approximation

• A very energetic particle is not deflected by its interactions

- The sum of all the interactions simply exponentiates
- The single-particle state gets multiplied by a complex exponential known as Wilson line

$$\Psi_i(x_\perp) \to U_{ij}(x_\perp) \Psi_j(x_\perp), \quad U(x_\perp) = \operatorname{T} \exp\left\{i \int \mathrm{d}x^- A_a^+(x^-, x_\perp) t^a\right\}$$

CERN Summer School 2011

QCD in Heavy Ion Collisions

Jets

• Two back-to-back jets in the transverse plane: visible via 2-particle azimuthal correlations

Di-jet correlations at RHIC: p+p vs. d+Au

• d+Au : the 'away jet' gets smeared out = saturation in Au

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

The CGC factorization

• Gluon production in the scattering between 2 CGC's:

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_\perp} \right\rangle \\ = \int [\mathcal{D}\rho_1\mathcal{D}\rho_2] \, W_{Y_{\mathrm{beam}-y}[\rho_1]} \, \frac{\mathbf{W}_{Y_{\mathrm{beam}+y}[\rho_2]}}{\mathrm{d}Y\,\mathrm{d}^2p_\perp} \left|_{\mathrm{class}} \right|_{\mathrm{class}}$$

• The classical solution is non-linear to all orders in ρ_1 and ρ_2 :

$$D_{\nu}F^{\nu\mu}(x) = \delta^{\mu+}\rho_{1}(x) + \delta^{\mu-}\rho_{2}(x)$$

$$+\frac{1}{2}$$
 $+\frac{1}{2}$ $+\frac{1}{8}$

• All the leading logs of $1/x_{1,2}$ are absorbed in the W's.

Nucleus-nucleus collisions

- Non-linear effects in the wavefunctions: gluon saturation
 - 2 CGC weight functions: $W_{Y_1}[\rho_1]$, $W_{Y_2}[\rho_2]$
 - generalized pdf's: multi-parton correlations
- ... and in the scattering: multiple interactions
 - classical Yang-Mills equations with 2 sources

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

58 / 70

Multiplicity in HIC at the LHC

- Excellent fit by the CGC approach
- All the models include some form of saturation
 - \triangleright HIJING : energy dependent low- p_T cutoff

CERN Summer School 2011

The geometry of a HIC

Number of participants (N_{part}): number of incoming nucleons (participants) in the overlap region

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

Color flux tubes

- Correlation length in the transverse plane: $\Delta r_{\perp} \sim 1/Q_s$
- Correlation length in rapidity $(y \text{ or } \eta)$: $\Delta \eta \sim 1/\alpha_s$

- The color fluxes eventually break into 'particles' (gluons)
- Gluons emitted from different flux tubes are not correlated

Glasma

- Immediately after the collision, the chromo-electric and chromo-magnetic fields are purely longitudinal
- They form flux tubes extending between the projectiles

• Glasma: the intermediate stage between the CGC and the Quark Gluon Plasma (McLerran and Lappi, 06)

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

62 / 70

The ridge in HIC at RHIC

A natural explanation for the the 'ridge'

- Long-range correlations in rapidity $\Delta \eta$
- Narrow correlation in azimuthal angle $\Delta \phi$

CERN Summer School 2011

Di-hadron correlations

• In a given even count the number of particles N_1 in a given bin centered at (η_1, ϕ_1) and similarly N_2 .

$$\mathcal{R} \equiv rac{\left\langle N_1 \, N_2
ight
angle - \left\langle N_1
ight
angle \left\langle N_2
ight
angle}{\left\langle N_1
ight
angle \left\langle N_2
ight
angle} \qquad \Delta \eta = \eta_1 - \eta_2, \quad \Delta \phi = \phi_1 - \phi_2$$

$$\Delta \eta = \eta_1 - \eta_2, \quad \Delta \phi = \phi_1 - \phi_2$$

Recall: pseudo-rapidity

$$\eta = \frac{1}{2} \ln \frac{p + p_z}{p - p_z}$$

$$\eta = -\ln \tan \frac{\theta}{2}, \quad \theta = \frac{p_z}{p}$$

$$\tau = \sqrt{t^2 - z^2}$$

QCD in Heavy Ion Collisions

Long-range rapidity correlations probe early times

• Generated at early stages, where particles with different longitudinal velocities were still causally connected

$$\tau_{\text{correlation}} \le \tau_{\text{freeze-out}} e^{-|\eta_A - \eta_B|/2}$$

Di-hadron correlations: p+p vs Au+Au

• p+p: peak around $\Delta \eta = 0$ & flat in $\Delta \phi$ > correlated particles make similar angles with the beam axis

Au+Au : almost flat over $\Delta \eta \simeq 10$ & 2 peaks at $\Delta \phi = 0$ and $\Delta \phi = \pi$

QCD in Heavy Ion Collisions

Cheile Grădistei, Romania

66 / 70

The ridge in p+p at CMS (1)

• A small ridge has been seen in p+p collisions at the LHC

The ridge in p+p at CMS (2)

- ... but only in specially selected events!
 - (d) CMS N \geq 110, 1.0GeV/c<p $_{_{\! T}}<$ 3.0GeV/c

- High-multiplicity (\Longrightarrow very central): $N \ge 110$ particles
- Narrow interval in transverse momentum: $1 \le p_{\perp} \le 3$ GeV

CERN Summer School 2011

QCD in Heavy Ion Collisions

Cheile Grădiștei, Romania

69 / 70

The ridge in p+p at CMS (2)

• ... but only in specially selected events!

(d) CMS N \geq 110, 1.0GeV/c<p_{$_{T}$}<3.0GeV/c

• ... which look a lot like a heavy ion collision !!

ho N.B. $1 \le p_{\perp} \le 3$ GeV is similar to the proton Q_s at LHC

CERN Summer School 2011

CD in Heavy Ion Collisions

Cheile Grădistei Romania

70 / 70