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FIG. 2. Left Panel: Illustration of the dynamical evolution of relativistic heavy-ion collisions. Right Panel: The collective
space time evolution of the collision systems created at the RHIC and the LHC compared with ultra-cold fermi gas [9]. The
temperature is color coded.

schematic view of the evolution as we currently understand it is illustrated in the left panel of Fig. 2.] Such a reverse

engineering process requires good control of all the model uncertainties, in addition to a consistent description of a

large variety of measured observables.

In this featured article we highlight the major recent advances in theory and experiment in constraining the

QGP shear viscosity. We begin by explaining the main idea how to measure ⌘/s in heavy-ion collisions.

The QGP viscometer

• Bulk dynamics and charged hadron elliptic flow: the state of the art

The success of viscous hydrodynamics in describing the bulk evolution of relativistic heavy-ion collisions at

RHIC [6] and predicting and describing flow data later collected at the LHC [7, 8] leads to an important conclusion:

At the macroscopic level, initial anisotropic pressure gradients in the fireball drive the system to collectively develop

a momentum anisotropy, as illustrated in the right panel of Fig. 2. This dynamic evolution shares a great deal of

similarity with other strongly coupled many-body systems, such as ultra-cold fermi gases [9]. Inhomogeneities and

anisotropies in the initial density distribution can be characterized by the spatial eccentricities {"n,�n} defined by

"1e
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where r and � are polar coordinates in the transverse plane perpendicular to the beam direction. (At top RHIC and

LHC energies, the dynamics along the beam direction is, to good approximation, boost-invariant, i.e. independent

of the longitudinal motion of the reference frame, and therefore less informative for the present discussion than the

transverse dynamics.) Similarly, the azimuthal dependence of the emitted particles’ momentum distribution can be

characterized by the anisotropic flow coe�cients vn and their associated event plane angles  n, defined by
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where pT and �p are polar coordinates in transverse momentum space. The conversion e�ciency from the initial

A	state	of	matter	where	the	quarks	and	gluons	are	the	relevant	degrees	of	freedom,	exist	at	few	μs after	the	Big-Bang	

ü Chiral	symmetry:	mp ≈	937	MeV		⟷ 2mu+md ≈	10	MeV	
ü Confinement:	no	isolated	quarks	seen	thus	far	
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A	state	of	matter	where	the	quarks	and	gluons	are	the	relevant	degrees	of	freedom,	exist	at	few	μs after	the	Big-Bang	

“Psychoanalysis”	of	Matter

Quark-gluon	plasma	(QGP)

ü Chiral	symmetry:	mp ≈	937	MeV		⟷ 2mu+md ≈	10	MeV	
ü Confinement:	no	isolated	quarks	seen	thus	far	
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Only	early	correlations	can	be	long	range	in	rapidity	

after the big bang. It is now believed that these large scale fluctuations origi-
nate in small quantum fluctuations present during the inflationary epoch. Dur-
ing the rapid expansion of the universe in this epoch, these quantum fluctua-
tions were stretched to size scales much larger than those that were causally
connected in the post-inflationary era when the universe was expanding in a
state close to thermal equilibrium. Therefore such super horizon scale fluctu-
ations cannot be much affected by the sub-horizon scale processes allowable
in the post-inflationary thermal universe. This explains why CMB measure-
ments provide extremely valuable information about the inflationary epoch of
the universe, despite the fact that the CMB radiation was produced long after
(tCMB ∼ 4 · 105 years) the primordial fluctuations that are responsible for its
features (tinflation ∼ 10−33 seconds).

There is a concrete analog of such super-horizon fluctuations in the matter
produced in high energy hadronic collisions such as heavy ion collisions at RHIC,
as illustrated in fig. 1. In this figure, we represent the “event horizons” as seen

detection
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latest correlation
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z 

t

Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.

from the last rescattering of two particles A and B on the freeze-out surface.
These are the red and green cones pointing to the past. Any event that has a
causal influence on the particles A or B must take place inside the corresponding
event horizon. Any event that induces a correlation between the particles A and
B must lie in the overlap of their event horizons. Therefore, if the particles A
and B have rapidities y

A
and y

B
, the processes that caused their correlations

must have occurred before the time1

τ ≤ τfreeze out e−
1
2
|y

A
−y

B
| . (1)

1We assume here that a particle detected with momentum rapidity y originates from a point
of space-time rapidity η ≈ y on the freeze-out surface. This is a consequence of the boost
invariance of the collision (at high energy), and of the fact that the local thermal motion
spreads the rapidities by at most one unit in rapidity.
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large variety of measured observables.
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a momentum anisotropy, as illustrated in the right panel of Fig. 2. This dynamic evolution shares a great deal of

similarity with other strongly coupled many-body systems, such as ultra-cold fermi gases [9]. Inhomogeneities and

anisotropies in the initial density distribution can be characterized by the spatial eccentricities {"n,�n} defined by

"1e
i�1 = �

R
rdrd� r3e(r,�)ei�R
rdrd� r3e(r,�)

and "ne
in�n = �

R
rdrd� rne(r,�)ein�R
rdrd� rne(r,�)

(n � 2), (1)

where r and � are polar coordinates in the transverse plane perpendicular to the beam direction. (At top RHIC and

LHC energies, the dynamics along the beam direction is, to good approximation, boost-invariant, i.e. independent
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“Psychoanalysis”	of	Matter

Dumitru,	Gelis,	McLerran,	Venugopalan,	Nucl.	Phys.	A810	(2008)	91

Quark-gluon	plasma	(QGP)



Nature	of	phase	transition
Phase	diagram	of	water

(Electro-magnetic	interactions)

Ø 1st order	phase	transition:mixed	phase	
Ø At	the	critical	point	(CP): phase	boundaries	vanish	and	correlation	length diverges	→ only	one	phase	exists

Mesut	Arslandok,	Yale	University	/	CERN 3CERN	LHC	Seminar,	21.06.2022

Chapter 6

Phase transitions

6.1 Concept of phase

Phases are states of matter characterized by distinct macroscopic properties. Typical
phases we will discuss in this chapter are liquid, solid and gas. Other important phases
are superconducting and magnetic states.

First and second order phase transitions. States of matter come with their stability
regions, the phase diagram. The properties of the microscopic state change by definition
at the phase boundary. This change is

discontinuous

continuous

�
for a

⇥
first order

second order

�
phase transition

The appropriate variables for phase diagram of water are the pressure P and the temper-
ature T .

critical point : The first-order phase boundary between gas and liquid becomes
second order right at the critical point. The two phases have then
equal densities and specific entropies (entropy per particle).

� There is no critical point for the liquid-solid transition.

triple point : The point at which gas, liquid and solid coexist.
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Critical	opalescence:	2nd order	phase	transition

Heating	a	mass	of	ethane	in	a	constant	volume

Ø Density of	the	gas	and	the	thermal	motion	of	the	liquid	is	so	great	that	gas	and	liquid	are	the	same
Ø Density	fluctuations	are	comparable	to	the	wavelength	of	light	→ light	is	scattered	and	causes	cloudy	appearance	

Mesut	Arslandok,	Yale	University	/	CERN 4CERN	LHC	Seminar,	21.06.2022
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QCD	phase	diagram

München,	22.07.2019
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Phase	Transition

Hadronic	matter	cannot	be	heated	beyond	TH (Hagedorn	temperature)
(Strong	Interactions)

LHC

Nature	of	QCD	phase	transition

Mesut	Arslandok,	Yale	University	/	CERN 5CERN	LHC	Seminar,	21.06.2022

Ø How	close	are	we	to	μB =	0	at	LHC	energies?	
Ø Nature	of	cross	over	transition	at	μB ~ 0	MeV?

⟹	 no	experimental	confirmation	



Ø How	close	are	we	to	μB =	0	at	LHC	energies?	
Ø Nature	of	cross	over	transition	at	μB ~ 0	MeV?

⟹	 no	experimental	confirmation	
Ø Vanishing	u,	d	quark	masses?

⟹	vicinity	to	2nd order	O(4)	criticality
⟹ pseudocritical	features	at	the	crossover	due	to	

massless	modes	
	⟹ long	range	correlations	&	increased	fluctuations

Nature	of	QCD	phase	transition

Mesut	Arslandok,	Yale	University	/	CERN 5CERN	LHC	Seminar,	21.06.2022

F.	Karsch,	Schleching 2016



What	kind	of	a	system	
are	we	dealing	with?
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Grand	canonical	ensemble where	particles	are	in	a	thermal	equilibrium
• Energy	(E)	and	number	of	particles	(N)	are	not	conserved	in	each	microstate	
• EOS	can	be	represented	by	a	surface	in	the	state	space	spanned	by	P,	V	and	T	

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.

∆" > ∆"$%&: conservations dominate
∆" < ∆"$%&: dynamical fluctuations may disappear,

(approaching  Poisson limit)
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To achieve requirements of GCE
cuts in >?, ΔA or ∆) are imposed

2.2. TEMPERATURE 19

4 - For thermodynamic systems A, B, and C it holds that, if TA > TB and TB > TC ,

then TA > TC .

5 - If the systems A and B are in thermal contact, while the joint system A ⇤ B is

isolated, then, in equilibrium, TA = TB = TA�B.

6 - Consider two separate thermodynamic systems A and B, with TA < TB. After

putting them in contact, the temperature of the system A⇤B will be TA < TA�B <

TB.

Thermometer : any physical property of a system that behaves monotonically with T

can be used to construct a thermometer to measure temperature T . For instance, Hg

(volume), gas thermometer (pressure), resistance thermometer (electrical resistance).

2.2.1 Thermal equilibrium and transformations

Thermal equilibrium: from our experience we know that a macroscopic system generally

relaxes to a stationary state after a short time. This stationary state is called a state of

thermal equilibrium.

Equation of state. If a system is in thermal equilibrium, the thermodynamic variables

are not independent of one another, but constrained by the so-called equation of state of

the form:

f(P, V, T ) = 0 , (2.1)

where f is a characteristic function of the system under study.

Example: the equation of state of a classical ideal gas (a real gas in the limit of low

density and high temperature) is

f(P, V, T ) = PV ⌅NkBT ,

where T is the ideal gas temperature measured in Kelvin (K), and kB = 1.381◊10
⇥16

erg/K is the Boltzmann constant.

The equation of state (2.1) leaves two independent variables out of the original three.

Geometrical representation. The equation of

state (2.1) can be represented by a surface in the state

space spanned by P , V , and T . All equilibrium states

must be on this surface. f is a continuous, di⇥eren-
tiable function, except at some special points.

Thermodynamic transformation. A change in the external conditions changes the

equilibrium state of the system. This transformation of the equilibrium state is called a

thermodynamic transformation or process. For instance, application of external pressure

causes the volume of the body to decrease. Thermodynamic transformations are classified
as

Chapter 10

Grand canonical ensemble

10.1 Grand canonical partition function

The grand canonical ensemble is a generalization of the canonical ensemble where the
restriction to a definite number of particles is removed. This is a realistic representation
when then the total number of particles in a macroscopic system cannot be fixed.

Heat and particle reservoir. Consider a sys-
tem A1 in a heat and particle reservoir A2. The
two systems are in equilibrium with the thermal
equilibrium.

– Thermal equilibrium results form the ex-
change of heat. The two temperature are
then equal: T = T1 = T2

– The equilibrium with respect to particle
exchange leads to identical chemical poten-
tials: µ = µ1 = µ2.

Energy and particle conservation. We assume that the system A2 is much larger
than the system A1, i.e., that

E2 � E1, N2 � N1 ,

with
N1 +N2 = N = const. E1 + E2 = E = const.

where N and E are the particle number and the energy of the total system A = A1 +A2.

Hamilton function. The overall Hamilton function is defined as the sum of the Hamilton
functions of A1 and A2:

H(q, p) = H1(q(1), p(1), N1) +H2(q(2), p(2), N2) .

For the above assumption to be valid, we neglect interactions among particles in A1 and
A2:

H12 = 0 .

117



Mesut	Arslandok,	Yale	University	/	CERN

Thermodynamics	of	heavy-ion	collision

6CERN	LHC	Seminar,	21.06.2022

Grand	canonical	ensemble where	particles	are	in	a	thermal	equilibrium
• Energy	(E)	and	number	of	particles	(N)	are	not	conserved	in	each	microstate	
• EOS	can	be	represented	by	a	surface	in	the	state	space	spanned	by	P,	V	and	T	
• Conservation	laws	are	applied	on	average
• Chemical	potential	(𝝁𝑩),	Volume	(V) and	Temperature	(T) are	constant

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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2.2. TEMPERATURE 19

4 - For thermodynamic systems A, B, and C it holds that, if TA > TB and TB > TC ,

then TA > TC .

5 - If the systems A and B are in thermal contact, while the joint system A ⇤ B is

isolated, then, in equilibrium, TA = TB = TA�B.

6 - Consider two separate thermodynamic systems A and B, with TA < TB. After

putting them in contact, the temperature of the system A⇤B will be TA < TA�B <

TB.

Thermometer : any physical property of a system that behaves monotonically with T

can be used to construct a thermometer to measure temperature T . For instance, Hg

(volume), gas thermometer (pressure), resistance thermometer (electrical resistance).

2.2.1 Thermal equilibrium and transformations

Thermal equilibrium: from our experience we know that a macroscopic system generally

relaxes to a stationary state after a short time. This stationary state is called a state of

thermal equilibrium.

Equation of state. If a system is in thermal equilibrium, the thermodynamic variables

are not independent of one another, but constrained by the so-called equation of state of

the form:

f(P, V, T ) = 0 , (2.1)

where f is a characteristic function of the system under study.

Example: the equation of state of a classical ideal gas (a real gas in the limit of low

density and high temperature) is

f(P, V, T ) = PV ⌅NkBT ,

where T is the ideal gas temperature measured in Kelvin (K), and kB = 1.381◊10
⇥16

erg/K is the Boltzmann constant.

The equation of state (2.1) leaves two independent variables out of the original three.

Geometrical representation. The equation of

state (2.1) can be represented by a surface in the state

space spanned by P , V , and T . All equilibrium states

must be on this surface. f is a continuous, di⇥eren-
tiable function, except at some special points.

Thermodynamic transformation. A change in the external conditions changes the

equilibrium state of the system. This transformation of the equilibrium state is called a

thermodynamic transformation or process. For instance, application of external pressure

causes the volume of the body to decrease. Thermodynamic transformations are classified
as

Chapter 10

Grand canonical ensemble

10.1 Grand canonical partition function

The grand canonical ensemble is a generalization of the canonical ensemble where the
restriction to a definite number of particles is removed. This is a realistic representation
when then the total number of particles in a macroscopic system cannot be fixed.

Heat and particle reservoir. Consider a sys-
tem A1 in a heat and particle reservoir A2. The
two systems are in equilibrium with the thermal
equilibrium.

– Thermal equilibrium results form the ex-
change of heat. The two temperature are
then equal: T = T1 = T2

– The equilibrium with respect to particle
exchange leads to identical chemical poten-
tials: µ = µ1 = µ2.

Energy and particle conservation. We assume that the system A2 is much larger
than the system A1, i.e., that

E2 � E1, N2 � N1 ,

with
N1 +N2 = N = const. E1 + E2 = E = const.

where N and E are the particle number and the energy of the total system A = A1 +A2.

Hamilton function. The overall Hamilton function is defined as the sum of the Hamilton
functions of A1 and A2:

H(q, p) = H1(q(1), p(1), N1) +H2(q(2), p(2), N2) .

For the above assumption to be valid, we neglect interactions among particles in A1 and
A2:

H12 = 0 .
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Grand	canonical	ensemble where	particles	are	in	a	thermal	equilibrium
• Energy	(E)	and	number	of	particles	(N)	are	not	conserved	in	each	microstate	
• EOS	can	be	represented	by	a	surface	in	the	state	space	spanned	by	P,	V	and	T	
• Conservation	laws	are	applied	on	average
• Chemical	potential	(𝝁𝑩),	Volume	(V) and	Temperature	(T) are	constant
• For	a	given	state	Ej and	Nj grand	canonical	partition	function

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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Fluctuations, Ensemble averaging 

A. Rustamov, ISOQUANT  seminar, January 20, Heidelberg  

Ergodicity	hypothesis:	Averaging	over	time	is	equivalent	to	the	
averaging	over	ensembles.	
Ensemble	 is	 an	 idealisation	 consisting	 of	 a	 large	 number	 of	
mental	 copies	 0f	 a	 system,	 considered	 all	 at	 once,	 each	
represents	a	possible	state	that	the	real	system!	

Grand	Canonical	Ensemble	

probability	of	a	given	state		with	Ej	and	Nj	
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Thermodynamic	susceptibilities

the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD

eV p(T,µ)/T = Z =
X

states i

⌧
i
����e�

1
T (Ĥ+µN̂)

���� i
�
, (49)
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the cumulants of the fluctuations of the baryon charge N are related to the derivatives of the pressure:16
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
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The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as
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sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
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Fluctuations, Ensemble averaging 

A. Rustamov, ISOQUANT  seminar, January 20, Heidelberg  

Ergodicity	hypothesis:	Averaging	over	time	is	equivalent	to	the	
averaging	over	ensembles.	
Ensemble	 is	 an	 idealisation	 consisting	 of	 a	 large	 number	 of	
mental	 copies	 0f	 a	 system,	 considered	 all	 at	 once,	 each	
represents	a	possible	state	that	the	real	system!	
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Thermodynamic	susceptibilities

the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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2.2. TEMPERATURE 19

4 - For thermodynamic systems A, B, and C it holds that, if TA > TB and TB > TC ,

then TA > TC .

5 - If the systems A and B are in thermal contact, while the joint system A ⇤ B is

isolated, then, in equilibrium, TA = TB = TA�B.

6 - Consider two separate thermodynamic systems A and B, with TA < TB. After

putting them in contact, the temperature of the system A⇤B will be TA < TA�B <

TB.

Thermometer : any physical property of a system that behaves monotonically with T

can be used to construct a thermometer to measure temperature T . For instance, Hg

(volume), gas thermometer (pressure), resistance thermometer (electrical resistance).

2.2.1 Thermal equilibrium and transformations

Thermal equilibrium: from our experience we know that a macroscopic system generally

relaxes to a stationary state after a short time. This stationary state is called a state of

thermal equilibrium.

Equation of state. If a system is in thermal equilibrium, the thermodynamic variables

are not independent of one another, but constrained by the so-called equation of state of

the form:

f(P, V, T ) = 0 , (2.1)

where f is a characteristic function of the system under study.

Example: the equation of state of a classical ideal gas (a real gas in the limit of low

density and high temperature) is

f(P, V, T ) = PV ⌅NkBT ,

where T is the ideal gas temperature measured in Kelvin (K), and kB = 1.381◊10
⇥16

erg/K is the Boltzmann constant.

The equation of state (2.1) leaves two independent variables out of the original three.

Geometrical representation. The equation of

state (2.1) can be represented by a surface in the state

space spanned by P , V , and T . All equilibrium states

must be on this surface. f is a continuous, di⇥eren-
tiable function, except at some special points.

Thermodynamic transformation. A change in the external conditions changes the

equilibrium state of the system. This transformation of the equilibrium state is called a

thermodynamic transformation or process. For instance, application of external pressure

causes the volume of the body to decrease. Thermodynamic transformations are classified
as

Chapter 10

Grand canonical ensemble

10.1 Grand canonical partition function

The grand canonical ensemble is a generalization of the canonical ensemble where the
restriction to a definite number of particles is removed. This is a realistic representation
when then the total number of particles in a macroscopic system cannot be fixed.

Heat and particle reservoir. Consider a sys-
tem A1 in a heat and particle reservoir A2. The
two systems are in equilibrium with the thermal
equilibrium.

– Thermal equilibrium results form the ex-
change of heat. The two temperature are
then equal: T = T1 = T2

– The equilibrium with respect to particle
exchange leads to identical chemical poten-
tials: µ = µ1 = µ2.

Energy and particle conservation. We assume that the system A2 is much larger
than the system A1, i.e., that

E2 � E1, N2 � N1 ,

with
N1 +N2 = N = const. E1 + E2 = E = const.

where N and E are the particle number and the energy of the total system A = A1 +A2.

Hamilton function. The overall Hamilton function is defined as the sum of the Hamilton
functions of A1 and A2:

H(q, p) = H1(q(1), p(1), N1) +H2(q(2), p(2), N2) .

For the above assumption to be valid, we neglect interactions among particles in A1 and
A2:

H12 = 0 .
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Thermodynamic	susceptibilities

the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD

eV p(T,µ)/T = Z =
X

states i

⌧
i
����e�

1
T (Ĥ+µN̂)

���� i
�
, (49)
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the cumulants of the fluctuations of the baryon charge N are related to the derivatives of the pressure:16
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
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could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
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such as
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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the cumulants of the fluctuations of the baryon charge N are related to the derivatives of the pressure:16
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.
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Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
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fluctuations of the particle multiplicities.
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to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.

(a) �1 = n (b) �2 = @n/@µ (c) �3 = @�2/@µ (d) �4 = @�3/@µ

Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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the cumulants of the fluctuations of the baryon charge N are related to the derivatives of the pressure:16
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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the parametric equation of state such as given in Eq. (47). The parameters which need to be fitted are the location Tc
and µc of the critical point, the slope �hµ/hT of the coexistence line (h = 0), and the slope �rµ/rT of the r = 0 line at
the critical point. To set the scale, one needs to supply also rT and hµ. The overall scale of the singular part is not an
additional independent parameter because of the scaling property of the leading singularity of the equation of state:

G(�r, ���h) = ��(�+1)G(r, h) (48)

for an arbitrary �.
The background part of the pressure, pbg(T, µ), can be chosen to smoothly match the equation of state at µ = 0

known from the lattice [86]. In this form the equation of state can incorporate the information reliably known from
lattice QCD calculations as well as the correct leading singular behavior at the critical point, while being flexible
enough to accommodate a critical point in the range of T and µ accessible by heavy-ion collisions.
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Figure 12: First three derivatives (susceptibilities) of the baryon density n with respect to µ as a function of µ along three constant T lines (horizontal
dotted lines in the first row of plots – the density plots of the susceptibilities vs T and µ). Two temperatures are above (second row) and another
temperature is below (third row) the critical point. Red denotes region of negative and blue – of positive value of the susceptibilities. Only the
critical contribution to n and its derivatives dictated by the universality near the critical point is shown. The vertical range for two graphs of the
same quantity �n (i.e., in the same column) are the same, but is di↵erent across the columns.

4.8. Baryon number cumulants near the critical point
In order to understand better the equation of state near the QCD critical point described by Eq. (47) it is helpful

to study the behavior of baryon number cumulants. Due to the relationship between the pressure and the partition
function of QCD
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Fig. 12 shows a close-up of the QCD phase diagram in Fig. 6 near the critical point. Using the universal equation
of state given by the mapping in Eqs. (47) and (46) (where we choose rT = 0 for simplicity), we illustrate the behavior
of susceptibilities �k. It is instructive to follow �k along lines of fixed T . Three such lines are shown in Fig. 12 (top
row): two isothermal lines traverse the crossover region above the critical point and the behavior of �k along these lines
is shown in the second row and one isothermal line traverses the first-order coexistence line with the corresponding
�k shown in the third row.

As we traverse the crossover region (panel (a) in Fig. 12) the density increases continuously with a steeper slope
for the case where the isothermal line is closer to the critical point. When we cross the first order line, the baryon
density, n, jumps, as expected. The baryon number cumulants, or susceptibilities, �k, being derivatives of the density
(see Eq. (50)), will be sensitive to the proximity of the critical point in the crossover region as the change of the
density n becomes steeper. This is illustrated in the panels (b) through (d) in Fig. 12, where we show the second
to fourth order susceptibilities. We see that, not surprisingly, the steeper increase in the density when traversing the
pseudo-critical region closer to the critical point is reflected in larger values of the cumulants. This di↵erence gets
more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
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the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as
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more pronounced the higher the order of the susceptibility or cumulant. Furthermore, the sign changes of the various
cumulants shown in the contour plots can be easily understood as simply changes in the slope (for �2), curvature (for
�3) and higher derivatives of the density n in the first column. Finally, when crossing the first-order line (third row)
we find that away from the critical line the cumulants are only modestly changed. On the critical line, of course, they
are undefined due to a discontinuity. 17

This simple example qualitatively explains what happens near the critical point as discussed in section 4.5: The
higher the order of the cumulant the stronger is its dependence on the correlation length. As we get closer to the critical
point, where correlation length diverges, the transition gets sharper and the cumulants also diverge at the critical point.

As we have seen, the high-order cumulants show nontrivial dependence on T and µ in the crossover region.
This observation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish
the existence of a cross-over transition at µB = 0, as predicted by lattice QCD [28]. As discussed in [89–92] in the
context of model as well as lattice QCD calculations, a cross-over transition results in negative sixth and eighth order
cumulants at the freezeout temperature, 6/2 < 0 and 8/2 < 0. Therefore, the measurement of these cumulant ratios
could provide experimental evidence that the systems created in high energy heavy ion collisions freeze out close to
the cross-over transition.

4.9. Fluctuation cumulants in heavy-ion collisions
The baryon number cumulants, or susceptibilities, are not directly measurable in heavy-ion collision experiments

which detect charge particles, leaving neutrons out of the acceptance. However, the fluctuations near the critical
point a↵ect fluctuations of charged particles as well as the neutral ones because the coupling of the critical mode is
isospin blind. Thus cumulants of the fluctuations of proton number (or net proton number) show a similar pattern near
the critical point. In Section 4.12 we shall describe how to relate the critical mode fluctuations with the observable
fluctuations of the particle multiplicities.

The experiments also do not scan the phase diagram along fixed T lines as in Fig. 12. The scanning parameter,
such as

p
sNN , a↵ects both T and µ of the freezeout. A typical freezeout trajectory along which T and µ are varied is

shown in Fig. 13 superimposed on the density plot of the quartic cumulant of a critical order parameter, such as, e.g.,
baryon density. The position of the freezeout point on the curve depends on the collision energy

p
sNN and can be

16In the context of lattice calculations the susceptibilities are often defined as dimensionless quantities, i.e., �lattice
k = @k(p/T 4)/@(µ/T )k .

17The absence of visible discontinuity in even cumulants in Fig. 12 is a consequence of our simplification rT = 0.
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contributions arising from the singular part of the QCD partition function Z(V, T ), or more precisely from the free
energy density, f = −TV −1 lnZ(V, T ). A recent analysis of scaling properties of the chiral condensate, performed
with the p4 action on coarse lattices, showed that critical behavior in the vicinity of the chiral phase transition is well
described by O(N) scaling relations [64] which give a good description even in the physical quark mass regime.
In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum of a singular and

a regular part,

f = −
T

V
lnZ ≡ fsing(t, h) + freg(T,ml,ms) . (6)

Here t and h are dimensionless couplings that control deviations from criticality. They are related to the temperature
T and the light quark mass ml, which couples to the symmetry breaking (magnetic) field, as

t =
1

t0

T − T 0
c

T 0
c

, h =
1

h0
H , H =

ml

ms
, (7)

where T 0
c denotes the chiral phase transition temperature, i.e., the transition temperature at H = 0. The scaling

variables t, h are normalized by two parameters t0 and h0, which are unique to QCD and similar to the low energy
constants in the chiral Lagrangian. These need to be determined together with T 0

c . In the continuum limit, all three
parameters are uniquely defined, but depend on the value of the strange quark mass.
The singular contribution to the free energy density is a homogeneous function of the two variables t and h. Its

invariance under scale transformations can be used to express it in terms of a single scaling variable

z = t/h1/βδ =
1

t0

T − T 0
c

T 0
c

(

h0

H

)1/βδ

=
1

z0

T − T 0
c

T 0
c

(

1

H

)1/βδ

(8)

where β and δ are the critical exponents of the O(N) universality class and z0 = t0/h
1/βδ
0 . Thus, the dimensionless

free energy density f̃ ≡ f/T 4 can be written as

f̃(T,ml,ms) = h1+1/δfs(z) + fr(T,H,ms) , (9)

where the regular term fr gives rise to scaling violations. This regular term can be expanded in a Taylor series around
(t, h) = (0, 0). In all subsequent discussions, we analyze the data keeping ms in Eq. (9) fixed at the physical value
along the LCP. Therefore, the dependence on ms will, henceforth, be dropped.
We also note that the reduced temperature t may depend on other couplings in the QCD Lagrangian which do not

explicitly break chiral symmetry. In particular, it depends on light and strange quark chemical potentials µq, which
in leading order enter only quadratically,

t =
1

t0





T − T 0
c

T 0
c

+
∑

q=l,s

κq
(µq

T

)2
+ κls

µl

T

µs

T



 . (10)

Derivatives of the partition function with respect to µq are used to define the quark number susceptibilities.
The above scaling form of the free energy density is the starting point of a discussion of scaling properties of most

observables used to characterize the QCD phase transition. We will use this scaling Ansatz to test to what extent
various thermodynamic quantities remain sensitive to universal features of the chiral phase transition at nonzero
quark masses when chiral symmetry is explicitly broken and the singular behavior is replaced by a rapid crossover
characterized by pseudocritical temperatures (which we label Tc) rather than a critical temperature.
A good probe of the chiral behavior is the 2-flavor light quark chiral condensate

〈ψ̄ψ〉nf=2
l =

T

V

∂ lnZ

∂ml
. (11)

Following the notation of Ref. [64], we introduce the dimensionless order parameter Mb,

Mb ≡
ms〈ψ̄ψ〉

nf=2
l

T 4
. (12)

Multiplication by the strange quark mass removes the need for multiplicative renormalization constants; however, Mb

does require additive renormalization. For a scaling analysis in h at a fixed value of the cutoff, this constant plays no
role. Near T 0

c , Mb is given by a scaling function fG(z)

Mb(T,H) = h1/δfG(t/h
1/βδ) + fM,reg(T,H) , (13)

11

and a regular function fM,reg(T,H) that gives rise to scaling violations. We consider only the leading order Taylor
expansion of fM,reg(T,H) in H and quadratic in t,

fM,reg(T,H) = at(T )H

=

(

a0 + a1
T − T 0

c

T 0
c

+ a2

(

T − T 0
c

T 0
c

)2
)

H (14)

with parameters a0, a1 and a2 to be determined. The singular function fG is well studied in three dimensional spin
models and has been parametrized for the O(2) and O(4) symmetry groups [65–68]. Also, the exponents β, γ, δ and
ν used here are taken from Table 2 in Ref. [68].
Response functions, derived from the light quark chiral condensate, are sensitive to critical behavior in the chiral

limit. In particular, the derivative of 〈ψ̄ψ〉nf=2
l with respect to the quark masses gives the chiral susceptibility

χm,l =
∂

∂ml
〈ψ̄ψ〉nf=2

l . (15)

The scaling behavior of the light quark susceptibility, using Eq. (13), is

χm,l

T 2
=

T 2

m2
s

(

1

h0
h1/δ−1fχ(z) +

∂fM,reg(T,H)

∂H

)

,

with fχ(z) =
1

δ
[fG(z)−

z

β
f ′
G(z)]. (16)

The function fχ has a maximum at some value of the scaling variable z = zp. For small values of h this defines the
location of the pseudocritical temperature Tc as the maximum in the scaling function fG(z). Approaching the critical
point along h with z fixed, e.g., z = 0 or z = zp, χm,l diverges in the chiral limit as

χm,l ∼ m1/δ−1
l . (17)

Similarly, the mixed susceptibility

χt,l = −
T

V

∂2

∂ml∂t
lnZ , (18)

also has a peak at some pseudocritical temperature and diverges in the chiral limit as

χt,l ∼ m(β−1)/βδ
l . (19)

One can calculate χt,l either by taking the derivative of 〈ψ̄ψ〉 with respect to T or by taking the second derivative
with respect to µl, i.e., by calculating the coefficient of the second order Taylor expansion for the chiral condensate
as a function of µl/T [69]. The derivative of 〈ψ̄ψ〉 with respect to T is the expectation value of the chiral condensate
times the energy density, which is difficult to calculate in lattice simulations, as additional information on temperature
derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq

∂T
∼ cr +A±

∣

∣

∣

∣

T − T 0
c

T 0
c

∣

∣

∣

∣

−α

, (21)
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contributions arising from the singular part of the QCD partition function Z(V, T ), or more precisely from the free
energy density, f = −TV −1 lnZ(V, T ). A recent analysis of scaling properties of the chiral condensate, performed
with the p4 action on coarse lattices, showed that critical behavior in the vicinity of the chiral phase transition is well
described by O(N) scaling relations [64] which give a good description even in the physical quark mass regime.
In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum of a singular and

a regular part,

f = −
T

V
lnZ ≡ fsing(t, h) + freg(T,ml,ms) . (6)

Here t and h are dimensionless couplings that control deviations from criticality. They are related to the temperature
T and the light quark mass ml, which couples to the symmetry breaking (magnetic) field, as

t =
1

t0

T − T 0
c

T 0
c

, h =
1

h0
H , H =

ml

ms
, (7)

where T 0
c denotes the chiral phase transition temperature, i.e., the transition temperature at H = 0. The scaling

variables t, h are normalized by two parameters t0 and h0, which are unique to QCD and similar to the low energy
constants in the chiral Lagrangian. These need to be determined together with T 0

c . In the continuum limit, all three
parameters are uniquely defined, but depend on the value of the strange quark mass.
The singular contribution to the free energy density is a homogeneous function of the two variables t and h. Its

invariance under scale transformations can be used to express it in terms of a single scaling variable

z = t/h1/βδ =
1

t0

T − T 0
c

T 0
c

(

h0

H

)1/βδ

=
1

z0

T − T 0
c

T 0
c

(

1

H

)1/βδ

(8)

where β and δ are the critical exponents of the O(N) universality class and z0 = t0/h
1/βδ
0 . Thus, the dimensionless

free energy density f̃ ≡ f/T 4 can be written as

f̃(T,ml,ms) = h1+1/δfs(z) + fr(T,H,ms) , (9)

where the regular term fr gives rise to scaling violations. This regular term can be expanded in a Taylor series around
(t, h) = (0, 0). In all subsequent discussions, we analyze the data keeping ms in Eq. (9) fixed at the physical value
along the LCP. Therefore, the dependence on ms will, henceforth, be dropped.
We also note that the reduced temperature t may depend on other couplings in the QCD Lagrangian which do not

explicitly break chiral symmetry. In particular, it depends on light and strange quark chemical potentials µq, which
in leading order enter only quadratically,

t =
1

t0





T − T 0
c

T 0
c

+
∑

q=l,s

κq
(µq

T

)2
+ κls

µl

T

µs

T



 . (10)

Derivatives of the partition function with respect to µq are used to define the quark number susceptibilities.
The above scaling form of the free energy density is the starting point of a discussion of scaling properties of most

observables used to characterize the QCD phase transition. We will use this scaling Ansatz to test to what extent
various thermodynamic quantities remain sensitive to universal features of the chiral phase transition at nonzero
quark masses when chiral symmetry is explicitly broken and the singular behavior is replaced by a rapid crossover
characterized by pseudocritical temperatures (which we label Tc) rather than a critical temperature.
A good probe of the chiral behavior is the 2-flavor light quark chiral condensate

〈ψ̄ψ〉nf=2
l =

T

V

∂ lnZ

∂ml
. (11)

Following the notation of Ref. [64], we introduce the dimensionless order parameter Mb,

Mb ≡
ms〈ψ̄ψ〉

nf=2
l

T 4
. (12)

Multiplication by the strange quark mass removes the need for multiplicative renormalization constants; however, Mb

does require additive renormalization. For a scaling analysis in h at a fixed value of the cutoff, this constant plays no
role. Near T 0

c , Mb is given by a scaling function fG(z)

Mb(T,H) = h1/δfG(t/h
1/βδ) + fM,reg(T,H) , (13)

11

and a regular function fM,reg(T,H) that gives rise to scaling violations. We consider only the leading order Taylor
expansion of fM,reg(T,H) in H and quadratic in t,

fM,reg(T,H) = at(T )H

=

(

a0 + a1
T − T 0

c

T 0
c

+ a2

(

T − T 0
c

T 0
c

)2
)

H (14)

with parameters a0, a1 and a2 to be determined. The singular function fG is well studied in three dimensional spin
models and has been parametrized for the O(2) and O(4) symmetry groups [65–68]. Also, the exponents β, γ, δ and
ν used here are taken from Table 2 in Ref. [68].
Response functions, derived from the light quark chiral condensate, are sensitive to critical behavior in the chiral

limit. In particular, the derivative of 〈ψ̄ψ〉nf=2
l with respect to the quark masses gives the chiral susceptibility

χm,l =
∂

∂ml
〈ψ̄ψ〉nf=2

l . (15)

The scaling behavior of the light quark susceptibility, using Eq. (13), is

χm,l

T 2
=

T 2

m2
s

(

1

h0
h1/δ−1fχ(z) +

∂fM,reg(T,H)

∂H

)

,

with fχ(z) =
1

δ
[fG(z)−

z

β
f ′
G(z)]. (16)

The function fχ has a maximum at some value of the scaling variable z = zp. For small values of h this defines the
location of the pseudocritical temperature Tc as the maximum in the scaling function fG(z). Approaching the critical
point along h with z fixed, e.g., z = 0 or z = zp, χm,l diverges in the chiral limit as

χm,l ∼ m1/δ−1
l . (17)

Similarly, the mixed susceptibility

χt,l = −
T

V

∂2

∂ml∂t
lnZ , (18)

also has a peak at some pseudocritical temperature and diverges in the chiral limit as

χt,l ∼ m(β−1)/βδ
l . (19)

One can calculate χt,l either by taking the derivative of 〈ψ̄ψ〉 with respect to T or by taking the second derivative
with respect to µl, i.e., by calculating the coefficient of the second order Taylor expansion for the chiral condensate
as a function of µl/T [69]. The derivative of 〈ψ̄ψ〉 with respect to T is the expectation value of the chiral condensate
times the energy density, which is difficult to calculate in lattice simulations, as additional information on temperature
derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq
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lines) and QM-HRG (solid lines) in the baryon sector are as large as 40%
while they are negligible in the meson sector. This reflects that the experi-
mentally known meson spectrum is more complete than the baryon spectrum.

In the open charm meson sector, the well established excitations cover a
mass range of about 700 MeV above the ground state D, Ds-mesons. In the
charmed baryon sector much less is known, for instance, experimentally well
known excitations of Ξc range up to 350 MeV above the ground state and in
the doubly strange charmed baryon sector only two Ωc states separated by
100 MeV are well established.

As a consequence of the limited knowledge of the charmed baryon spec-
trum compared to the open charm meson spectrum, the ratio of partial pres-
sures in the baryon and meson sectors differs strongly between the PDG-HRG
and the QM-HRG. This is shown in Fig. 1 (top). Significant differences be-
tween the QM-HRG-3 and PDG-HRG results also indicate that almost half of
the enhanced contributions actually comes from additional charmed baryons
that are lighter than the heaviest PDG state. Similar conclusions can be
drawn when analyzing partial pressures in the strange-charmed hadron sec-
tor or the electrically charged charmed hadron sectors.

3. Calculation of charm fluctuations in (2+1)-flavor lattice QCD

In order to detect changes in the relevant degrees of freedom that are the
carriers of charm quantum numbers at low and high temperatures as well as
to study their properties we calculate dimensionless generalized susceptibili-
ties of conserved charges,

χBQSC
klmn =

∂(k+l+m+n)[P (µ̂B, µ̂Q, µ̂S, µ̂C)/T 4]

∂µ̂k
B∂µ̂

l
Qµ̂

m
S ∂µ̂

n
C

∣

∣

∣

∣

∣

!µ=0

. (2)

Here P denotes the total pressure of the system. In the following we also
use the convention to drop a superscript in χBQSC

klmn when the corresponding
subscript is zero.

For our analysis of net charm fluctuations we use gauge field configu-
rations generated with the highly improved staggered quark (HISQ) action
[29]. Use of the HISQ action in the charm sectors includes the so-called ε-term
and thus makes our calculations free of tree-level order (amc)4 discretization
errors [29], where mc is the bare charm quark mass in units of the lattice
spacing. These dynamical (2+1)-flavor QCD calculations have been carried
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lines) and QM-HRG (solid lines) in the baryon sector are as large as 40%
while they are negligible in the meson sector. This reflects that the experi-
mentally known meson spectrum is more complete than the baryon spectrum.

In the open charm meson sector, the well established excitations cover a
mass range of about 700 MeV above the ground state D, Ds-mesons. In the
charmed baryon sector much less is known, for instance, experimentally well
known excitations of Ξc range up to 350 MeV above the ground state and in
the doubly strange charmed baryon sector only two Ωc states separated by
100 MeV are well established.

As a consequence of the limited knowledge of the charmed baryon spec-
trum compared to the open charm meson spectrum, the ratio of partial pres-
sures in the baryon and meson sectors differs strongly between the PDG-HRG
and the QM-HRG. This is shown in Fig. 1 (top). Significant differences be-
tween the QM-HRG-3 and PDG-HRG results also indicate that almost half of
the enhanced contributions actually comes from additional charmed baryons
that are lighter than the heaviest PDG state. Similar conclusions can be
drawn when analyzing partial pressures in the strange-charmed hadron sec-
tor or the electrically charged charmed hadron sectors.

3. Calculation of charm fluctuations in (2+1)-flavor lattice QCD

In order to detect changes in the relevant degrees of freedom that are the
carriers of charm quantum numbers at low and high temperatures as well as
to study their properties we calculate dimensionless generalized susceptibili-
ties of conserved charges,

χBQSC
klmn =

∂(k+l+m+n)[P (µ̂B, µ̂Q, µ̂S, µ̂C)/T 4]

∂µ̂k
B∂µ̂

l
Qµ̂

m
S ∂µ̂

n
C

∣

∣

∣

∣

∣

!µ=0

. (2)

Here P denotes the total pressure of the system. In the following we also
use the convention to drop a superscript in χBQSC

klmn when the corresponding
subscript is zero.

For our analysis of net charm fluctuations we use gauge field configu-
rations generated with the highly improved staggered quark (HISQ) action
[29]. Use of the HISQ action in the charm sectors includes the so-called ε-term
and thus makes our calculations free of tree-level order (amc)4 discretization
errors [29], where mc is the bare charm quark mass in units of the lattice
spacing. These dynamical (2+1)-flavor QCD calculations have been carried
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FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-
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1)			Baseline:	Difference	between	two	independent	
Poissonian	distributions	(Skellam	distr.)
⟹	𝜿𝐧/𝜿𝟐 is	0	(odd)	or	1	(even)

2)			Up	to	3rd	order Hadron	Resonance	Gas	(HRG)	model	
agrees	with	LQCD	at	μB= 0	

3)			Higher	order	→ larger	deviation	from	baseline
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2)			Up	to	3rd	order Hadron	Resonance	Gas	(HRG)	model	
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4)			Holy	grail:	Critical	behavior	as	from	6th order
⟹	4th order	~30%,	6th order	~150%

~150%

What	does	theory	tell	us?

A.	Bazavov et.al.	Phys.	Rev.	D	95	(2017),	054504
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LQCD	vs	Experiment:	Caveats

ü Experiments	measure	final	state	of	the	dynamical	
evolution,	while	LQCD	calculates	an	equilibrium

ü Fluctuations	are	typically	calculated	in	coordinate	space	
but	measured	in	momentum	space

ü LQCD	suffers	from	sign	problem	at	large	μB
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What	do	we	expect	to	see	in	the	data?

ü Fluctuations	of	conserved	charges	appear	only	inside	finite	acceptance
ü In	the	limit	of	very	small	acceptance	→ only	Poissonian fluctuations	
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! Characteristic “Oscillating pattern” is 
expected for the QCD critical point but the 
exact shape depends on the location of freeze-
out with respect to the location of CP

! Critical Region (CR)
- M. Stephanov, PRL107, 052301(2011)   - V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyama,  Phys. Rev. D93 (2016) 034037
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E.g.:	Expectation	from	beam	energy	scan	

A. Rustamov, SQM 2022, Busan, Republic of Korea,  13-17 June, 2022

Energy excitation function of  in central Au-Au collisionsκ4/κ2
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HADES: Phys.Rev.C 102 (2020) 2, 024914
STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

higher statistics is needed for unambiguous conclusions

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011)
M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

non-monotonic behaviour with a significance of 3.1  
relative to Skellam expectation 
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see also: V. Vovchenko, V. Koch, Ch. Shen, Phys.Rev.C 105 (2022) 1, 014904

a dip in the excitation function is generic

HADES:	Phys.Rev.C	102	(2020)	2,	024914	
STAR:	Phys.Rev.Lett.	126	(2021)	9,	092301

M.	Stephanov,	PRL102,	032301	(2009),	PRL107,	052301	(2011)
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Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

different fractions of events containing pile-up. The uncertainties associated with the detection efficien-167

cies of the (anti)protons are also investigated by varying the detection efficiencies by an amount of ±2%168

for protons and antiprotons separately. The resulting systematic variation is less than 0.2% and 1.5%169

for the second- and third-order cumulants, respectively. Other sources of systematic uncertainty are esti-170

mated by varying the event and track selection criteria, resulting in a maximum uncertainty of less than171

1%. The final total systematic uncertainty is obtained by adding in quadrature the individual maximum172

systematic deviations from these three groups of independent contributions. For the third-order cumu-173

lants, it varies between less than 0.5% for the most peripheral collisions and a maximum of 3% for the174

most central collisions for the pseudorapidity interval of Dh = 1.6.175

3 Results176

As potential candidates for conservation of electric charge and strangeness, results are reported for the177

pseudorapidity interval dependence of the second-order cumulants of net-pions and net-kaons produced178

in central Pb–Pb collisions.179
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Figure 3: Pseudorapidity interval dependence of the second-order cumulants of net-pions (left) and net-kaons
(right) normalized to the means (see text). The ALICE data are shown as solid black circles while the blue solid and
dashed lines indicate the results from HIJING [45] model calculations with and without resonance contributions,
respectively. The error bars represent statistical uncertainties and the boxes around the data points represent the
total systematic uncertainties.

The observations in these channels are quite striking because they shed light on resonance decay con-180

tributions to fluctuations in Pb–Pb collisions at the LHC. Figure 3 shows the pseudorapidity interval181

dependence of the normalized second-order cumulants of net-pions and net-kaons compared with the182

results from HIJING [45] with and without resonance contributions. A significant effect of resonances,183

e.g., r ! p+p� and f ! K+K�, is clearly visible in both cases. In fact, the decay of resonances into184

oppositely charged pion or kaon pairs drastically reduces the fluctuations and dominates the second-185

order cumulants of the respective net distributions. Therefore, to study the genuine electric charge and186

strangeness fluctuations, first a quantitative understanding of the resonance contributions is essential. On187

the other hand, there are no resonances that decay into pp with a sizeable branching ratio, therefore net-188

proton fluctuations are not obscured by this effect. It has been argued in the literature [46] that net-proton189

fluctuations are good proxies for net-baryon fluctuations, in particular for
p

sNN >10 GeV. Also, total190

electric-charge conservation is expected to have a negligible impact on the net-proton fluctuation mea-191

surements, since the electric charge is mostly carried by the charged pions, which are the most abundant192

species at LHC energies. The statistically independent Poisson limit for net-baryon distributions is the193

Skellam distribution, which is defined as the probability distribution of the difference of two random194

6

13

ALICE,	arXiv:2206.03343
Net-𝝅 Net-K

CERN	LHC	Seminar,	21.06.2022

NEW

Ø Net-Q,S:	→ Strongly	dominated	by	resonance	contributions	
(V.	Vovchenko and	V.	Koch	Phys.	Rev.	C	103,	044903	(2021))



Ø Net-Q,S:	→ Strongly	dominated	by	resonance	contributions	
(V.	Vovchenko and	V.	Koch	Phys.	Rev.	C	103,	044903	(2021))

Ø Net-B:
							→ Due	to	isospin	randomization,	at	 𝑠TT� >	10	GeV net-baryon	↔ net-proton	

(M.	Kitazawa,	and	M.	Asakawa, Phys.	Rev.	C	86,	024904	(2012))	
→ No	resonance	feeding	p + pM
→ Best	candidate	for	measuring	charge	susceptibilities	is	net-p
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Main	detectors	used:

Ø Inner	Tracking	System	(ITS)	
→	Tracking	and	vertexing

Ø Time	Projection	Chamber	(TPC)
→	Tracking	and	

Particle	Identification	(PID)
Ø V0

→	Centrality	determination

Data	Set:

Ø 𝑠TT� = 5.02	TeV,	~78	M	events
Ø 𝑠TT� = 2.76	TeV,	~13	M	events

Kinematic	acceptance:

Ø 0.6	<	p <	[1.5,	2]	GeV/c
Ø |𝜂|<	0.2,	0.4,	… ,	0.8

A Large	Ion	Collider	Experiment
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Particle	Identification	(PID)

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.

∆" > ∆"$%&: conservations dominate
∆" < ∆"$%&: dynamical fluctuations may disappear,

(approaching  Poisson limit)
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Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration

vanish under these conditions also if baryon number conservation is included, see Refs. [51, 56]. Also in281

LQCD [57] the odd cumulants vanish.282

In Fig. 7, the third-order cumulant measurements are also compared with HIJING and EPOS model283

calculation results. Both models include baryon number conservation but, as mentioned above, the net-284

proton number is positive within the current experimental acceptance. Therefore, the resulting third-order285

cumulants for all centrality and pseudorapidity difference intervals shift toward positive values and are286

affected by the volume fluctuations [18] visible in the 10–20% centrality interval, where the centrality287

range doubles (left panel). The agreement of the experimental third-order cumulants with a value of zero288

is a confirmation that the average number of protons and antiprotons is the same at LHC energies and289

that the systematic uncertainties for these measurements are under good control.290
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Figure 7: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to
second-order cumulants for net protons at

p
sNN = 5.02 TeV. The ALICE data are shown by red markers, while

the colored shaded bands represent the results from HIJING [45] and EPOS [52] model calculations.

4 Conclusions291

In summary, net-proton cumulant measurements up to third order and net-pion and net-kaon second-order292

cumulant measurements are reported. The technical challenges related to data analysis, in particular ef-293

ficiency correction and event pile-up, could be overcome as discussed in detail. Resonance contributions294

prove to be challenging in the study of fluctuations of the net-electric charge and the net-strangeness. A295

deviation of about 4% from the Skellam baseline is observed for the second-order net-proton cumulants296

for the widest Dh interval. Investigation of this deviation in light of baryon number conservation led to297

the conclusion that the 2010 data from ALICE [26] indicate the presence of long-range rapidity corre-298

lations between protons and antiprotons originating from the early phase of the collision. This finding299

is corroborated by the present analysis including the higher luminosity 2015 data with significantly dif-300

ferent experimental conditions. Results of calculations using the HIJING generator, based on the Lund301

string model, reflect a much smaller correlation length of one unit of rapidity. This observed discrepancy302

calls into question the mechanism implemented in the Lund string model for the production of baryons.303

After accounting for the effect of baryon number conservation, the data from ALICE are consistent with304

LQCD expectations up to the third-order cumulants of the net protons. The finding of third-order net-305

proton cumulants consistent with zero with a precision of better than 4% is promising for the analysis of306

the higher-order cumulants during the operation of LHC with increased Pb–Pb luminosity [58] starting307

in 2022 and for the future heavy-ion detector planned for the early 2030s [59].308

10

3rd order	cumulants	of	net-p

NEW

25

Ø Data	agree	with	Skellam	baseline	“0”	as	a	function	of	centrality	and	pseudorapidity
• μB is	very	close	to	0	at	LHC	energies	

Ø Achieved	precision	of	better	than	4%
Ø EPOS	and	HIJING	deviate	from	”0”

• They	conserve	global	charge but	e/ef is	poorly	reproduced:	1.025±0.004	(EPOS),	1.008±0.002	(HIJING)
• Volume	fluctuations for	2nd and	3rd order	cumulants	are	not	negligible

A
LICE,	arXiv:2206.03343

CERN	LHC	Seminar,	21.06.2022

Event/track	selection dE/dx	calibration	and	PID Efficiency	correction
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Cut	based	approach	vs	Identity	Method



A.	Rustamov,	M.	Gazdzicki,	M.	I.	Gorenstein,	PRC	86,	044906	(2012),	PRC	84,	024902	(2011)
A.	Rustamov,	M.	Arslandok,	Nucl.	Instrum.	A946	(2019)	162622}
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ωπ
(1) =1,   ωπ

(2) ≅ 0.6,   ωπ
(3) = 0,   ωπ

(4) = 0  ⇒  Wπ =1.6 ≠ Nπ

Cut	based	approach	vs	Identity	Method
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A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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single event example : 3 protons, 2 kaons

Identity method approach

16

Analysis technique

Ø Cut	based	approach	
• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁]^ =	A34 𝑊]^
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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Figure 1: (Left) Correlation between the reconstructed (Nrec
p ) and the generated (Ngen

p ) number of protons for the
most central Pb–Pb collisions simulated using the HIJING model [45]. (Right) Distribution of reconstructed proton
number for a fixed value of N

gen
p = 36, where the fit demonstrates the deviation from a binomial efficiency loss.

MC closure test, particles are generated, including certain correlations such as the effect of baryon num-153

ber conservation, and reconstructed after they have passed through the detector simulated with GEANT4.154

Then the efficiency correction is applied, and the generated and corrected observables are compared. The155

comparison is shown in Fig. 2 for the second- and third-order cumulant ratios of the net-proton distribu-156

tion. The efficiency-corrected results obtained from the MC reconstructed data are in agreement with the157

results obtained from the MC generated data.158
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Figure 2: HIJING model [45] based calculations of the normalized second-order cumulants of net protons as a
function of pseudorapidity window (Dh) (left) and ratio of third- to second-order cumulants (right) of net protons
as a function of collision centrality at

p
sNN = 5.02 TeV. The results at the generated and reconstructed level are

shown by the green closed and open circles, respectively. The error bars represent statistical uncertainties. The
results after efficiency correction assuming binomial efficiency losses [41–43] are shown by black open squares.
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Slight	deviation	from	the	binomial	efficiency	loss
• Event	and	track	selection
• TPC	dE/dx calibration	in	particular	for	the	events	with	pileup

M.	Arslandok,	E.	Hellbär,	M.	Ivanov,	R.H.	Münzer	and	J.	Wiechula,	Particles 2022,	5(1),	84-95

• Realistic	detector	simulation	

Binomiality of	the	detector	response	is	important	for	the	efficiency	correction
ALICE,	arXiv:2206.03343
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for both second and third order. The observed maximum deviation between fit variations [27] is 0.6%162

and 0.8% for the normalized second-order cumulants within the momentum intervals of 0.6–1.5 GeV/c163
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Efficiency	correction	with	binomial	assumption:	T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017),		Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)

19

MC	closure

Very	good	closure	despite	the	slight	deviation	from	binomial	loss

ALICE,	arXiv:2206.03343
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5.2. Event and track selection

condition

dcaxy < 0.0182 mm +
0.0350 mm

p1.01

T

, (5.1)

which takes into account the pT-dependence of the impact parameter resolution. Moreover,
tracks are required to be present in ITS and TPC refits.

Pseudo-rapidity (⌘) range |⌘| <0.8
Momentum (p) range 0.2<p<1.5 GeV/c

Centrality classes (%)
0-5, 5-10, 10-20, 20-30, 30-40

40-50, 60-70, 70-80

DCA to vertex on xy plane < 0.0182 mm +
0.0350 mm

p1.01

T

DCA to vertex along beam direction <2 cm
TPC vertex along beam direction <10 cm

�2 per cluster <4
Number of crosseed rows is a sector >80

Found/findable TPC clusters >0.5
Fraction of shared clusters <0.4

TPC and ITS refit yes
Require hits in SPD yes

Rejection of kink daughters yes

Table 5.1.: Summary of the track selection criteria.

The classification of events in centrality intervals is obtained by fitting the summed
amplitudes of the signals in the V0A and V0C detectors with a Glauber model [79]. TheCENTRALITY DETERMINATION OF Pb-Pb COLLISIONS . . . PHYSICAL REVIEW C 88, 044909 (2013)
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FIG. 9. (Color online) Purity of the three online interaction trig-
gers (2-out-of-3, V0AND, and 3-out-of-3) and other event selections
used for Pb-Pb collisions as a function of the VZERO amplitude
calculated with HIJING, STARLIGHT, and QED simulations. The
dashed line indicates 90% of the hadronic cross section.

of the VZERO amplitude (V ), is defined as the fraction of
hadronic collisions over all the events selected with a given
condition,

purity =
dNx

dV

∣∣
H

σH

NH

dNx

dV

∣∣
H

σH

NH
+ dNx

dV

∣∣
SNS

σSNS
NSNS

+ dNx

dV

∣∣
SND

σSND
NSND

+ dNx

dV

∣∣
Q

σQ

NQ

,

(4)

where σx and Nx are the cross sections and number of events
for a given process, x, where x = H , SNS, SND, and Q,
for HIJING, STARLIGHT single, STARLIGHT double, and
QED, respectively.

The purity of the event sample can be verified using the
correlation of the energy deposition in the two sides of the ZN
calorimeter, similar to the one shown in Fig. 6. Single-neutron
peaks are visible in the 80–90% centrality class, which may
indicate some remaining contamination from EMD events.
However, their origin can be also attributed to asymmetric
Pb-Pb events, as well as a pile-up of an EMD and a hadronic
collision. Since this contamination cannot be easily removed,
analyses that use peripheral classes like 80–90% assign an
additional 6% systematic uncertainty on the event selection to
take into account the possible contamination from EMD.

B. Method 2: Fitting the multiplicity distribution

Another independent way to define the AP uses a phe-
nomenological approach based on the Glauber Monte Carlo
to fit the experimental multiplicity distribution. The Glauber
Monte Carlo uses the assumptions mentioned above plus a
convolution of a model for particle production, based on a
negative binomial distribution (NBD). This latter assumption
is motivated by the fact that in minimum bias pp and pp
collisions at high energy, the charged-particle multiplicity
dσ/dNch has been measured over a wide range of rapidity
and is well described by a NBD [31,32]. This approach allows
one to simulate an experimental multiplicity distribution (e.g.,

FIG. 10. (Color online) Distribution of the sum of amplitudes in
the VZERO scintillators. The distribution is fitted with the NBD-
Glauber fit (explained in the text), shown as a line. The centrality
classes used in the analysis are indicated in the figure. The inset
shows a zoom of the most peripheral region.

VZERO amplitude), which can be compared with the one from
data.

Figure 10 shows the distribution of VZERO amplitudes for
all events triggered with the 3-out-of-3 trigger (see Sec. III B)
after removing the beam background (see Sec. III C1), part of
the EM background with the ZDC cut (see Sec. III C2), and
a Z-vertex cut |zvtx| < 10 cm. The multiplicity distribution
has the classical shape of a peak corresponding to most
peripheral collisions (contaminated by EM background and
by missing events due to the trigger inefficiency), a plateau of
the intermediate region, and an edge for the central collisions,
which is sensitive to the intrinsic fluctuations of Npart and
dNch/dη and to detector acceptance and resolution.

The Glauber Monte Carlo defines, for an event with a
given impact parameter b, the corresponding Npart and Ncoll.
The particle multiplicity per nucleon-nucleon collision is
parametrized by a NBD. To apply this model to any collision
with a given Npart and Ncoll value we introduce the concept of
“ancestors,” i.e., independently emitting sources of particles.
We assume that the number of ancestors Nancestors can be
parameterized by Nancestors = f Npart + (1 − f )Ncoll. This is
inspired by two-component models [33,34], which decompose
nucleus-nucleus collisions into soft and hard interactions,
where the soft interactions produce particles with an average
multiplicity proportional to Npart, and the probability for hard
interactions to occur is proportional to Ncoll. We discuss
the independence of the fit results of this assumption below
(Sec. IV B1).

To generate the number of particles produced per interac-
tion, we use the negative binomial distribution

Pµ,k(n) = #(n + k)
#(n + 1)#(k)

(µ/k)n

(µ/k + 1)n+k
, (5)

which gives the probability of measuring n hits per ancestor,
where µ is the mean multiplicity per ancestor and k controls
the width. For every Glauber Monte Carlo event, the NBD
is sampled Nancestors times to obtain the averaged simulated
VZERO amplitude for this event, which is proportional to
the number of particles hitting the hodoscopes. The VZERO

044909-9

Figure 5.3.: (Black markers) Distribution of the summed amplitudes in the V0 detectors. (Red curve) the
result of the Glauber model fit to the measurement. The vertical lines separate the centrality
classes, which in total correspond to the most central 80% of the hadronic collisions [79].

model assumes that the number of particle-producing sources is given by f ⇥ Npart +
(1� f)⇥Ncoll, where Npart is the number of participating nucleons, Ncoll is the number of
binary nucleon-nucleon collisions and f quantifies their relative contributions. The number
of particles produced per interaction is generated using a Negative Binomial Distribution
(NBD) Pµ,k, which is parametrized by µ and k, where µ is the mean multiplicity per

89
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precise determination of the statistics needed for a particular cumulant measurement, which

is of crucial importance for the preparation of an event-by-event experiment. Further input

from experimental data is necessary for a successful analysis: (i) a detailed description of the

centrality selection procedure employed in a particular experiment, and (ii) measurements

of the first moments (mean multiplicities) of particles and antiparticles.

As the centrality determination is a delicate experimental issue (cf. the discussion in the

introduction), each experiment has to be considered separately. Below we implement one

of the centrality selection approaches used in the ALICE experiment, where the measured

multiplicities (signal amplitudes in VZEROs) are fitted with those obtained from a Glauber

Monte Carlo simulation (for details see [14]).
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Figure 1. Left Panel: Produced number of charged particles versus the impact parameter. Right

Panel: Produced number of charged particles versus the number of wounded nucleons. For a given

value of the impact parameter the number of wounded nucleons and binary collisions are calculated

with a Glauber Monte Carlo simulation based on the approach described in [14]. Next, using a

two-component model, charged particles are produced assuming a Negative Binomial Distribution

with parameters extracted by the same procedure as used in the ALICE experiment.

Technically, following a two-component model [15, 16], in which one decomposes nucleus-

nucleus collisions into soft and hard interactions, we first calculate the number of ancestors

9
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What	did	we	learn	from	
ALICE	1	(2010-2018)?
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after the big bang. It is now believed that these large scale fluctuations origi-
nate in small quantum fluctuations present during the inflationary epoch. Dur-
ing the rapid expansion of the universe in this epoch, these quantum fluctua-
tions were stretched to size scales much larger than those that were causally
connected in the post-inflationary era when the universe was expanding in a
state close to thermal equilibrium. Therefore such super horizon scale fluctu-
ations cannot be much affected by the sub-horizon scale processes allowable
in the post-inflationary thermal universe. This explains why CMB measure-
ments provide extremely valuable information about the inflationary epoch of
the universe, despite the fact that the CMB radiation was produced long after
(tCMB ∼ 4 · 105 years) the primordial fluctuations that are responsible for its
features (tinflation ∼ 10−33 seconds).

There is a concrete analog of such super-horizon fluctuations in the matter
produced in high energy hadronic collisions such as heavy ion collisions at RHIC,
as illustrated in fig. 1. In this figure, we represent the “event horizons” as seen

detection

freeze out

latest correlation

A B

z 

t

Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.

from the last rescattering of two particles A and B on the freeze-out surface.
These are the red and green cones pointing to the past. Any event that has a
causal influence on the particles A or B must take place inside the corresponding
event horizon. Any event that induces a correlation between the particles A and
B must lie in the overlap of their event horizons. Therefore, if the particles A
and B have rapidities y

A
and y

B
, the processes that caused their correlations

must have occurred before the time1

τ ≤ τfreeze out e−
1
2
|y

A
−y

B
| . (1)

1We assume here that a particle detected with momentum rapidity y originates from a point
of space-time rapidity η ≈ y on the freeze-out surface. This is a consequence of the boost
invariance of the collision (at high energy), and of the fact that the local thermal motion
spreads the rapidities by at most one unit in rapidity.
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Ø Baryon	production:
→ 𝑞𝑞M is	replaced	by	𝑞𝑞-𝑞M𝑞M pairØ Only	early	correlations	can	be	long	

range	in	rapidity	
B.	Andersson,	G.	Gustafson,	G.	Ingelman,	T.	Sjostrand
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Figure 5: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons for

p
sNN = 5.02 TeV and two momentum intervals for the protons. The ALICE

data are shown by red and blue markers for 0.6 < p < 1.5 GeV/c and 0.6 < p < 2.0 GeV/c, respectively. The
colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
panel, in addition, the dashed colored lines represent the predictions from the model with local baryon number
conservation with Dycorr = 5 [22].
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• Increase	in	fraction	of	accepted	p, pM → stronger	constraint	of	fluctuations	due	to	baryon	number	conservation
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2nd order	cumulants	of	net-p:	Acceptance	dependence	

Ø Consistent	with	the	baryon	number	conservation	picture		
• Increase	in	fraction	of	accepted	p, pM ->	stronger	constraint	of	fluctuations	due	to	baryon	number	conservation

Ø EPOS	&	HIJING	show	this	drop	qualitatively
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Net-baryon fluctuations with cumulants up to third order in Pb–Pb collisions ALICE Collaboration
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Figure 5: (Color online) Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-
order cumulants of net protons for

p
sNN = 5.02 TeV and two momentum intervals for the protons. The ALICE

data are shown by red and blue markers for 0.6 < p < 1.5 GeV/c and 0.6 < p < 2.0 GeV/c, respectively. The
colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
panel, in addition, the dashed colored lines represent the predictions from the model with local baryon number
conservation with Dycorr = 5 [22].

due to antiproton absorption in the detector material and, to a smaller degree, by a proton knock-out con-269

tribution. Understanding and controlling the particle detection efficiency is one of the major technical270

challenges in the measurement of higher-order cumulants, since the efficiency enters into the analytical271

formula of the correction with the corresponding high power [41–43]. This affects both statistical and272

systematic uncertainties of the corrected data. Therefore, the final results depend crucially on a very273

accurate determination of the proton and antiproton efficiencies. Note that the efficiency correction ap-274

proximately doubles the statistical uncertainties, as also noted in Ref. [55]. The experimentally achieved275

overall precision is better than 4% for the most central collisions and much smaller for more peripheral276

collisions.277
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Figure 6: Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to second-order
cumulants for net protons at

p
sNN = 5.02 TeV before (open markers) and after (closed markers) efficiency correc-

tion.

After efficiency correction, the data agree with the zero baseline within the experimental uncertainties,278

which is consistent with expectations from the HRG model. Note that in the HRG model all odd cumu-279

lants vanish at LHC energy, where the number of baryons and antibaryons agree. The odd cumulants280
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colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
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• Increase	in	fraction	of	accepted	p, pM → stronger	constraint	of	fluctuations	due	to	baryon	number	conservation

Ø EPOS &	HIJING	show	this	drop	qualitatively
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colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
panel, in addition, the dashed colored lines represent the predictions from the model with local baryon number
conservation with Dycorr = 5 [22].
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order cumulants of net protons for
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sNN = 5.02 TeV and two momentum intervals for the protons. The ALICE

data are shown by red and blue markers for 0.6 < p < 1.5 GeV/c and 0.6 < p < 2.0 GeV/c, respectively. The
colored shaded areas indicate the results from the HIJING [45] and EPOS [52] model calculations. In the right
panel, in addition, the dashed colored lines represent the predictions from the model with local baryon number
conservation with Dycorr = 5 [22].
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Baseline

Ø Consistent	with	the	baryon	number	conservation	picture		
• Increase	in	fraction	of	accepted	p, pM → stronger	constraint	of	fluctuations	due	to	baryon	number	conservation

Ø EPOS &	HIJING	show	this	drop	qualitatively
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Ø Data	agree	with	Skellam	baseline	“0”	→ μB	is	very	close	to	0	at	LHC	energies	
Ø Achieved	precision	of	better	than	4%

ALICE,	arXiv:2206.03343

Baseline
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Ø Data	agree	with	Skellam	baseline	“0”	→ μB	is	very	close	to	0	at	LHC	energies	
Ø Achieved	precision	of	better	than	4%
Ø EPOS	and	HIJING	deviate	from	”0”

• They	conserve	global	charge but	𝒑/𝒑f deviates	from	unity:	1.025±0.004	(EPOS),	1.008±0.002	(HIJING)
• Volume	fluctuations for	2nd and	3rd order	cumulants	are	not	negligible

CERN	LHC	Seminar,	21.06.2022
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Model Expectations
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! Characteristic “Oscillating pattern” is 
expected for the QCD critical point but the 
exact shape depends on the location of freeze-
out with respect to the location of CP

! Critical Region (CR)
- M. Stephanov, PRL107, 052301(2011)   - V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyama,  Phys. Rev. D93 (2016) 034037
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1) Non-monotonic dependence in top 5% central Au+Au collisions;
2) In case of C4/C2: transport model UrQMD traces CE calculation. 

But over predict C3/C2;
3)  Gap between 3 and 7.7 GeV, important for critical point search

STAR:  PRL126, 92301(2021)    
HADES:  PRC102, 024914(2020)

P. Braun-Munzinger et al. 
NPA1008 (2021)122141

3rd order 4th order



What	do	we	expect	from	
ALICE	2	(2022-2030)	

and	
ALICE	3	(beyond	2030s)?



ALICE	2	(2022-2030)

18/05/2021        EP-ESE Seminar - Torsten Alt 11

The future

ü Continuous	readout:	
→ ~	50	kHz Pb−Pb	min.	bias
→~ 5	pileup	events	within	the	TPC

ü Improved	vertexing	
ü High	tracking	efficiency	at	low	pT

Future	of	conserved	charge	fluctuations	in	ALICE

Mesut	Arslandok,	Yale	University	/	CERN 28CERN	LHC	Seminar,	21.06.2022



ALICE,	CERN
-LHCC-2022-009

ü High	statistics									→ O	(10^9)	billion	events
ü Large	acceptance			→ |η|<	4
ü High	PID	purity →		0.3	<	pT <	7	GeV/c
ü High	efficiency								→	 ~95%	
ü Excellent	vertexing	→ O	(3µm)	resolution

Letter of intent for ALICE 3 (CERN-LHCC-2022-009) 23

Figure 1: ALICE 3 detector concept: A silicon tracker composed of cylinders and disks serves
for track reconstruction in the magnetic field provided by a super-conducting magnet system. The
vertex tracker is contained within the beam pipe. For particle identification a time-of-flight detector,
RICH detector, photon detector, and a muon system are employed. The forward conversion tracker
is housed in a dedicated dipole magnet.

1.5 Uniqueness and competitiveness
The proposed ALICE 3 experiment combines excellent particle identification capabilities with a
tracking system that has very low mass and unique pointing resolution, covering a much larger
rapidity range than the current ALICE setup. This combination provides unique access to ther-
mal dielectron production and heavy flavour probes of the quark-gluon plasma.

ALICE 3 will be able to cleanly identify dielectrons over a broad range in mass and pT, thus
providing unique access to the temperature evolution of the early stage of the collision, as well
as signatures of chiral symmetry restoration. These measurements will be unique at LHC, since

Figure 2: Longitudinal cross section of the ALICE 3 detector concept

ALICE	3	(beyond	early	2030s)ALICE	2	(2022-2030)

18/05/2021        EP-ESE Seminar - Torsten Alt 11

The future

ü Continuous	readout:	
→ ~	50	kHz Pb−Pb	min.	bias
→~ 5	pileup	events	within	the	TPC

ü Improved	vertexing	
ü High	tracking	efficiency	at	low	pT

Future	of	conserved	charge	fluctuations	in	ALICE
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Criticality	in	ALICE	2	and	3:	6th and	higher	order	cumulants

Ø Simulation	of	the	Critical	Fluctuations	(CF)	is	based	on	PQM	model
G.	A.	Almasi,	B.	Friman,	and	K.	Redlich,	Phys.	Rev.D96	(2017),	014027

Ø ALICE	2:	
→More	than	5	billion	central	Pb-Pb	collisions	is	required	

Ø ALICE	3:	
→ x3	larger	statistics: >4𝜎 significance	with	ALICE	2	acceptance

Net	baryon	and	net	strangeness	fluctuations	
for	|η|	≤	4	and	for	6th and	higher	order		

Mesut	Arslandok,	Yale	University	/	CERN

ALICE,	CERN-LHCC-2022-009

xxx ALICE Collaboration

Phase transitions in strongly interacting matter can be addressed by investigating the response of the7

system to external perturbations via measurements of fluctuations of conserved charges in heavy ion8

collisions, see e.g. refs. [1, 2]. Such measurements can provide information on critical behavior near9

the phase boundary between quark-gluon plasma and hadronic matter. The fluctuations can be directly10

related to generalized susceptibilities computed in lattice QCD (lQCD). Specifically, the susceptibilities11

are obtained from the derivatives of the pressure with respect to the chemical potentials corresponding to12

the conserved charges. The relevant charges are conserved quantum numbers such as electric charge Q,13

baryon number B, strangeness S, charm C and so on. At vanishing chemical potential, i.e., precisely the14

conditions probed at the LHC, these susceptibilities can be computed in lQCD.15

For instance, a measurement of higher moments (or cumulants1) of net-baryon number measured in16

nuclear collisions in the experimental acceptance of, e.g., ALICE can be directly related to theoretical17

predictions from lQCD or from more phenomenological models of the chiral phase transition. This is18

important because due to the small current masses of up and down quarks, one can probe critical phenom-19

ena at LHC energies [4]. Indeed, recent lQCD calculations exhibit a rather strong signal for the existence20

of a pseudo-critical temperature at about 156 MeV [5, 6] and this temperature is in agreement with the21

chemical freeze-out temperature extracted [7] by the analysis of hadron multiplicities. Already the mag-22

nitude of the fourth order cumulants of net-baryon number fluctuations obtained from lQCD calculations23

is significantly below the expectation from Poissonian fluctuations of baryons and antibaryons. Critical24

fluctuations due to the vicinity of the cross over line to a 2nd order phase transition of O(4) universality25

at vanishing u, d quark masses are expected to strongly modify the 6th and higher order cumulants of the26

net-baryon distribution [8].27
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Figure 1: (Color online) Simulated values of k6/k2 as a function of the generated number of events. The full
symbols represent results obtained with the double Gaussian approach adjusted to reproduce critical fluctuations
(CF) predicted in the PQM model [8].

1The cumulants, kn, of net-baryon number, DNB = NB �NB̄, are defined as the coefficients in the Maclaurin series of the
logarithm of the characteristic function of DNB [3].
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0-5%,	0.6	<	p	<	1.5	GeV/c,	|𝜼|<0.8
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ALICE	3:	High	PID	purity	in	large	kinematic	acceptance
ü Significant	increase	in	the	number	of	measured	protons	
ü Larger	acceptance:	in	pT and	𝜂:	(0.3	<	p	<	7	GeV/c,	|𝜂|<4)
ü Smaller	systematics: high	PID	purity	and	efficiency
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-LHCC-2022-009
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the fluctuations are Poissonian fluctuations, resulting an a Skellam distribution for the net baryon2907

number. This leads to the so-called ”Skellam” baseline5. To illustrate the advantages offered by2908

the larger acceptance of ALICE 3, Fig. 59 shows the expected dependence of the second order2909

cumulants of net-protons on the pseudorapidity acceptance, using the transverse momentum ac-2910

ceptance of ALICE 2 and ALICE 3. Due to small kinematic acceptance and large systematical2911

uncertainties in the ALICE 1-2, it is difficult to draw a quantitative conclusion on the correlation2912

length. The significantly larger acceptance of ALICE 3 will make it possible to establish devia-2913

tions from the Skellam baseline in more detail, which will allow to quantitatively constrain the2914

correlation length for net baryon, strangeness and - completely new - charm number.2915
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Figure 59: (Color online) Pseudorapidity dependence of the normalized second cumulants of net-
protons. The ALICE data and HIJING model calculations at

p
sNN = 2.76 TeV for 0-5% central

collisions are shown by black and red markers, respectively, where the kinematic acceptance is
0.6 < p < 1.5 GeV/c [176]. The solid green line indicates the HIJING model calculations with the
ALICE 3 kinematic acceptance of 0.3 < p < 10 GeV/c and the dashed lines is the extrapolation of
the HIJING model calculations to pseudorapidity acceptance of the ALICE 3 for the momentum
range of 0.6 < p < 1.5 GeV/c.

More than a factor 100 larger signal-to-background ratio and a factor 2 higher detection effi-2916

ciencies for D mesons, as well as the large acceptance of ALICE 3, allow the measurement of2917

net-charm fluctuations with D mesons. These measurements are out of reach with the current2918

ALICE detector. In the case of net-proton, the number of detected pp̄ pairs per event is larger2919

than one in almost all events at LHC energies. However, for the D mesons, it is on the level2920

of 0.01. Therefore, the formulas in [306] are not applicable for the statistical error estimation.2921

To calculate the statistical uncertainties, a dedicated Monte-Carlo simulation study had to be2922

performed. Since lQCD predictions agree with the statistical hadronisation model (taking into2923

account missing states (see Figure 7)), Poissonian statistics was assumed for the production of D2924

mesons. The average yield information was taken from [56] and events without DD̄ pairs were2925

not included in the cumulant calculations. The resulting relative error as a function of the event2926

statistics is shown in Fig. 60. Note that these results are based on the yields before efficiency2927

5The Skellam distribution is defined as the probability distribution of the difference of two random variables,
each generated from statistically independent Poisson distributions.
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Ø Precise	mapping	of	correlation	length	of	conserved	charges,	B,	S,	C
Ø Constraining	individual	dynamic	signals	such	as	volume	fluctuations,	baryon	number	conservation,	

thermal	blurring,	annihilation,	effect	of	hydrodynamic	evolution	etc.	
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the fluctuations are Poissonian fluctuations, resulting an a Skellam distribution for the net baryon2907

number. This leads to the so-called ”Skellam” baseline5. To illustrate the advantages offered by2908

the larger acceptance of ALICE 3, Fig. 59 shows the expected dependence of the second order2909

cumulants of net-protons on the pseudorapidity acceptance, using the transverse momentum ac-2910

ceptance of ALICE 2 and ALICE 3. Due to small kinematic acceptance and large systematical2911

uncertainties in the ALICE 1-2, it is difficult to draw a quantitative conclusion on the correlation2912

length. The significantly larger acceptance of ALICE 3 will make it possible to establish devia-2913

tions from the Skellam baseline in more detail, which will allow to quantitatively constrain the2914

correlation length for net baryon, strangeness and - completely new - charm number.2915
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Figure 59: (Color online) Pseudorapidity dependence of the normalized second cumulants of net-
protons. The ALICE data and HIJING model calculations at

p
sNN = 2.76 TeV for 0-5% central

collisions are shown by black and red markers, respectively, where the kinematic acceptance is
0.6 < p < 1.5 GeV/c [176]. The solid green line indicates the HIJING model calculations with the
ALICE 3 kinematic acceptance of 0.3 < p < 10 GeV/c and the dashed lines is the extrapolation of
the HIJING model calculations to pseudorapidity acceptance of the ALICE 3 for the momentum
range of 0.6 < p < 1.5 GeV/c.

More than a factor 100 larger signal-to-background ratio and a factor 2 higher detection effi-2916

ciencies for D mesons, as well as the large acceptance of ALICE 3, allow the measurement of2917

net-charm fluctuations with D mesons. These measurements are out of reach with the current2918

ALICE detector. In the case of net-proton, the number of detected pp̄ pairs per event is larger2919

than one in almost all events at LHC energies. However, for the D mesons, it is on the level2920

of 0.01. Therefore, the formulas in [306] are not applicable for the statistical error estimation.2921

To calculate the statistical uncertainties, a dedicated Monte-Carlo simulation study had to be2922

performed. Since lQCD predictions agree with the statistical hadronisation model (taking into2923

account missing states (see Figure 7)), Poissonian statistics was assumed for the production of D2924

mesons. The average yield information was taken from [56] and events without DD̄ pairs were2925

not included in the cumulant calculations. The resulting relative error as a function of the event2926

statistics is shown in Fig. 60. Note that these results are based on the yields before efficiency2927

5The Skellam distribution is defined as the probability distribution of the difference of two random variables,
each generated from statistically independent Poisson distributions.
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Summary

What	do	we	expect	from	ALICE	2-3?
Ø Criticality	signals	at	6th and	higher	order	cumulants	for	B	and	S
Ø Constraining	individual	dynamic	signals	
Ø Correlation	length	of	conserved	charges:	B,	S,	C
Ø …

Mesut	Arslandok,	Yale	University	/	CERN 32

What	did	we	learn	from	ALICE	1?
Ø Net-Q,S	fluctuations:	→	 resonance	contributions	
Ø Net-p	fluctuations:

ü 1st order:	𝑇nopqrst ~	𝑇uv
qwsx

ü 2nd order:	Deviation	from	Skellam	baseline	is	due	to baryon	number	conservation
• Long	range	correlations	originating	from	early	phase	of	the	collision

ü 3rd order:	Up	to	3rd order	ALICE	data	agree	with	the	LQCD	expectations
• μB is	very	close	to	0	at	LHC	energies

CERN	LHC	Seminar,	21.06.2022
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Effect	of	event	pileup
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M.	Arslandok,	E.	Hellbär,	M.	Ivanov,	R.H.	Münzer	and	J.	Wiechula,	Particles 2022,	5(1),	84-95}
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ALICE	3:	Net-charm	fluctuations

Ø 2nd order→	Correlation	length	of	charm
Ø 4th order →	Close	to	Tpc charmed	baryon	fluctuations	are	about	50%	larger	than	expected	in	a	HRG	based	on	known	

charmed	baryon	resonances	(PDG-HRG)	→	missing	states	of	QCD	

Mesut	Arslandok,	Yale	University	/	CERN 34

A.	Bazavov et.al.	Phys.Lett.B 737	(2014)	210-215

A. Bazavov et al. / Physics Letters B 737 (2014) 210–215 215

Fig. 4. Thermodynamic contributions of all charmed baryons, R BC
13 (top), all charged 

charmed baryons, R Q C
13 (middle) and all strange charmed baryons, R SC

13 (bottom) 
relative to that of corresponding charmed mesons (see Eq. (10)). The dashed lines 
(PDG-HRG) are predictions for an uncorrelated hadron gas using only the PDG 
states. The solid lines (QM-HRG) are similar HRG predictions including also the 
states predicted by the quark model of Refs. [17,18]. The dotted lines (QM-HRG-
3) are the same QM predictions, but only including states having masses <3 GeV. 
The shaded region shows the QCD crossover region as in Fig. 2. The horizontal lines 
on the right hand side denote the infinite temperature non-interacting charm quark 
gas limits for the respective quantities. The lattice QCD data have been obtained on 
lattices of size 323 · 8 (filled symbols) and 243 · 6 (open symbols).

charmed baryons to the pressure of a hadron resonance gas.3 This 
is also consistent with a large set of additional charmed baryon 
resonances that are predicted in lattice QCD calculations [21].

7. Conclusions

We have calculated second and fourth order cumulants of 
net charm fluctuations and their correlations with fluctuations of 
other conserved charges, i.e. baryon number, electric charge and 
strangeness. Ratios of such cumulants indicate that a description of 
the thermodynamics of open charm degrees of freedom in terms 
of an uncorrelated charmed hadron gas is valid only up to tem-
peratures close to the chiral crossover transition temperature. This 
suggests that open charm hadrons start to dissolve already close 
to the chiral crossover. Moreover, observables that are sensitive to 
the ratio of the partial open charm meson and baryon pressures 
as well as their counterparts in the electrically charged charm sec-
tor and the strange-charm sector suggest that a large number of 
so far experimentally not measured open charm hadrons will con-
tribute to bulk thermodynamics close to the melting temperature. 
This should be taken into account when analyzing the hadroniza-
tion of charmed hadrons in heavy ion collision experiments.

So far our analysis has been performed by treating the charm 
quark sector in quenched approximation using fully dynamical 
(2 + 1)-flavor gauge field configurations as thermal heat bath. This, 
in fact, seems to be appropriate for the situation met in heavy ion 

3 It should be obvious that this contribution to the pressure nonetheless is 
strongly suppressed relative to the contribution of the non-charmed sector in HRG 
models.

collisions, where charm quarks are not generated thermally but are 
embedded into the thermal heat bath of light and strange quarks 
through hard collisions at early stages of the collision. We also 
do not expect that the cumulant ratios analyzed here will change 
significantly by treating also the charm sector dynamically. This, 
however, should be verified in future calculations.
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charmed baryons to the pressure of a hadron resonance gas.3 This 
is also consistent with a large set of additional charmed baryon 
resonances that are predicted in lattice QCD calculations [21].

7. Conclusions

We have calculated second and fourth order cumulants of 
net charm fluctuations and their correlations with fluctuations of 
other conserved charges, i.e. baryon number, electric charge and 
strangeness. Ratios of such cumulants indicate that a description of 
the thermodynamics of open charm degrees of freedom in terms 
of an uncorrelated charmed hadron gas is valid only up to tem-
peratures close to the chiral crossover transition temperature. This 
suggests that open charm hadrons start to dissolve already close 
to the chiral crossover. Moreover, observables that are sensitive to 
the ratio of the partial open charm meson and baryon pressures 
as well as their counterparts in the electrically charged charm sec-
tor and the strange-charm sector suggest that a large number of 
so far experimentally not measured open charm hadrons will con-
tribute to bulk thermodynamics close to the melting temperature. 
This should be taken into account when analyzing the hadroniza-
tion of charmed hadrons in heavy ion collision experiments.

So far our analysis has been performed by treating the charm 
quark sector in quenched approximation using fully dynamical 
(2 + 1)-flavor gauge field configurations as thermal heat bath. This, 
in fact, seems to be appropriate for the situation met in heavy ion 

3 It should be obvious that this contribution to the pressure nonetheless is 
strongly suppressed relative to the contribution of the non-charmed sector in HRG 
models.

collisions, where charm quarks are not generated thermally but are 
embedded into the thermal heat bath of light and strange quarks 
through hard collisions at early stages of the collision. We also 
do not expect that the cumulant ratios analyzed here will change 
significantly by treating also the charm sector dynamically. This, 
however, should be verified in future calculations.
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Fig. 4. Thermodynamic contributions of all charmed baryons, R BC
13 (top), all charged 

charmed baryons, R Q C
13 (middle) and all strange charmed baryons, R SC

13 (bottom) 
relative to that of corresponding charmed mesons (see Eq. (10)). The dashed lines 
(PDG-HRG) are predictions for an uncorrelated hadron gas using only the PDG 
states. The solid lines (QM-HRG) are similar HRG predictions including also the 
states predicted by the quark model of Refs. [17,18]. The dotted lines (QM-HRG-
3) are the same QM predictions, but only including states having masses <3 GeV. 
The shaded region shows the QCD crossover region as in Fig. 2. The horizontal lines 
on the right hand side denote the infinite temperature non-interacting charm quark 
gas limits for the respective quantities. The lattice QCD data have been obtained on 
lattices of size 323 · 8 (filled symbols) and 243 · 6 (open symbols).

charmed baryons to the pressure of a hadron resonance gas.3 This 
is also consistent with a large set of additional charmed baryon 
resonances that are predicted in lattice QCD calculations [21].

7. Conclusions

We have calculated second and fourth order cumulants of 
net charm fluctuations and their correlations with fluctuations of 
other conserved charges, i.e. baryon number, electric charge and 
strangeness. Ratios of such cumulants indicate that a description of 
the thermodynamics of open charm degrees of freedom in terms 
of an uncorrelated charmed hadron gas is valid only up to tem-
peratures close to the chiral crossover transition temperature. This 
suggests that open charm hadrons start to dissolve already close 
to the chiral crossover. Moreover, observables that are sensitive to 
the ratio of the partial open charm meson and baryon pressures 
as well as their counterparts in the electrically charged charm sec-
tor and the strange-charm sector suggest that a large number of 
so far experimentally not measured open charm hadrons will con-
tribute to bulk thermodynamics close to the melting temperature. 
This should be taken into account when analyzing the hadroniza-
tion of charmed hadrons in heavy ion collision experiments.

So far our analysis has been performed by treating the charm 
quark sector in quenched approximation using fully dynamical 
(2 + 1)-flavor gauge field configurations as thermal heat bath. This, 
in fact, seems to be appropriate for the situation met in heavy ion 

3 It should be obvious that this contribution to the pressure nonetheless is 
strongly suppressed relative to the contribution of the non-charmed sector in HRG 
models.

collisions, where charm quarks are not generated thermally but are 
embedded into the thermal heat bath of light and strange quarks 
through hard collisions at early stages of the collision. We also 
do not expect that the cumulant ratios analyzed here will change 
significantly by treating also the charm sector dynamically. This, 
however, should be verified in future calculations.

Acknowledgements

This work has been supported in part through contract DE-
AC02-98CH10886 with the U.S. Department of Energy, through Sci-
entific Discovery through Advanced Computing (SciDAC) program 
funded by U.S. Department of Energy, Office of Science, Advanced 
Scientific Computing Research and Nuclear Physics, the BMBF un-
der grant 05P12PBCTA, the DFG under grant GRK 881, EU under 
grant 283286 and the GSI BILAER grant. Numerical calculations 
have been performed using GPU-clusters at JLab, Bielefeld Univer-
sity, Paderborn University, and Indiana University. We acknowledge 
the support of Nvidia through the CUDA research center at Biele-
feld University.

References

[1] T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416.
[2] F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37 (1988) 617.
[3] A. Bazavov, et al., HotQCD Collaboration, Phys. Rev. D 85 (2012) 054503, 

arXiv:1111.1710 [hep-lat].
[4] H.T. Ding, et al., Phys. Rev. D 86 (2012) 014509, arXiv:1204.4945 [hep-lat].
[5] P. Petreczky, C. Miao, A. Mocsy, Nucl. Phys. A 855 (2011) 125, arXiv:1012.4433 

[hep-ph].
[6] G. Aarts, et al., J. High Energy Phys. 1111 (2011) 103, arXiv:1109.4496 [hep-lat].
[7] V. Koch, A. Majumder, J. Randrup, Phys. Rev. Lett. 95 (2005) 182301, arXiv:nucl-

th/0505052.
[8] S. Ejiri, F. Karsch, K. Redlich, Phys. Lett. B 633 (2006) 275, arXiv:hep-

ph/0509051.
[9] A. Majumder, B. Müller, Phys. Rev. Lett. 105 (2010) 252002, arXiv:1008.1747 

[hep-ph].
[10] A. Bazavov, et al., Phys. Rev. Lett. 111 (2013) 082301, arXiv:1304.7220 [hep-lat].
[11] R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, C. Ratti, Phys. Rev. Lett. 111 (2013) 

202302, arXiv:1305.6297 [hep-lat].
[12] V. Greco, C.M. Ko, R. Rapp, Phys. Lett. B 595 (2004) 202, arXiv:nucl-th/0312100.
[13] L. Tolos, A. Ramos, T. Mizutani, Phys. Rev. C 77 (2008) 015207, arXiv:0710.2684 

[nucl-th].
[14] J. Beringer, et al., Particle Data Group, Phys. Rev. D 86 (2012) 010001.
[15] S. Capstick, N. Isgur, Phys. Rev. D 34 (1986) 2809.
[16] For a recent review and further references see: V. Crede, W. Roberts, Rep. Prog. 

Phys. 76 (2013) 076301, arXiv:1302.7299 [nucl-ex].
[17] D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66 (2010) 197, 

arXiv:0910.5612 [hep-ph].
[18] D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84 (2011) 014025, 

arXiv:1105.0583 [hep-ph].
[19] For a recent review and further references see: S. Prelovsek, arXiv:1310.4354 

[hep-lat].
[20] G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas, L. Liu, J. High Energy Phys. 1305 

(2013) 021, arXiv:1301.7670 [hep-ph].
[21] M. Padmanath, R.G. Edwards, N. Mathur, M. Peardon, arXiv:1311.4806 [hep-lat].
[22] A. Bazavov, et al., HotQCD Collaboration, Phys. Rev. D 86 (2012) 034509, 

arXiv:1203.0784 [hep-lat].
[23] A. AlekSejevs, et al., GlueX Collaboration, arXiv:1305.1523 [nucl-ex].
[24] M.F.M. Lutz, et al., PANDA Collaboration, arXiv:0903.3905 [hep-ex].
[25] S. Ogilvy [on behalf of the LHCb Collaboration], arXiv:1312.1601 [hep-ex].
[26] J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, arXiv:1311.4662 [nucl-

th].
[27] E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. Lett. 109 (2012) 151601, 

arXiv:1204.2424 [hep-ph].
[28] A. Bazavov, P. Petreczky, Phys. Rev. D 87 (2013) 094505, arXiv:1301.3943 [hep-

lat].
[29] E. Follana, et al., HPQCD and UKQCD Collaborations, Phys. Rev. D 75 (2007) 

054502, arXiv:hep-lat/0610092.
[30] S. Borsanyi, et al., PoS LATTICE 2011 (2011) 201, arXiv:1204.0995 [hep-lat].
[31] A. Bazavov, et al., MILC Collaboration, PoS LATTICE 2013 (2013) 154, 

arXiv:1312.5011 [hep-lat].
[32] Y. Maezawa, A. Bazavov, F. Karsch, P. Petreczky, S. Mukherjee, arXiv:1312.4375 

[hep-lat].
[33] A. Bazavov, et al., Phys. Rev. Lett. 109 (2012) 192302, arXiv:1208.1220 [hep-lat].

Nτ: 8     6
  

0.3

0.5

0.7

140 150 160 170 180 190 200 210

-χ112
BSC/(χ13

SC-χ112
BSC)

T [MeV]

0.3

0.4

0.5 χ112
BQC/(χ13

QC-χ112
BQC) non-int.

quarks

QM-HRG-3
QM-HRG

PDG-HRG

0.2

0.3

0.4

0.5 χ13
BC/(χ4

C-χ13
BC)

Figure 4: Thermodynamic contributions of all charmed baryons, RBC
13 (top), all charged

charmed baryons, RQC
13

(middle) and all strange charmed baryons, RSC
13 (bottom) relative

to that of corresponding charmed mesons (see Eq. (10)). The dashed lines (PDG-HRG)
are predictions for an uncorrelated hadron gas using only the PDG states. The solid
lines (QM-HRG) are similar HRG predictions including also the states predicted by the
quark model of Ref. [17, 18]. The dotted lines (QM-HRG-3) are the same QM predictions,
but only including states having masses < 3 GeV. The shaded region shows the QCD
crossover region as in Fig. 2. The horizontal lines on the right hand side denote the
infinite temperature non-interacting charm quark gas limits for the respective quantities.
The lattice QCD data have been obtained on lattices of size 323 · 8 (filled symbols) and
243 · 6 (open symbols).

HRG model predictions for these ratios strongly depend on the rela-
tive abundance of the charmed baryons over open charm mesons. Shown
in Fig. 4 are results obtained from the PDG-HRG calculation (dashed lines)
and the QM-HRG (solid lines). Clearly in the temperature range of the QCD
crossover transition, the lattice QCD data for these ratios are much above the

14

NEW

ALICE,	CERN-LHCC-2022-009

CERN	LHC	Seminar,	21.06.2022



Mesut	Arslandok,	Yale	University	/	CERN 35CERN	LHC	Seminar,	21.06.2022

𝑇67 = 156.5 ± 1.5𝑀𝑒𝑉 ≈ 	𝑇@A
BCDEF

A.	Andronic et.al. Nature	561	(2018)	321
HotQCD Collaboration,	Phys.Lett.	B795	(2019)	15,	
S.	Borsanyi et.al.	Phys.	Rev.	Lett.	125,	052001	(2020)

Lines of constant physics and chemical freeze-out / hadronization
Thermal conditions at chemical freeze-out / hadronization characterized

by lines of constant pressure, energy and entropy densities?

compare well with estimates of the crossover line: 
[Bielefeld-BNL-CCNU (2011), Endrodi et a. (2011), 
Bellwied et al. (2015), Cea et al. (2016), Bonati et al. (2015)]
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[A. Andronic et al.,
Nature 561(2018)321](156.5± 1.5) MeV
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at µB = 0
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troducing constituent quarks, whose longitudinal mo-
mentum fraction fluctuates, produces fluctuations of the
string length. Additional fluctuations can be included
by varying the time a string requires to thermalize. We
study the e↵ect of the latter by implementing varying fi-
nal rapidities of each particle, sampled according to the
distribution first introduced within the LEXUS model
[18, 19].

We focus on the analysis of net-baryon and multiplic-
ity distributions in rapidity as well as measures of fluc-
tuations, with emphasis on their dependence on di↵erent
model assumptions. We present Legendre coe�cients of
net baryon and energy density rapidity fluctuations, mea-
sures of decorrelations of the transverse geometry with
rapidity, and cumulant ratios for net proton distributions
obtained directly from the initial state.

The paper is organized as follows. In Section II we
present the model, detailing the three-dimensional col-
lision dynamics, string production and deceleration, as
well as details like the possible choice of participants and
rapidity fluctuations. We close Section II with a discus-
sion of the form of the source terms for hydrodynamics.
In Section III we lay out the form of the hydrodynamic
equations with sources, and in Section IV we present re-
sults of the numerical calculations. Conclusions are pre-
sented in Section V.

II. THREE DIMENSIONAL MONTE-CARLO
GLAUBER MODEL

There exist several models that provide fluctuating ini-
tial conditions in three spatial dimensions [12, 19–23].
Here, we generalize the Monte Carlo Glauber model to
three dimensions by introducing a prescription for the
energy and net-baryon density deposition as a function
of rapidity. We show that in general a (proper-) time de-
pendent prescription for this deposition is required. This
will be achieved by introducing source terms into the hy-
drodynamic simulation.

A. Collision dynamics in 3D

The time it takes two nuclei to pass through each other
in a heavy ion collision depends on the collision energy.
Given the nuclear radius R, the overlap time of two nuclei
moving with opposite velocities ±vz can be estimated in
the laboratory frame as

⌧overlap =
2R

�vz
=

2R

sinh(ybeam)
, (1)

where � is the Lorentz factor and ybeam =
arccosh(

p
sNN/(2mp)) is the beam rapidity. Here

p
sNN

is the collision energy per nucleon pair and mp = 0.938

GeV is the mass of a proton.1 For two example Au+Au

FIG. 1. Nucleon positions as a function of one transverse
(x) and the longitudinal direction (z) for to di↵erent collision
energies.

events Fig. 1 shows the distribution of nucleons in the
laboratory frame at the time of the first NN-collision.
Nucleon positions (xi

P , y
i
P , z

i
P ) and (xj

T , y
j
T , z

j
T ), where i

and j run over all projectile (P ) and target (T ) nucle-
ons, respectively, were sampled from a three dimensional
isotropic Woods-Saxon distribution, then Lorentz con-
traction in the z-direction was applied according to the
collision energy. This illustrates that it will take a fi-
nite time for the two nuclei to pass through one another
and that nucleon-nucleon collisions will occur at di↵erent
positions z and over an extended range in time t.

FIG. 2. The nuclear overlapping time of 0-5% central d+Au
and Au+Au collisions as a function of the collision energy at
the RHIC BES program.

Fig. 2 shows the overlapping time ⌧overlap as a function
of the collision energy

p
sNN for Au+Au and d+Au colli-

sion systems. Due to the finite ⌧overlap, binary collisions

1 We approximate the neutron mass mn ⇡ mp.

Phys.	Rev.	C	97,	024907	(2018)
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Ø Similar	trend	as	for	net-p
Ø Better	precision	is	needed	to	disentangle	global	vs	local	conservation	laws
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	⟹ Ultra-low	material	budget	for	low	pT tracking
→ X/X0	~	0.05	%	/	layer

⟹	Fast to	sample	large	luminosity			
→ 50-100	x	Run	3/4	→MHz	level

⟹ Large	acceptance	
→ |𝜂|<1.4	(central	barrel),	|𝜂|<4	(total)

⟹ Excellent	spatial	resolution	for	tracking	and	vertexing
→	Innermost	layers:	𝜎 <	3	µm
→	Outer	layers:	𝜎 ~5	µm

⟹	Precise	time	measurements	for	PID
→ 𝜎 ~ 20	ps

ALICE	3

Mesut	Arslandok,	Yale	University	/	CERN 39

Letter of intent for ALICE 3 (CERN-LHCC-2022-009) 23

Figure 1: ALICE 3 detector concept: A silicon tracker composed of cylinders and disks serves
for track reconstruction in the magnetic field provided by a super-conducting magnet system. The
vertex tracker is contained within the beam pipe. For particle identification a time-of-flight detector,
RICH detector, photon detector, and a muon system are employed. The forward conversion tracker
is housed in a dedicated dipole magnet.

1.5 Uniqueness and competitiveness
The proposed ALICE 3 experiment combines excellent particle identification capabilities with a
tracking system that has very low mass and unique pointing resolution, covering a much larger
rapidity range than the current ALICE setup. This combination provides unique access to ther-
mal dielectron production and heavy flavour probes of the quark-gluon plasma.

ALICE 3 will be able to cleanly identify dielectrons over a broad range in mass and pT, thus
providing unique access to the temperature evolution of the early stage of the collision, as well
as signatures of chiral symmetry restoration. These measurements will be unique at LHC, since

Figure 2: Longitudinal cross section of the ALICE 3 detector concept

CERN	LHC	Seminar,	21.06.2022
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Both ALICE and STAR attempting to improve pT acceptance

measured with the traditional approach in a rather small pT acceptance
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precise determination of the statistics needed for a particular cumulant measurement, which

is of crucial importance for the preparation of an event-by-event experiment. Further input

from experimental data is necessary for a successful analysis: (i) a detailed description of the

centrality selection procedure employed in a particular experiment, and (ii) measurements

of the first moments (mean multiplicities) of particles and antiparticles.

As the centrality determination is a delicate experimental issue (cf. the discussion in the

introduction), each experiment has to be considered separately. Below we implement one

of the centrality selection approaches used in the ALICE experiment, where the measured

multiplicities (signal amplitudes in VZEROs) are fitted with those obtained from a Glauber

Monte Carlo simulation (for details see [14]).
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Figure 1. Left Panel: Produced number of charged particles versus the impact parameter. Right

Panel: Produced number of charged particles versus the number of wounded nucleons. For a given

value of the impact parameter the number of wounded nucleons and binary collisions are calculated

with a Glauber Monte Carlo simulation based on the approach described in [14]. Next, using a

two-component model, charged particles are produced assuming a Negative Binomial Distribution

with parameters extracted by the same procedure as used in the ALICE experiment.

Technically, following a two-component model [15, 16], in which one decomposes nucleus-

nucleus collisions into soft and hard interactions, we first calculate the number of ancestors
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Centrality selection in ALICE
One of the different methods
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A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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ALICE: Phys.Rev. C88 (2013) no.4, 044909

0-5%

ALICE:	Phys.Rev.	C88	(2013)	no.4,	044909	

5.2. Event and track selection

condition

dcaxy < 0.0182 mm +
0.0350 mm

p1.01

T

, (5.1)

which takes into account the pT-dependence of the impact parameter resolution. Moreover,
tracks are required to be present in ITS and TPC refits.

Pseudo-rapidity (⌘) range |⌘| <0.8
Momentum (p) range 0.2<p<1.5 GeV/c

Centrality classes (%)
0-5, 5-10, 10-20, 20-30, 30-40

40-50, 60-70, 70-80

DCA to vertex on xy plane < 0.0182 mm +
0.0350 mm

p1.01

T

DCA to vertex along beam direction <2 cm
TPC vertex along beam direction <10 cm

�2 per cluster <4
Number of crosseed rows is a sector >80

Found/findable TPC clusters >0.5
Fraction of shared clusters <0.4

TPC and ITS refit yes
Require hits in SPD yes

Rejection of kink daughters yes

Table 5.1.: Summary of the track selection criteria.

The classification of events in centrality intervals is obtained by fitting the summed
amplitudes of the signals in the V0A and V0C detectors with a Glauber model [79]. TheCENTRALITY DETERMINATION OF Pb-Pb COLLISIONS . . . PHYSICAL REVIEW C 88, 044909 (2013)
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FIG. 9. (Color online) Purity of the three online interaction trig-
gers (2-out-of-3, V0AND, and 3-out-of-3) and other event selections
used for Pb-Pb collisions as a function of the VZERO amplitude
calculated with HIJING, STARLIGHT, and QED simulations. The
dashed line indicates 90% of the hadronic cross section.

of the VZERO amplitude (V ), is defined as the fraction of
hadronic collisions over all the events selected with a given
condition,

purity =
dNx

dV

∣∣
H

σH

NH

dNx

dV

∣∣
H

σH

NH
+ dNx

dV

∣∣
SNS

σSNS
NSNS

+ dNx

dV

∣∣
SND

σSND
NSND

+ dNx

dV

∣∣
Q

σQ

NQ

,

(4)

where σx and Nx are the cross sections and number of events
for a given process, x, where x = H , SNS, SND, and Q,
for HIJING, STARLIGHT single, STARLIGHT double, and
QED, respectively.

The purity of the event sample can be verified using the
correlation of the energy deposition in the two sides of the ZN
calorimeter, similar to the one shown in Fig. 6. Single-neutron
peaks are visible in the 80–90% centrality class, which may
indicate some remaining contamination from EMD events.
However, their origin can be also attributed to asymmetric
Pb-Pb events, as well as a pile-up of an EMD and a hadronic
collision. Since this contamination cannot be easily removed,
analyses that use peripheral classes like 80–90% assign an
additional 6% systematic uncertainty on the event selection to
take into account the possible contamination from EMD.

B. Method 2: Fitting the multiplicity distribution

Another independent way to define the AP uses a phe-
nomenological approach based on the Glauber Monte Carlo
to fit the experimental multiplicity distribution. The Glauber
Monte Carlo uses the assumptions mentioned above plus a
convolution of a model for particle production, based on a
negative binomial distribution (NBD). This latter assumption
is motivated by the fact that in minimum bias pp and pp
collisions at high energy, the charged-particle multiplicity
dσ/dNch has been measured over a wide range of rapidity
and is well described by a NBD [31,32]. This approach allows
one to simulate an experimental multiplicity distribution (e.g.,

FIG. 10. (Color online) Distribution of the sum of amplitudes in
the VZERO scintillators. The distribution is fitted with the NBD-
Glauber fit (explained in the text), shown as a line. The centrality
classes used in the analysis are indicated in the figure. The inset
shows a zoom of the most peripheral region.

VZERO amplitude), which can be compared with the one from
data.

Figure 10 shows the distribution of VZERO amplitudes for
all events triggered with the 3-out-of-3 trigger (see Sec. III B)
after removing the beam background (see Sec. III C1), part of
the EM background with the ZDC cut (see Sec. III C2), and
a Z-vertex cut |zvtx| < 10 cm. The multiplicity distribution
has the classical shape of a peak corresponding to most
peripheral collisions (contaminated by EM background and
by missing events due to the trigger inefficiency), a plateau of
the intermediate region, and an edge for the central collisions,
which is sensitive to the intrinsic fluctuations of Npart and
dNch/dη and to detector acceptance and resolution.

The Glauber Monte Carlo defines, for an event with a
given impact parameter b, the corresponding Npart and Ncoll.
The particle multiplicity per nucleon-nucleon collision is
parametrized by a NBD. To apply this model to any collision
with a given Npart and Ncoll value we introduce the concept of
“ancestors,” i.e., independently emitting sources of particles.
We assume that the number of ancestors Nancestors can be
parameterized by Nancestors = f Npart + (1 − f )Ncoll. This is
inspired by two-component models [33,34], which decompose
nucleus-nucleus collisions into soft and hard interactions,
where the soft interactions produce particles with an average
multiplicity proportional to Npart, and the probability for hard
interactions to occur is proportional to Ncoll. We discuss
the independence of the fit results of this assumption below
(Sec. IV B1).

To generate the number of particles produced per interac-
tion, we use the negative binomial distribution

Pµ,k(n) = #(n + k)
#(n + 1)#(k)

(µ/k)n

(µ/k + 1)n+k
, (5)

which gives the probability of measuring n hits per ancestor,
where µ is the mean multiplicity per ancestor and k controls
the width. For every Glauber Monte Carlo event, the NBD
is sampled Nancestors times to obtain the averaged simulated
VZERO amplitude for this event, which is proportional to
the number of particles hitting the hodoscopes. The VZERO

044909-9

Figure 5.3.: (Black markers) Distribution of the summed amplitudes in the V0 detectors. (Red curve) the
result of the Glauber model fit to the measurement. The vertical lines separate the centrality
classes, which in total correspond to the most central 80% of the hadronic collisions [79].

model assumes that the number of particle-producing sources is given by f ⇥ Npart +
(1� f)⇥Ncoll, where Npart is the number of participating nucleons, Ncoll is the number of
binary nucleon-nucleon collisions and f quantifies their relative contributions. The number
of particles produced per interaction is generated using a Negative Binomial Distribution
(NBD) Pµ,k, which is parametrized by µ and k, where µ is the mean multiplicity per

89

6. Event-by-event Identified Particle Ratio Fluctuations

Alternatively, within the grand canonical ensemble one can define quantities which are
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Figure 1: Left Panel: Produced number of charged particles versus the impact parame-
ter. Right Panel: Produced number of charged particles versus the number of wounded
nucleons. For a given value of the impact parameter the number of wounded nucleons
and binary collisions are calculated with a Glauber Monte Carlo simulation based on the
approach described in [14]. Next, using a two-component model, charged particles are
produced assuming a Negative Binomial Distribution with parameters extracted by the
same procedure as used in the ALICE experiment.

Distribution (NBD), defined by the probability distribution

Pµ,k(n) =
�(n + k)

�(n + 1)�(k)

⇣µ

k

⌘n ⇣µ

k
+ 1

⌘�(n+k)

, (26)

where µ is the mean multiplicity of particles emitted from each ancestor
and k controls the width of the NBD. Numerical values of the parameters,
µ = 29.3 and k = 1.6, are taken from the ALICE paper [14].

Two-dimensional scatter plots representing the dependence on b and NW

of the produced number of charged particles are presented in the left and
the right panel of Fig. 1, respectively. The centrality classes, selected by
applying sharp cuts on the number of produced charged particles (y axis),
are represented by the dashed horizontal lines. As seen from the scatter
plots in the Fig. 1, where each dot represents one single event, the impact
parameter as well as the number of wounded nucleons fluctuate from event-
to-event, thus generating a distribution. To demonstrate this explicitly we

10

Figure 6.3.: Left Panel: Produced number of charged particles versus the impact parameter. Right
Panel: Produced number of charged particles versus the number of wounded nucleons, i.e.
number of participants. For a given value of the impact parameter the number of wounded
nucleons and binary collisions are calculated with a Glauber Monte Carlo simulation. The
corresponding centrality classes are indicated by the dashed horizontal lines [20].

free from the volume fluctuations, for instance ⌫dyn. In the model of independent sources
[86], extensive quantities1 such as the mean number of particles are considered to be pro-
portional to the number of sources, hNsi, where hNsi changes from event to event. The
multiplicities for particle types a and b can be expressed as

Na = ↵1 + ↵2 + ... + ↵Ns
, Nb = �1 + �1 + ... + �Ns

, (6.1)

where ↵k and �k denote the contributions from the kth source. One finds the first and
second moments of the multiplicity distributions as follows:

hNai = h↵ihNsi, (6.2)

hNbi = h�ihNsi, (6.3)

hN2

a i = h↵2ihNsi + h↵i2
⇥
hN2

s i � hNsi
⇤
, (6.4)

hN2

b i = h�2ihNsi + h�i2
⇥
hN2

s i � hNsi
⇤
, (6.5)

hNaNbi = h↵�ihNsi + h↵ih�i
⇥
hN2

s i � hNsi
⇤
, (6.6)

where h↵i, h�i and h↵2i, h�2i, h↵�i are the first and second moments of the probability
distributions P (↵, �) for a single source. These quantities are independent of hNsi and
play the role of intensive quantities. The details of the derivation of Eq. 6.2 – Eq. 6.6 can
be found in [87]. Here, P (↵, �) is assumed to be the same for all sources; that is, they are
statistically identical.

1Intensive quantities are physical quantities which are independent of the system volume, while exten-
sive quantities are proportional to the system volume. Accordingly, one can easily construct an intensive
quantity by taking the ratio of two extensive ones. For instance, within the grand canonical ensemble the
mean number of particles, hNi, in a relativistic gas and the variance, hN2i�hNi2 are extensive quantities,
thus the scaled variance, (hN2i � hNi2)/hNi, is an intensive one.
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Figure 9: Left panel: Fourth cumulants of net-protons for Au+Au Collisions at
p
sNN =

7.7 GeV. Right panel: Ratio of fourth and second cumulants. Red points correspond to
fixed number of wounded nucleons while, for the black points, the fluctuations of wounded
nucleons are included. The centrality bin width is 2.5% for the blue points, while for the
black points variable bin widths (see Fig. 1) are used. The lines (black and blue) are
calculated using eqs. 22 and 24.

the centrality determination are not removed entirely. We note, in this con-
text, that a significant contribution to net-proton fluctuations will originate
from fluctuations of the number of net � baryons. This will introduce strong
pion-proton correlations into the sample implying that a part of the auto-
correlation problem survives, even if one excludes protons and antiprotons
from the data used for centrality determination.

Like in case of protons at
p
sNN = 2.76 TeV (see the left panel of Fig. 6),

we observe small e↵ects of the participant fluctuations for the most cen-
tral bin in Fig. 9. As explained above, this stems from the negative values of
3(NW ) and 4(NW ). However, this also depends on the mean number of par-
ticles or net-particles. To show this explicitly we present, in Figs. 10 and 11,
cumulants of net-protons for Au+Au collisions at

p
sNN=39 GeV. Mean val-

ues of protons and antiprotons are taken from [20]. For the second cumulants
of net-protons we observe quite small contributions from participant fluctu-
ations. However, for the third and fourth cumulants these contributions are
significant. Moreover, even for the most central bin 4(p � p̄)/2(p � p̄)
deviates from unity if participant fluctuations are included.
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Excellent	vertexing:	Charm	fluctuations

Ø Barrel	PID	improves	S/B	by	a	factor	~10	
→ Close	to	‘ideal	PID’	
→Much	smaller	systematic	uncertainty

Ø Net	charm	fluctuations	for	|η|	≤	4	and	up	to	
4th	moments

28
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Identity	Method	in	ALICE	3:	Purity	in	PID

Significant	improvement	in	the	purity	+		IM

Nicolò Jacazio 9

TOF performance
DelphesO2 simulation 
B = 5 kG,  R

TOF
 = 100 cm

σ
TOF

 = 20 ps

– TOF measures the particle arrival time

– For good PID performance needs good 

start time source

– Collision time jitter ~ 300 ps (9 cm 

bunch length)

– TOF time resolution s
t
 = 20 ps

– Fixed mismatch probability of 0.1 %

p

K
p

m

e

Ø 0.6	<	p	<	1.5	GeV/c	
Ø p	>	0.8	GeV/c	→ less	than	one	sigma	separation	

Ø 0.3	<	p	<	~7	GeV/c	
Ø No	full	overlap	of	the	TOF	signal

ALICE	1-2 ALICE	3
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v Main	uncertainty	is	from	the	dE/dx	fits,	which	will	vanish	in	ALICE	3
(thanks	to	Identity	Method	(IM)	and	improved	PID)

Nicolò Jacazio 9
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– TOF time resolution s
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p

K
p

m

e

NEW

Mesut	Arslandok,	Yale	University	/	CERN 49

ALICE	3:	Systematic	uncertainties

CERN	LHC	Seminar,	21.06.2022



0 0.2 0.4 0.6 0.8 1
αacceptance factor 

0

0.5

1

1.5 > B
+n B

< 
n

)B
(B

-
2κ

global: NPA 1008 (2021) 122141

 = 11.5corryΔ = 0.40;  ρ

 = 6.6corryΔ = 0.80;  ρ

 = 4.6corryΔ = 0.90;  ρ

 = 3.4corryΔ = 0.95;  ρ

P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel,	to	be	published

5

A. R., QM2017, arXiv:1704.05329   

14

η∆
0.5 1 1.5

(S
ke

lla
m

)
2

κ

)
p

(p
 -

 
2

κ

0.9

0.95

1

1.05

1.1

1.15
 = 2.76 TeVNNsALICE Preliminary, Pb-Pb 

, centrality 0-5%c < 1.5 GeV/p0.6 < 

ratio, stat. uncert.
syst. uncert.
baryon conserv. arXiv:1612.00702
syst. uncert. HIJING, AMPT

ALI-PREL-122602

Net-protons, acceptance dependence

conservation laws
or genuine physics

Δ"Δ"#$%

&' () − ()
&' +,-../0

aacceptance factor 
0 0.5 1

(S
ke

lla
m

)
2k

) B
-n B

(n 2k

0

0.5

1
CE sim.

CE calc.

GCE 1 − 2

2 = ⁄() ()56

P. Braun-Munzinger, A. R.,  J. Stachel, NPA 982 (2019) 307-310
A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901
K. Redlich and L. Turko, Z. Phys. C5 (1980) 201

contribution from conservation laws

A. R., QM2017, NPA 967 (2017) 453-456

A. Rustamov, 28.03.2019

1

Importance	of	kinematic	acceptance

Ø Fluctuations	of	conserved	charges	appear	only	inside	finite	acceptance

Ø In	the	limit	of	very	small	acceptance	→ only	Poissonian fluctuations	

Mesut	Arslandok,	Yale	UniversityALICE	3	Review,	22.10.2021

Baryon	number	conservation
after the big bang. It is now believed that these large scale fluctuations origi-
nate in small quantum fluctuations present during the inflationary epoch. Dur-
ing the rapid expansion of the universe in this epoch, these quantum fluctua-
tions were stretched to size scales much larger than those that were causally
connected in the post-inflationary era when the universe was expanding in a
state close to thermal equilibrium. Therefore such super horizon scale fluctu-
ations cannot be much affected by the sub-horizon scale processes allowable
in the post-inflationary thermal universe. This explains why CMB measure-
ments provide extremely valuable information about the inflationary epoch of
the universe, despite the fact that the CMB radiation was produced long after
(tCMB ∼ 4 · 105 years) the primordial fluctuations that are responsible for its
features (tinflation ∼ 10−33 seconds).

There is a concrete analog of such super-horizon fluctuations in the matter
produced in high energy hadronic collisions such as heavy ion collisions at RHIC,
as illustrated in fig. 1. In this figure, we represent the “event horizons” as seen

detection

freeze out

latest correlation

A B

z 

t

Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.

from the last rescattering of two particles A and B on the freeze-out surface.
These are the red and green cones pointing to the past. Any event that has a
causal influence on the particles A or B must take place inside the corresponding
event horizon. Any event that induces a correlation between the particles A and
B must lie in the overlap of their event horizons. Therefore, if the particles A
and B have rapidities y

A
and y

B
, the processes that caused their correlations

must have occurred before the time1

τ ≤ τfreeze out e−
1
2
|y

A
−y

B
| . (1)

1We assume here that a particle detected with momentum rapidity y originates from a point
of space-time rapidity η ≈ y on the freeze-out surface. This is a consequence of the boost
invariance of the collision (at high energy), and of the fact that the local thermal motion
spreads the rapidities by at most one unit in rapidity.

2

Early	correlations	→ long	range	in	rapidity	

2nd order	cumulants	of	net-p:	Correlation	length
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Fig. 1. Partial pressure of open charm mesons (Mc , bottom), baryons (Bc , middle) 
and the ratio BC /MC (top) in a gas of uncorrelated hadrons, using all open charm 
resonances listed in the particle data table (PDG-HRG, dashed lines) [14] and using 
additional charm resonances calculated in a relativistic quark model (QM-HRG, solid 
lines) [17,18]. Also shown are results from HRG model calculations where the open 
charm resonance spectrum is cut off at mass 3 GeV (QM-HRG-3) and 3.5 GeV (QM-
HRG-3.5). At temperatures below 160 MeV the latter coincides with the complete 
QM-HRG model results to better than 1%.

shown in Fig. 1 (top). Significant differences between the QM-
HRG-3 and PDG-HRG results also indicate that almost half of the 
enhanced contributions actually comes from additional charmed 
baryons that are lighter than the heaviest PDG state. Similar con-
clusions can be drawn when analyzing partial pressures in the 
strange-charmed hadron sector or the electrically charged charmed 
hadron sectors.

3. Calculation of charm fluctuations in (2 + 1)-flavor lattice QCD

In order to detect changes in the relevant degrees of freedom 
that are the carriers of charm quantum numbers at low and high 
temperatures as well as to study their properties we calculate di-
mensionless generalized susceptibilities of conserved charges,

χ B Q SC
klmn = ∂(k+l+m+n)[P (µ̂B , µ̂Q , µ̂S , µ̂C )/T 4]

∂µ̂k
B∂µ̂l

Q µ̂m
S ∂µ̂n

C

∣∣∣∣
!µ=0

. (2)

Here P denotes the total pressure of the system. In the following 
we also use the convention to drop a superscript in χ B Q SC

klmn when 
the corresponding subscript is zero.

For our analysis of net charm fluctuations we use gauge field 
configurations generated with the highly improved staggered quark 
(HISQ) action [29]. Use of the HISQ action in the charm sectors in-
cludes the so-called ε-term and thus makes our calculations free of 
tree-level order (amc)

4 discretization errors [29], where mc is the 
bare charm quark mass in units of the lattice spacing. These dy-
namical (2 + 1)-flavor QCD calculations have been carried out with 
a strange quark mass (ms) that has been tuned to its physical value 
and light (u, d) quarks with mass ml/ms = 1/20. In the continuum 
limit, the latter corresponds to a light pseudo-scalar mass of about 
160 MeV. The charm quark sector is treated within the quenched 
approximation, neglecting the effects of charm quark loops. Within 
the temperature range relevant for the present study, the quenched 
approximation for the charm quarks is very well justified. Various 
lattice QCD calculations using dynamical charm have confirmed 
that contributions of dynamical charm quarks to bulk thermody-
namic quantities, including the gluonic part of the trace anomaly 

as well as the susceptibilities of light, strange and charm quarks, 
remain negligible even up to temperatures as high as 300 MeV 
[30,31]. We note that these quantities directly probe the influence 
of virtual quark pairs on observables calculated at a fixed value of 
the temperature. Unlike in these cases there is no simple observ-
able known that would allow us to directly calculate the pressure 
at fixed temperature. This may be the reason for differences seen 
in current calculations of the pressure [30,31] using quenched or 
dynamical charm. In this work, we only use observables that are 
of the former type and also do not require any multiplicative or 
additive renormalization.

The line of constant physics for the charm quark has been 
determined at zero temperature by calculating the spin-averaged 
charmonium mass [32], 1

4 (mηc + 3m J/ψ ). For this purpose we used 
gauge field configurations generated by hotQCD on lattices of size 
324 and 323 · 48 in the range of gauge couplings, 6.39 ≤ β =
10/g2 ≤ 7.15 [3,22]. On finite temperature lattices with temporal 
extent Nτ = 8, this covers the temperature range2 156.8 MeV ≤
T ≤ 330.2 MeV. On these lattices and for the slightly larger-than-
physical light quark mass value used in our calculations the tran-
sition temperature is 158(3) MeV, i.e. about 4 MeV larger than the 
continuum extrapolated results at the physical values of the light 
and strange quark masses [3]. We consider this difference of about 
3% as the typical systematic error for all temperature values quoted 
for our analysis, which is not extrapolated to the physical point in 
the continuum limit.

The line of constant physics for the charm quark sector is well 
parametrized by

mca = c0 R(β) + c2 R3(β)

1 + d2 R2(β)
, (3)

with R(β) denoting the two-loop β-function of massless 3-flavor 
QCD and c0 = 56.0, c2 = 1.16 × 106, d2 = 8.67 × 103. On this 
line the charm quark mass varies by less than 5%. The ratio of 
charm and strange quark masses, mc/ms , varies by about 10%, with 
mc/ms = 12.42 at β = 6.39 and mc/ms = 11.28 at β = 7.15.

For most of our calculations we use data sets on lattices of size 
323 · 8. A subset of these configurations has already been used for 
the analysis of strangeness fluctuations [10]. These data sets have 
been enlarged and now contain up to 16 700 configurations at the 
lowest temperature, separated by 10 time units in rational hybrid 
Monte Carlo updates. Some additional calculations have been per-
formed on coarser 243 · 6 lattices, with fixed mc/ms = 12, in order 
to check cut-off effects also in the charm quark sector. We summa-
rize the statistics exploited in this calculation in Table 1. We calcu-
late all the moments of net charm fluctuations needed to construct 
up to fourth order cumulants that correlate net-charm fluctuations 
with net baryon number, electric charge and strangeness fluctua-
tions. As the calculation of charm fluctuations is fast we can afford 
to use on each gauge field configuration up to 6000 Gaussian dis-
tributed random source vectors for the inversion of the charmed 
fermion matrix. This leaves us with statistical errors that mainly 
arise from fluctuations in the light and strange quark sectors where 
we have used 1500 random source vectors for the inversion of the 
corresponding fermion matrices.

4. Partial pressure of open charm hadrons from fluctuations and 
correlations

Our analysis of higher order cumulants of net charm fluctu-
ations and their correlations with net baryon number, electric 
charge and strangeness, closely follows the concepts developed 

2 At finite lattice spacing f K has been used to set the temperature scale [22].

Ø Partial	pressure	of	open	charm	mesons	(Mc)	and	baryons	(Bc)	in	a	gas	
of	uncorrelated	hadrons,	

• PDG-HRG:	All	open	charm	resonances	in	PDG
• QM-HRG:	Relativistic	quark	model.	
• QM-HRG-X: open	charm	resonance	spectrum	is	cut	off	at	

mass	X	GeV	
Ø Below	160	MeV	the	latter	coincides	with	the	complete	QM-HRG	

model	results	to	better	than	1	%.	

Mesut	Arslandok,	Yale	University	/	CERN 51CERN	LHC	Seminar,	21.06.2022



Motivation:	Nature	of	the	chiral	phase	transition

4

the QGP phase diagram, LatticeQCD,  and hadron
production data

quantitative agreement of
chemical freeze-out parameters
with most recent LQCD
predictions for baryo-chemical
potential < 300 MeV 

cross over transition at 
μB = 0 MeV, no experimental

confirmation

should the transition be 1st 
order for large μB (large net

baryon density)?

then there must be a critical
endpoint in the phase
diagram

experimental determination of phase boundary at  
Tc = 156.6 ± 1.7 (stat.)  ± 3 (syst.) MeV and μB = 0 MeV 

Nature 561 (2018) 321

note: all coll. at SIS, AGS, SPS, RHIC and LHC involved in data taking 
each entry is result of several years of experiments, variation of μB via variation of cm energy

μB  (MeV)

HOTQCD: Phys.Lett.B 795 (2019) 15-21 
Phys. Rev. D 90 (2014) 094503

Wuppertal-Budapest:    
Nature 443 (2006) 675-678
Nucl.Phys. A 1005 (2021) 121782

A.	Andronic
et.al.N

ature	561	(2018)	321

HotQCD Collaboration,	Phys.Lett.	B795	(2019)	15
S.	Borsanyi et.al.	Phys.	Rev.	Lett.	125,	052001	(2020)

Ø Quantitative	agreement of	chemical	freeze-out	
parameters	with	most	recent	LQCD	predictions	
for	μB <	300	MeV

⟹	𝑻𝐩𝐜
𝐋𝐐𝐂𝐃 ≈ 𝑻𝐟𝐨𝐀𝐋𝐈𝐂𝐄= 𝟏𝟓𝟔. 𝟓 ± 𝟑	𝐌𝐞𝐕
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46 M. Kliemant et al.

Fig. 4 A cartoon showing the centrality definition from the final-state particle multiplicity and its
correlation with the impact parameter (b) and the number of participating nucleons (Npart) in the
collisions

2.10 Number of Participants and Number of Binary Collisions

Experimentally there is no direct way to estimate the number of participating
nucleons (Npart) and the number of binary collisions (Nbin) in any event, for a
given impact parameter. The Glauber model calculation is performed to estimate
the above two quantities as a function of the impact parameter. The Glauber
model treats a nucleus–nucleus collision as a superposition of many independent
nucleon–nucleon (N−N ) collisions. This model depends on the nuclear density
profile(Woods–Saxon) and the non-diffractive inelastic N + N cross-sections. The
Woods–Saxon distribution is given by

ρ(r ) = ρ0

1 + exp( r−r0
c )

, (78)

where r is the radial distance from the center of the nucleus, r0 is the mean radius of
the nucleus, c is the skin depth of the nucleus and ρ0 is the nuclear density constant.
The parameters r0 and c are measured in electron–nucleus scattering experiments.
ρ0 is determined from the overall normalization condition

∫
ρ(r ) d3r = A, (79)
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Criticality at crossover 
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contributions arising from the singular part of the QCD partition function Z(V, T ), or more precisely from the free
energy density, f = −TV −1 lnZ(V, T ). A recent analysis of scaling properties of the chiral condensate, performed
with the p4 action on coarse lattices, showed that critical behavior in the vicinity of the chiral phase transition is well
described by O(N) scaling relations [64] which give a good description even in the physical quark mass regime.
In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum of a singular and

a regular part,

f = −
T

V
lnZ ≡ fsing(t, h) + freg(T,ml,ms) . (6)

Here t and h are dimensionless couplings that control deviations from criticality. They are related to the temperature
T and the light quark mass ml, which couples to the symmetry breaking (magnetic) field, as

t =
1

t0

T − T 0
c

T 0
c

, h =
1

h0
H , H =

ml

ms
, (7)

where T 0
c denotes the chiral phase transition temperature, i.e., the transition temperature at H = 0. The scaling

variables t, h are normalized by two parameters t0 and h0, which are unique to QCD and similar to the low energy
constants in the chiral Lagrangian. These need to be determined together with T 0

c . In the continuum limit, all three
parameters are uniquely defined, but depend on the value of the strange quark mass.
The singular contribution to the free energy density is a homogeneous function of the two variables t and h. Its

invariance under scale transformations can be used to express it in terms of a single scaling variable

z = t/h1/βδ =
1

t0

T − T 0
c

T 0
c

(

h0

H

)1/βδ

=
1

z0

T − T 0
c

T 0
c

(

1

H

)1/βδ

(8)

where β and δ are the critical exponents of the O(N) universality class and z0 = t0/h
1/βδ
0 . Thus, the dimensionless

free energy density f̃ ≡ f/T 4 can be written as

f̃(T,ml,ms) = h1+1/δfs(z) + fr(T,H,ms) , (9)

where the regular term fr gives rise to scaling violations. This regular term can be expanded in a Taylor series around
(t, h) = (0, 0). In all subsequent discussions, we analyze the data keeping ms in Eq. (9) fixed at the physical value
along the LCP. Therefore, the dependence on ms will, henceforth, be dropped.
We also note that the reduced temperature t may depend on other couplings in the QCD Lagrangian which do not

explicitly break chiral symmetry. In particular, it depends on light and strange quark chemical potentials µq, which
in leading order enter only quadratically,

t =
1

t0





T − T 0
c

T 0
c

+
∑

q=l,s

κq
(µq

T

)2
+ κls

µl

T

µs

T



 . (10)

Derivatives of the partition function with respect to µq are used to define the quark number susceptibilities.
The above scaling form of the free energy density is the starting point of a discussion of scaling properties of most

observables used to characterize the QCD phase transition. We will use this scaling Ansatz to test to what extent
various thermodynamic quantities remain sensitive to universal features of the chiral phase transition at nonzero
quark masses when chiral symmetry is explicitly broken and the singular behavior is replaced by a rapid crossover
characterized by pseudocritical temperatures (which we label Tc) rather than a critical temperature.
A good probe of the chiral behavior is the 2-flavor light quark chiral condensate

〈ψ̄ψ〉nf=2
l =

T

V

∂ lnZ

∂ml
. (11)

Following the notation of Ref. [64], we introduce the dimensionless order parameter Mb,

Mb ≡
ms〈ψ̄ψ〉

nf=2
l

T 4
. (12)

Multiplication by the strange quark mass removes the need for multiplicative renormalization constants; however, Mb

does require additive renormalization. For a scaling analysis in h at a fixed value of the cutoff, this constant plays no
role. Near T 0

c , Mb is given by a scaling function fG(z)

Mb(T,H) = h1/δfG(t/h
1/βδ) + fM,reg(T,H) , (13)

11

and a regular function fM,reg(T,H) that gives rise to scaling violations. We consider only the leading order Taylor
expansion of fM,reg(T,H) in H and quadratic in t,

fM,reg(T,H) = at(T )H

=

(

a0 + a1
T − T 0

c

T 0
c

+ a2

(

T − T 0
c

T 0
c

)2
)

H (14)

with parameters a0, a1 and a2 to be determined. The singular function fG is well studied in three dimensional spin
models and has been parametrized for the O(2) and O(4) symmetry groups [65–68]. Also, the exponents β, γ, δ and
ν used here are taken from Table 2 in Ref. [68].
Response functions, derived from the light quark chiral condensate, are sensitive to critical behavior in the chiral

limit. In particular, the derivative of 〈ψ̄ψ〉nf=2
l with respect to the quark masses gives the chiral susceptibility

χm,l =
∂

∂ml
〈ψ̄ψ〉nf=2

l . (15)

The scaling behavior of the light quark susceptibility, using Eq. (13), is

χm,l

T 2
=

T 2

m2
s

(

1

h0
h1/δ−1fχ(z) +

∂fM,reg(T,H)

∂H

)

,

with fχ(z) =
1

δ
[fG(z)−

z

β
f ′
G(z)]. (16)

The function fχ has a maximum at some value of the scaling variable z = zp. For small values of h this defines the
location of the pseudocritical temperature Tc as the maximum in the scaling function fG(z). Approaching the critical
point along h with z fixed, e.g., z = 0 or z = zp, χm,l diverges in the chiral limit as

χm,l ∼ m1/δ−1
l . (17)

Similarly, the mixed susceptibility

χt,l = −
T

V

∂2

∂ml∂t
lnZ , (18)

also has a peak at some pseudocritical temperature and diverges in the chiral limit as

χt,l ∼ m(β−1)/βδ
l . (19)

One can calculate χt,l either by taking the derivative of 〈ψ̄ψ〉 with respect to T or by taking the second derivative
with respect to µl, i.e., by calculating the coefficient of the second order Taylor expansion for the chiral condensate
as a function of µl/T [69]. The derivative of 〈ψ̄ψ〉 with respect to T is the expectation value of the chiral condensate
times the energy density, which is difficult to calculate in lattice simulations, as additional information on temperature
derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq

∂T
∼ cr +A±

∣

∣

∣

∣

T − T 0
c

T 0
c

∣

∣

∣

∣

−α

, (21)
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