Overview of the WLCG HEP-SCORE Deployment Task Force Activity

Helge Meinhard / CERN-RCS WLCG Benchmarking Workshop 19 September 2022

Why a CPU Benchmark?

- From WLCG perspective, most importantly
 - Experiment requests and site pledges
 - Accounting of CPU usage
- Many sites also use them for procurements

Why a New CPU Benchmark?

- Current benchmark, HEP-SPEC06 introduced in January 2009, has several drawbacks
 - No longer modelling performance scaling of HEP applications sufficiently well (order of 10%) in all cases
 - Running conditions good in 2009, now totally obsolete
 - SPEC stopped supporting underlying SPEC-CPU 2006 in 2018

How to Benchmark?

- Benchmarking for HEP is not about what can be obtained from a given CPU model optimising all possible running conditions
- It is about how a complete machine configuration performs under realistic batch service and experiment conditions at HEP sites
 - Depends not only on CPU model, but also on memory size and configuration, disk configuration, ...
 - Depends on experiment environments, compilers, flags, optimisations, ...

Future HEP Benchmarking (1)

- Starting in 2018, benchmark experts got together and worked on a new benchmark: HEPiX Benchmarking Working Group co-chaired by Manfred Alef (KIT), Domenico Giordano (CERN) and Michele Michelotto (INFN Padua)
 - Several reports to GDB, HEPiX, WLCG MB
 - Domenico's report to HEPiX 26-Oct-2021: https://indico.cern.ch/event/1078853/contributions/4576275/
 - Domenico's presentation at GDB 09-Mar-2022: https://indico.cern.ch/event/1096028/
 - Large parts of Michele's report to HEPiX 26-Apr-2022: https://indico.cern.ch/event/1123214/contributions/4821948/
 - Without fixing the details of how to use it for a given purpose

Future HEP Benchmarking (2)

- Result of the HEPiX benchmarking working group:
 - "HEP Benchmark Suite": Framework for running containerised benchmarking workloads
 - Automatises benchmark runs
 - Ensures structured delivery and storage of results
 - "HEP Workloads": Collection of (mostly) HEP workloads for which it is desirable to obtain performance information
 - Rather dynamic add improved workloads, new compilers/flags/OS, ...
 - Sometimes called "the matrix" or "the basket"
 - "HEP Score": Single number based on a defined, stable combination of defined, stable reference workloads; sample implementation ("HEP-SCORE_beta") using various LHC experiment workloads (from Run 2)
 - Good consistency with HEP-SPEC06

HEP-SCORE Deployment Task Force

- WLCG Management board discussed and decided to launch a task force
- Started in November 2020, biweekly meetings since then

- Membership:
 - Experts on pledge etc. process, procurements, accounting
 - Experiment experts
 - Four LHC experiments
 - Belle 2, LIGO/Advanced VIRGO(/KAGRA), JUNO/BES III, (DUNE) etc.
 - Site experts
 - Some MB members

Task Force Members

Name	Function	Name	Function
Tommaso Boccali	CMS	(Jeff Templon	Nikhef)
Simone Campana	WLCG	Andrea Valassi	LHCb
Domenico Giordano	Co-chair; Benchmarking WG	Ian Collier	STFC-RAL; APEL team
Michel Jouvin	Tier-2s	Gonzalo Merino	PIC
Walter Lampl	ATLAS	Fazhi Qi	JUNO, BES etc.
(Andrew McNab	DUNE)	Oxana Smirnova	NDGF
Helge Meinhard	WLCG and previous chair	Tony Wong	US Tier-1s
Bernd Panzer	CERN	Josh Willis	LIGO/Adv. VIRGO
Stefano Piano	ALICE	Matthias Schnepf	KIT and Benchmarking WG
Randy Sobie	Co-chair; Belle 2	Alastair Dewhurst	STFC-RAL
Andrew Melo	Vanderbilt U; US CMS T2	Miltiadis Alexis	WLCG accounting
Gonzalo Menendez Borge	WLCG benchmark infrastructure	Yan Xiaofei	JUNO, BES etc.

Topics to Cover

- Compute facilities at WLCG sites
 - Still very much x86 dominated (still majority Intel, increasingly AMD)
- Compute facilities used (quasi-)opportunistically
 - Various processors (x86, POWER, ARM), e.g. at HPC sites
 - Various GPUs in various relations with CPUs, e.g. at HPC sites
 - May see some of this soon at WLCG sites, too even as part of the pledges
 - More may be coming, e.g. FPGAs

Strategy

- Start with CPU benchmarking on x86-based systems; look at other CPUs and/or GPUs later
 - Aim: single benchmark with a stable definition for at least (a typical CPU server lifetime cycle | a complete LHC machine cycle)
- Framework by benchmarking WG is very attractive
 - Use it to record behaviour of (wide) selection of workloads (not limited to HEP) across machines
- Study behaviour of large range of workloads over large range of benchmarking platforms
 - Aim: Select a sample of workloads (possibly with weights)
 - Sufficiently representative of real workloads on installations we (WLCG or HEP) use
 - Sufficiently small to be practical as a benchmark
 - · Sufficiently precise and reproducible
- Propose a transition scenario from HEP-SPEC 06 to HEP-SCORE 22 for WLCG

Status – Viewed from 36'000 Feet

- Workloads:
 - LHC experiments: event generation, detector simulation and digitisation, reconstruction; (analysis)
 - Other (mostly HEP) experiments: Belle II, JUNO, GW experiments, (DUNE)
 - Non-HEP workloads: HS06, SPEC-CPU 2017, DB12
 - All used in major benchmarking campaigns

 Infrastructure: Upgraded wherever needed, fully tested, functional, used for collecting a large matrix of results

- Benchmarking platforms: plethora from BNL, CERN, FNAL, IHEP, IJCLab, KIT, LIGO, NDGF-T1, Nikhef, PIC, RAL, ...
 - Long list of server configurations
 - Lots of results on individual workloads available
- Completed cross-check of available benchmark server configurations with server configurations used by ATLAS and CMS workloads
- Matrix of workloads and platforms filled now ready to move on to defining HEP-SCORE 22 – aim of this workshop
- Exercise very valuable beyond HEP-SCORE 22

(My Personal) Perspectives

- Realistic scenario:
- Slide from April 2022
 ... still valid - End June: Matrix of workloads and server configurations completely filled
 - Soon after: Analysis of individual results completed
 - End September: Workloads (and, if necessary, weights) for HEP-SCORE 2x selected
 - Present it at HEPiX in autumn
 - End November: Migration scenario proposed to and discussed with WLCG MB
 - January 2023: Start accounting both using HS06 and HEP-SCORE 2x
 - Other migration details to be sorted out until end November

My Personal Conclusions

- Defining a HEP-SPEC 06 successor is a complex, ambitious task
 - Has taken many months rather than weeks, still work to do in particular on migration plan
 - ... and then we will have to tackle non-x86 CPUs and GPUs
- Discussions and work in a constructive and collaborative spirit
- Steady progress leading to ... HEP-SCORE 22 (HS22)
- Thanks to
 - all working group and task force members
 - all experiment and site representatives supporting this work
 - Randy and Domenico for having agreed to take over from me
 - all of you for a very nice personal experience with benchmarking from 2007 on!

