Closing in on critical net-baryon fluctuations: cumulants up to 3rd order in Pb-Pb collisions with ALICE

(arXiv:2206.03343)

Mesut Arslandok

Yale University / CERN

- Why fluctuations?
- How to link experiment to theory
- Experimental challenges
- What did/will we learn?

CERN LHC Seminar, 21 June 2022, Geneva, Switzerland

Michael Turner. Particle Data Group,

Supported by DOI

Quark-gluon plasma (QGP)

A state of matter where the quarks and gluons are the relevant degrees of freedom, exist at few µs after the Big-Bang

- ✓ Chiral symmetry: $m_p \approx 937 \text{ MeV} \leftrightarrow 2m_u + m_d \approx 10 \text{ MeV}$
- ✓ **Confinement:** no isolated quarks seen thus far

PAG-Flow

PAG-Correlations/ebye

PAG-Femto

CERN LHC Seminar 82 106 transport properties

E. M Short Arange & Rayticle GAVE Stip CERN

E.g. Freeze-out radii and shapes

Quark-gluon plasma (QGP)

A state of matter where the quarks and gluons are the relevant degrees of freedom, exist at few µs after the Big-Bang

- **Chiral symmetry**: $m_p \approx 937 \text{ MeV} \leftrightarrow 2m_u + m_d \approx 10 \text{ MeV}$ \checkmark
- Confinement: no isolated guarks seen thus far \checkmark

OCD transport properties

- Final state interactions

Quark-gluon plasma (QGP)

Dumitru, Gelis, McLerran, Venugopalan, Nucl. Phys. A810 (2008) 91

detection

freeze out

latest correlation

Nature of phase transition

Phase diagram of water (Electro-magnetic interactions)

- <u>1st order phase transition:</u> mixed phase
- > <u>At the critical point (CP)</u>: phase boundaries vanish and correlation length diverges \rightarrow only one phase exists

Critical opalescence: 2nd order phase transition

- > Density of the gas and the thermal motion of the liquid is so great that gas and liquid are the same
- \blacktriangleright **Density fluctuations** are comparable to the wavelength of light \rightarrow light is scattered and causes cloudy appearance

Heating a mass of ethane in a constant volume

Nature of QCD phase transition

- **How close are we to** $\mu_B = 0$ at LHC energies?
- > Nature of cross over transition at $\mu_B \sim 0$ MeV?
 - \Rightarrow no experimental confirmation

Nature of QCD phase transition

F. Karsch, Schleching 2016

- How close are we to $\mu_B = 0$ at LHC energies? \geq
- **Nature of cross over** transition at $\mu_{B} \sim 0$ MeV? \geq \Rightarrow no experimental confirmation
- Vanishing u, d quark masses? \geq
 - \Rightarrow vicinity to 2nd order O(4) criticality
 - \Rightarrow pseudocritical features at the crossover due to massless modes
 - \Rightarrow long range correlations & increased fluctuations

What kind of a system are we dealing with?

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Thermodynamics of heavy-ion cellision

Thermodynamics of heavy-ion collision

Thermodynamics of heavy-ion collision

row): two isothermal we raverse the crossover region is shown in the second a we traverse the isothermal line is closed on the field of the field o

(see Eq. (50)), will make the intermediate the intermediate provides and the state of the intermediate intermediate the intermediate provides and the state of the intermediate provides and the intermediate provides and the intermediate provides and the intermediate provides and the

This simple experimentation of the such as the such as

CERN LHC seminal; where correlation dength thronges wheether with the person of the pe

higher the order of the article multipleting the strictly and the strictly

readyes of the cumulants.

tthEurthermore, the sign c

CERN LHC seminar, 21.06.2022 such as the ortical point and the determine water and the determine water

 χ_3) and higher derivatives ratio the density

we find that awa from 2^{2} First three derivatives (size and the first three derivatives (size and three derivat

This simple example qualitatively ex

namics of heavy-ion collision

re we choose $r_T = 0$ for simplicity), we illustrate the behavior tines of fixed T. Three such lines are shown within === Opfor simplicity), we ill strate the behavior and a fine end print and the sent are printed point using the many sector of the sent of the sector of the sector

stamov, ISOQUANT seminar, January 20, Heidelbe

probability of a given state with E_i and N_i $\exp\left[-\left(E_{i}-\mu N_{i}\right)/T\right]$

 $k_2 \langle N \rangle = \langle N^2 \rangle - \langle N \rangle^2 = \sum_i N_j^2 p_j = T^2 \frac{\partial^2 \ln Z_{CCE}}{\partial u^2}$

row): two isother many shown in the third row. of susceptibilities χ_{k} is instructive to follow χ_{k} along lines of the difference χ_k shown in the third τ_k (50), will be sensitive to the proximity of the protected printing of the prin density n becomes steeper a this is investigated in the structure of the s to fourth or der succeptibilities we see this in the second second bilities, χ_k , being derived as the second s pseudo-critical regions closection the cellularity of the cellularity more pronounced the higher the active of a cross over transition at the particle of a cross over transiting at the particle of a cross over transition at cumulants shown in the contour plots can see so it in the density of the second of the χ_3) and higher derivatives are for the density with a pseudo graduation of the cumulants, a cross-over transmon results in negative sixin and eigen order to the cumulants. we find that awas from the contract the derivatives (see the second of t are undefined due to the standard of the stand

This simple executions of the particle multiplicities. is spin bind, The contract of the particle multiplicities of the particle multiplicities. is spin bind. The contract of the particle multiplicities of the particle multiplicities. is spin bind. The contract of the particle multiplicities. is spin bind. The contract of the particle multiplicities. is spin bind. The contract of the particle multiplicities. is spin bind. The contract of the particle multiplicities. Is spin bind. The contract of the particle multiplicities. Is spin bind. The contract of the particle multiplicities. Is spin bind. The contract of the particle multiplicities. Is spin bind. The contract of the interval of the inte

CERN LHC seminal; 21:02.2222 such as through the state of the seminal seminal and seminal and seminal semi

How to link theory to Experiment? → Lattice QCD

Light quark susceptibilities

Light quark susceptibilities

8

Hunting for criticality: Cumulants of net-charge distributions

IRG vs. OCD Baryon number (B), Strangeness (S), Electric charge (Q), Cham (C) for simplicity: $\mu_Q = \mu_S = 0$ 0 B $\hat{\chi}_{4}^{\scriptscriptstyle B}$ **∂¦B**∕ ////B K B,SB R $\overline{\hat{\chi}^{\scriptscriptstyle B}_{\scriptscriptstyle 2}}$ central moments of x Λn CD will start to unteridrate for Thighenneders ERIM P. Braun-Munzinger, A. Rustamov, J. Stachel 0 Nuclear Physics A 960 (2017b) 4th 6th Effect of volume fluctuations: cont. est. 3 P.Braun Muhzinger, A. Rustamov, J. Stachel, Nucl. Phys. A960 (2017) 114 N_τ=6 ⊷ 8 + CERNTHC Seminar, 21.06.2022 8 2 Mesut Arslandok, Yale Miter State

Hunting for criticality: Cumulants of net-charge distributions

What does theory tell us?

- 1) Baseline: Difference between two independent Poissonian distributions (Skellam distr.) $\Rightarrow \kappa_n/\kappa_2$ is 0 (odd) or 1 (even)
- 2) Up to 3rd order Hadron Resonance Gas (HRG) model agrees with LQCD at $\mu_B = 0$
- **3)** Higher order \rightarrow larger deviation from baseline

What does theory tell us?

- 1) Baseline: Difference between two independent Poissonian distributions (Skellam distr.) $\Rightarrow \kappa_n/\kappa_2 \text{ is 0 (odd) or 1 (even)}$
- 2) Up to 3^{rd} order Hadron Resonance Gas (HRG) model agrees with LQCD at $\mu_B = 0$
- 3) Higher order \rightarrow larger deviation from baseline
- 4) Holy grail: Critical behavior as from 6^{th} order $\Rightarrow 4^{th}$ order $\sim 30\%$, 6^{th} order $\sim 150\%$

LQCD vs Experiment: Caveats

- Experiments measure final state of the dynamical evolution, while LQCD calculates an equilibrium
- ✓ Fluctuations are typically calculated in coordinate space but measured in momentum space
- \checkmark LQCD suffers from sign problem at large μ_B

LQCD vs Experiment: Caveats

- ✓ Experiments measure final state of the dynamical evolution, while LQCD calculates an equilibrium
- ✓ Fluctuations are typically calculated in coordinate space but measured in momentum space
- \checkmark LQCD suffers from sign problem at large μ_B

- Fluctuations of conserved charges appear only inside finite acceptance
- ✓ In the limit of very small acceptance
 → only Poissonian fluctuations

CERN LHC Seminar, 21.06.2022

Mesut Arslandok, Yale University / CERN

E.g.: Expectation from beam energy scan

Non-monotonic behavior as a function of energy

M. Stephanov, PRL102, 032301 (2009), PRL107, 052301 (2011)

E.g.: Expectation from bean Energy excitation function of k

E.g.: Expectation from bean Energy exaitation function of κ

Net-(global) charge fluctuations

► Net-Q,S: → Strongly dominated by resonance contributions (V. Vovchenko and V. Koch Phys. Rev. C 103, 044903 (2021))

Net-(global) charge fluctuations

- Net-Q,S: → Strongly dominated by resonance contributions (V. Vovchenko and V. Koch Phys. Rev. C 103, 044903 (2021))
- ➢ Net-B:
 - → Due to isospin randomization, at $\sqrt{s_{\text{NN}}}$ > 10 GeV net-baryon \leftrightarrow net-proton (M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))
 - $\rightarrow\,$ No resonance feeding $p+\overline{p}$
 - $\rightarrow\,$ Best candidate for measuring charge susceptibilities is net-p

A Large Ion Collider Experiment

Main detectors used:

- Inner Tracking System (ITS) → Tracking and vertexing
- ➤ Time Projection Chamber (TPC)
 → Tracking and
 Particle Identification (PID)
- > VO -
 - \rightarrow Centrality determination

Data Set:

- > $\sqrt{s_{\rm NN}} = 5.02$ TeV, ~78 M events
- > $\sqrt{s_{\rm NN}} = 2.76$ TeV, ~13 M events

Kinematic acceptance:

- ➢ 0.6
- \succ |η|<0.2, 0.4, ..., 0.8

GSI

GSI

Event/track selection

dE/dx calibration and PID

Efficiency correction

Cut based approach vs Identity Method

Cut based approach vs Identity Method

$$\omega_{\pi}^{(1)} = 1$$
, $\omega_{\pi}^{(2)} \approx 0.6$, $\omega_{\pi}^{(3)} = 0$, $\omega_{\pi}^{(4)} = 0 \implies W_{\pi} = 1.6 \neq N_{\pi}$

A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), PRC 84, 024902 (2011)

A. Rustamov, M. Arslandok, Nucl. Instrum. A946 (2019) 162622}

CERN LHC Seminar, 21.06.2022

Mesut Arslandok, Yale University / CERN

Identity Method

Identity Method

Cut based approach

- Use additional detector information or reject a given phase space bin
- Challenge: efficiency correction and contamination
- Identity Method
 - Gives folded multiplicity distribution
 - Easier to correct inefficiencies

Detector response

Binomiality of the detector response is important for the efficiency correction

Slight deviation from the binomial efficiency loss

- Event and track selection
- TPC dE/dx calibration in particular for the events with pileup M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer and J. Wiechula, Particles 2022, 5(1), 84-95
- Realistic detector simulation

NEW

MC closure

Very good closure despite the slight deviation from binomial loss

Efficiency correction with binomial assumption: T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017), Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

(3) Volume fluctuations

Finite centrality bin width

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130

Volume fluctuations at LHC energies

400 <N_w>

(<u>.)</u>)

Volume fluctuations at LHC energies

Up to 3^{rd} order net-proton cumulants are free from volume fluctuations

(<u>.)</u>)

What did we learn from ALICE 1 (2010-2018)?

Deviation from Skellam baseline

- Deviation from Skellam baseline
- EPOS agrees with ALICE data but HIJING deviates significantly

- Deviation from Skellam baseline
- EPOS agrees with ALICE data but HIJING deviates significantly
- Baryon number conservation?
 - ALICE data: Long range correlations, $\Delta y = \pm 2.5$ unit or longer \rightarrow Earlier in time

- Deviation from Skellam baseline
- EPOS agrees with ALICE data but HIJING deviates significantly
- Baryon number conservation?
 - ALICE data: Long range correlations, $\Delta y = \pm 2.5$ unit or longer \rightarrow Earlier in time
 - HIJING: Short range correlations, $\Delta y = \pm 1$ unit \rightarrow Lund string fragmentation?

Lund String Fragmentation

 Only early correlations can be long range in rapidity

Lund String Fragmentation

Baryon production:
 $\rightarrow q\bar{q}$ is replaced by $qq-\bar{q}\bar{q}$ pair

B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand Phys.Rept. 97 (1983) 31-145

2nd order cumulants of net-p: Acceptance dependence

Consistent with the baryon number conservation picture

• Increase in fraction of accepted p, $\overline{p} \rightarrow$ stronger constraint of fluctuations due to baryon number conservation

2nd order cumulants of net-p: Acceptance dependence

Consistent with the baryon number conservation picture

- Increase in fraction of accepted p, $\overline{p} \rightarrow$ stronger constraint of fluctuations due to baryon number conservation
- EPOS & HIJING show this drop qualitatively

2nd order cumulants of net-p: Acceptance dependence

Consistent with the baryon number conservation picture

- Increase in fraction of accepted p, $\overline{p} \rightarrow$ stronger constraint of fluctuations due to baryon number conservation
- EPOS & HIJING show this drop qualitatively

- → Data agree with Skellam baseline "0" → μ_B is very close to 0 at LHC energies
- Achieved precision of better than 4%

- ▶ Data agree with Skellam baseline "0" $\rightarrow \mu_B$ is very close to 0 at LHC energies
- Achieved precision of better than 4%
- EPOS and HIJING deviate from "0"
 - They conserve global charge but p/\overline{p} deviates from unity: 1.025±0.004 (EPOS), 1.008±0.002 (HIJING)
 - Volume fluctuations for 2nd and 3rd order cumulants are not negligible

From STAR to LHC current status

What do we expect from ALICE 2 (2022-2030) and

ALICE 3 (beyond 2030s)?

Future of conserved charge fluctuations in ALICE

ALICE 2 (2022-2030)

✓ Continuous readout:

- $ightarrow \sim$ 50 kHz Pb–Pb min. bias
- $\rightarrow \sim 5$ pileup events within the TPC
- ✓ Improved vertexing
- ✓ High tracking efficiency at low p_{T}

Future of conserved charge fluctuations in ALICE

ALICE 2 (2022-2030)

✓ Continuous readout:

- $ightarrow \sim$ 50 kHz Pb–Pb min. bias
- $\rightarrow \sim 5$ pileup events within the TPC
- Improved vertexing
- ✓ High tracking efficiency at low p_{T}

ALICE 3 (beyond early 2030s)

✓ Excellent vertexing → O (3µm) resolution

Criticality in ALICE 2 and 3: 6th and higher order cumulants

Simulation of the Critical Fluctuations (CF) is based on PQM model <u>G. A. Almasi, B. Friman, and K. Redlich, Phys. Rev.D96 (2017), 014027</u>

> ALICE 2:

 \rightarrow More than 5 billion central Pb-Pb collisions is required

> ALICE 3:

 \rightarrow x3 larger statistics: >4 σ significance with ALICE 2 acceptance

Net baryon and net strangeness fluctuations for $|\eta| \le 4$ and for 6^{th} and higher order

ALICE 3: High PID purity in large kinematic acceptance

- ✓ Significant increase in the number of measured protons
- ✓ Larger acceptance: in p_T and η : (0.3 < p < 7 GeV/c, $|\eta|$ < 4)
- ✓ Smaller systematics: high PID purity and efficiency

NEW

ALICE 3: Correlation length → Baryon number conservation

NEW

ALICE 3: Correlation length \rightarrow Baryon number conservation

- Precise mapping of correlation length of conserved charges, B, S, C
- Constraining individual dynamic signals such as volume fluctuations, baryon number conservation, thermal blurring, annihilation, effect of hydrodynamic evolution etc.

NEW

Summary

What did we learn from ALICE 1?

- ➤ Net-Q,S fluctuations: → resonance contributions
- Net-p fluctuations:
 - ✓ 1st order: $T_{fo}^{ALICE} \sim T_{pc}^{LQCD}$
 - ✓ 2nd order: Deviation from Skellam baseline is due to baryon number conservation
 - Long range correlations originating from early phase of the collision
 - ✓ **3**rd order: Up to 3rd order ALICE data agree with the LQCD expectations
 - μ_B is very close to 0 at LHC energies

What do we expect from ALICE 2-3?

- Criticality signals at 6th and higher order cumulants for B and S
- > Constraining **individual dynamic signals**
- Correlation length of conserved charges: B, S, C
- ▶ ...

BACKUP

Effect of event pileup

M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer and J. Wiechula, Particles 2022, 5(1), 84-95}

ALICE 3: Net-charm fluctuations

▶ 2^{nd} order \rightarrow Correlation length of charm

→ 4th order → Close to T_{pc} charmed baryon fluctuations are about 50% larger than expected in a HRG based on known charmed baryon resonances (PDG-HRG) → missing states of QCD

2^{nd} order Net- Λ cumulants

2nd order cumulants in full phase space

NEW

ALICE 3

- $\Rightarrow Ultra-low material budget for low p_T tracking$ $\rightarrow X/X0 \sim 0.05 \% / layer$
- \Rightarrow Fast to sample large luminosity
 - \rightarrow 50-100 x Run 3/4 \rightarrow MHz level
- \Rightarrow Large acceptance
 - \rightarrow | η |<1.4 (central barrel), | η |<4 (total)
- \Rightarrow Excellent spatial resolution for tracking and vertexing
 - \rightarrow Innermost layers: σ < 3 μ m
 - ightarrow Outer layers: $\sigma \sim 5 \ \mu m$
- \Rightarrow **Precise time measurements** for PID $\rightarrow \sigma \sim 20 \text{ ps}$

Link to LQCD

- N_W fluctuates with MC Glauber initial conditions
- Each source is treated Grand Canonically
- Mean proton multiplicities taken from real data
- Centrality selection like in experimental data
- Expected results without volume fluctuations
 - Particles: $k_n = N_w \langle n \rangle = \langle p \rangle = \langle \overline{p} \rangle$
 - Net-particles: $k_n = \langle p \rangle + (-1)^n \langle \overline{p} \rangle$

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nuclear Physics A 960 (2017) 114-130

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nuclear Physics A 960 (2017) 114-130

Excellent vertexing: Charm fluctuations

Barrel PID improves S/B by a factor ~10

 \rightarrow Close to 'ideal PID'

 \rightarrow Much smaller systematic uncertainty

Net charm fluctuations for |η| ≤ 4 and up to 4th moments

Identity Method in ALICE 3: Purity in PID

ALICE 3

Significant improvement in the purity + IM

> No full overlap of the TOF signal

ALICE 3: Systematic uncertainties

CERN LHC Seminar, 21.06.2022

2nd order cumulant.

Correlation length

P. Braun-Munzinger, A. Rustamov, J. Stachel, to be published $\begin{array}{c} & & \\ & &$

0.5

0

detection freeze out

> Partial pressure of open charm mesons (M_c) and baryons (B_c) in a gas of uncorrelated hadrons,

- **PDG-HRG**: All open charm resonances in PDG
- **QM-HRG:** Relativistic quark model.
- QM-HRG-X: open charm resonance spectrum is cut off at mass X GeV
- Below 160 MeV the latter coincides with the complete QM-HRG model results to better than 1 %.

Motivation: Nature of the chiral phase transition

 Quantitative agreement of chemical freeze-out parameters with most recent LQCD predictions for μ_B < 300 MeV

$$\Rightarrow T_{\rm pc}^{\rm LQCD} \approx T_{\rm fo}^{\rm ALICE} = 156.5 \pm 3 \, {\rm MeV}$$

HotQCD Collaboration, Phys.Lett. B795 (2019) 15 S. Borsanyi et.al. Phys. Rev. Lett. 125, 052001 (2020) Centrality

CERN LHC Seminar, 21.06.2022

Centrality

CERN LHC Seminar, 21.06.2022

