Analysis of the benchmark data

Randall Sobie University of Victoria (on behalf of the HEPiX Benchmark Working Group)

Introduction

Data is collected from many sites and written into an Elastic Search database at CERN

The data is then written into pickle files for easier analysis

Require 5 measurement of benchmarks and workloads (except at CERN)

Workloads are run 3 times and the geometric-mean is taken minimize spurious results [same method as used for HEPSpec06]

Some very minor clean-up cuts also applied to remove outliers

Results found at https://rjsobie.web.cern.ch/rjsobie/benchmarks.html

<u>Jargon</u>: HS == HEPSpec06 (there is a 32-bit and a 64-bit version) SP == SPEC2017 (there is an "intrate" and "cpp" version) System == (CPU, site, HT, cores)

WLCG uses the 32-bit version

Reconfirm HEPSpec06 and SPEC2017

HEPSpec06 32/64bit and SPEC2017 intrate/cpp HEPSpec06 32bit is the WLCG standard

Tables and plots

Organized by AMD/Intel, HT (hyperthreading on/off)

HEPSPEC06 32bit:72 systems and 1778 measurementsSPEC2017 intrate:58 systems and 1025 measurement

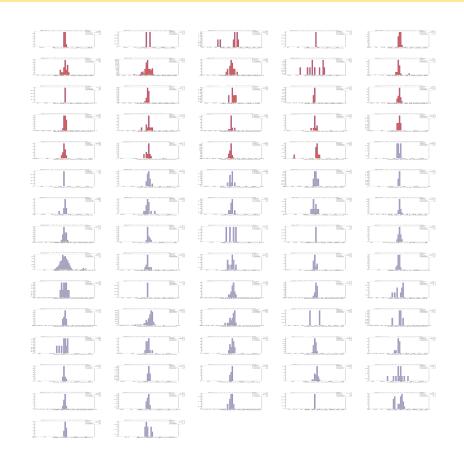
Not all sites had SPEC2017 licenses

HS06 32bit

2022-08-08 15:55:49 Benchmark hs06_score 32bit Note: all values of benchmarks/core use the PHYSICAL number of cores

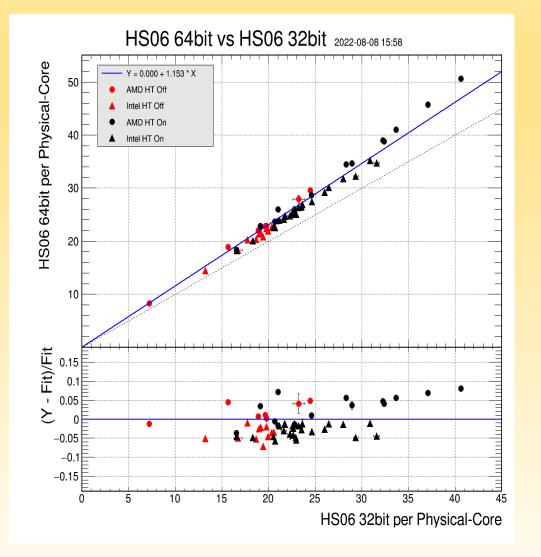
CPU	Architecture	Site	Physical HT N	Benchmark	Bmk/PCore	RAM GB/core
			Cores	mean std	mean std	
AMD_EPYC_7302_16-Core_Processor	Rome	CERN	32 1 24	783 1	24.46 0.03	8.2
AMD_EPYC_7313_16-Core_Processor	Milan	CaltechLIGO	32 1 2	1014 5	31.70 0.14	8.2
AMD_EPYC_7402_24-Core_Processor	Rome	CaltechLIGO	8 1 8	186 5	23.25 0.64	4.1
AMD_EPYC_7443P_24-Core_Processor	Milan	NDGF-UCPH	24 1 1	714 nan	29.76 nan	5.5
AMD_EPYC_7551P_32-Core_Processor	Naples	Nikhef	32 1 20	502 1	15.67 0.02	8.2
AMD_EPYC_7702P_64-Core_Processor	Rome	Nikhef	64 1 20	1211 5	18.91 0.08	8.3
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	128 1 100	2513 14	19.63 0.11	4.6
AMD_EPYC_7H12_64-Core_Processor	Rome	Nikhef	64 1 20	1267 6	19.79 0.09	8.3
AMD_Opteron(tm)_Processor_6174	K10	GridKa	48 1 10	347 9	7.24 0.19	2.1
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	Broadwell	CERN	24 1 24	426 2	17.75 0.08	11.0

System = (CPU, site, HT, cores)


HEPSpec06 32-bit table and histograms

HS06 32bit

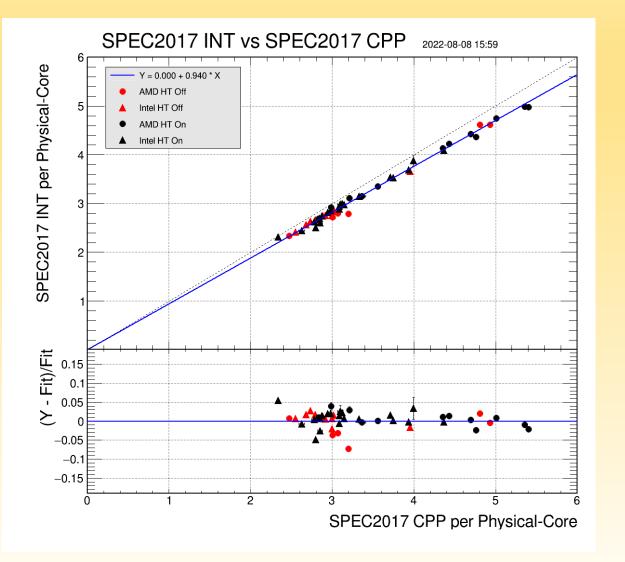
te: all values of benchmarks/core use the PHY:	SICAL number of co	res					
υ	Architecture	Site	Physical H Cores	IT N	Benchmark mean std	Bmk/PCore mean std	RAM GB/core
D EPYC 7302 16-Core Processor	Rome	CERN	32	1 24	783 1		8.2
D_EPYC_7313_16-Core_Processor	Milan	CaltechLIGO		1 24	1014 5		8.2
D_EPYC_7402_24-Core_Processor	Rome	CaltechLIGO		1 8	186 5		4.1
D_EPYC_7443P_24-Core_Processor	Milan	NDGF-UCPH		1 1	714 nan		5.5
D EPYC 7551P 32-Core Processor	Naples	Nikhef		1 20	502 1		8.2
D EPYC 7702P 64-Core Processor	Rome	Nikhef		1 20	1211 5		8.3
D EPYC 7742 64-Core Processor	Rome	GridKa		1 100	2513 14		4.6
D EPYC 7H12 64-Core Processor	Rome	Nikhef		1 20	1267 6		8.3
D_Opteron(tm)_Processor_6174	K10	GridKa	48	1 10	347 9		2.1
tel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CERN		1 24	426 2	17.75 0.08 1	1.0
tel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	Broadwell	CaltechLIGO	24	1 1	424 nan	17.67 nan 1	1.0
tel(R)_Xeon(R)_CPU_E5-2680_v3_@_2.50GHz	Haswell	Nikhef		1 20	456 1		8.2
tel(R) Xeon(R) CPU E5520 @ 2.27GHz	NehalemEP	IN2P3-SUBATECH	8	1 6	106 0		2.0 2.0
tel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz	Skylake	GridKa-Tier3	24	1 3	432 1	18.02 0.03 1	6.4
tel(R)_Xeon(R)_Gold_5218_CPU_0_2.30GHz	CascadeLake	CERN	32	1 24	632 1	19.76 0.04	6.1
tel(R)_Xeon(R)_Gold_6148_CPU_02.40GHz	Skylake	Nikhef		1 20	815 1	20.36 0.03	9.9
tel(R)_Xeon(R)_Gold_6238R_CPU_02.20GHz	CascadeLake	IHEP	56	1 12	1045 5	18.66 0.09	4.7 4.7
tel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz	CascadeLake	IHEP	40	1 17	824 2	20.60 0.05	4.9 4.9
tel(R)_Xeon(R)_Gold_6258R_CPU_@_2.70GHz	CascadeLake	IHEP		1 11	1088 3	19.43 0.05	4.7 4.7
tel(R)_Xeon(R)_Gold_6326_CPU_0_2.90GHz	IceLake	CaltechLIGO	32	1 5	856 2	26.76 0.07	8.2
tel(R)_Xeon(R)_Gold_6326_CPU_0_2.90GHz	IceLake	CERN		1 12	857 2		8.2
tel(R)_Xeon(R)_Gold_6338_CPU_02.00GHz	IceLake	IHEP		1 17	1276 4	19.94 0.07	4.1 4.1
tel(R)_Xeon(R)_Silver_4216_CPU_@_2.10GHz	CascadeLake	CERN	32	1 41	613 1	19.16 0.04	6.1 6.1
tel_Core_Processor_(Haswell,_no_TSX,_IBRS)	Haswell	NDGF-T1	24	1 10	401 10	16.73 0.43	5.0 5.0
D_EPYC_7302_16-Core_Processor	Rome	CC-IN2P3	32	2 10	1032 3	32.25 0.09	3.1
D EPYC 7302 16-Core Processor	Rome	NDGF-UCPH		2 1	1039 nan		2.1
D_EPYC_7302_16-Core_Processor	Rome	CERN		2 17	1036 2		4.1
D_EPYC_7313_16-Core_Processor	Milan	CC-IN2P3	32	2 10	1186 4	37.07 0.12	4.1
D EPYC 7313 16-Core Processor	Milan	CaltechLIGO	32	2 7	1300 3	40.63 0.11	4.1
D EPYC 7351 16-Core Processor	Naples	INFN-T1	32	2 3	762 1	23.81 0.02	4.1
D EPYC 7443 24-Core Processor	Milan	CC-IN2P3	48	2 10	1617 6	33.69 0.12	5.5
D EPYC 7452 32-Core Processor	Rome	PIC	64	2 16	1574 7	24.59 0.11	2.1
D EPYC 7453 28-Core Processor	Milan	CC-IN2P3		2 10	1585 4		4.7
D_EPYC_7513_32-Core_Processor	Milan	CC-IN2P3	64	2 10	1853 7	28.96 0.11	4.1
D_EPYC_7551P_32-Core_Processor	Naples	Nikhef	32	2 20	612 1	19.13 0.03	4.1
D EPYC 7702 64-Core Processor	Rome	GridKa		2 24	2644 6		2.3
D_EPYC_7702_64-Core_Processor	Rome	IJCLAB	128	2 15	2689 6	21.01 0.05	2.1
D_EPYC_7713P_64-Core_Processor	Milan	CaltechLIGO	64	2 4	1426 11	22.29 0.18	2.1
D_EPYC_7713_64-Core_Processor	Milan	GridKa		2 1	2686 nan		4.1
D_EPYC_7713_64-Core_Processor	Milan	GridKa-Tier3		2 14	2691 5		4.1 4.1
D_EPYC_7742_64-Core_Processor	Rome	GridKa		2 408	2920 26		2.3 2.3 2
D_Opteron(tm)_Processor_6376	Piledriver	GridKa		2 12	529 1		2.1
tel(R)_Xeon(R)_CPU_E3-1240_v5_@_3.50GHz	Skylake	CaltechLIGO		2 10	126 1		4.1
tel(R)_Xeon(R)_CPU_E5-2630_v3_@_2.40GHz	Haswell	GridKa		2 11	361 1		3.1
tel(R)_Xeon(R)_CPU_E5-2630_v3_@_2.40GHz	Haswell	CERN		2 18	365 1		4.1
tel(R)_Xeon(R)_CPU_E5-2630_v4_@_2.20GHz	Broadwell	GridKa		2 12	423 2		2.5
tel(R)_Xeon(R)_CPU_E5-2630_v4_@_2.20GHz	Broadwell	CCIPL-SUBATECH		2 1	417 nan		3.3
tel(R)_Xeon(R)_CPU_E5-2640_v3_@_2.60GHz	Haswell	PIC		2 16	372 1		2.1
tel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	Nikhef		2 20	523 1		4.1
tel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CC-IN2P3		2 10	519 7		3.1
tel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CERN		2 17	521 1		5.5
tel(R)_Xeon(R)_CPU_E5-2660_0_@_2.20GHz	SandyBridgeEP	CA-UVic-Cloud		2 378	327 3		3.1 3.1 3
tel(R)_Xeon(R)_CPU_E5-2665_0_@_2.40GHz	SandyBridgeEP	GridKa		2 23	332 2		2.1 1.5
tel(R)_Xeon(R)_CPU_E5-2670_0_0_2.60GHz	SandyBridgeEP	GridKa		2 2	351 8		1.0 2.1
tel(R)_Xeon(R)_CPU_E5-2670_0_@_2.60GHz	SandyBridgeEP	CaltechLIGO		2 6	347 2		4.1
tel(R)_Xeon(R)_CPU_E5-2680_v2_0_2.80GHz	IvyBridgeEP	CC-IN2P3		2 10	459 3		3.3
tel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	PIC		2 16	662 2		2.4
tel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	CERN		2 17	660 2		4.7
tel(R)_Xeon(R)_CPUE5520_@_2.27GHz	NehalemEP	CA-UVic-Cloud		2 37	133 0		3.1
tel(R)_Xeon(R)_CPUE5630_@_2.53GHz	WestmereEP	GridKa		2 11	147 0		1.5
tel(R)_Xeon(R)_Gold_5118_CPU_@_2.30GHz	Skylake	GridKa-Tier3		2 12	552 1		8.2
tel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz	CascadeLake	CERN		2 4	788 1		3.1
tel(R)_Xeon(R)_Gold_5320_CPU_@_2.20GHz	IceLake	CC-IN2P3		2 10	1354 2		5.1
tel(R)_Xeon(R)_Gold_6130_CPU_@_2.10GHz	Skylake	CERN		2 25	734 2		3.1
tel(R)_Xeon(R)_Gold_6136_CPU_0_3.00GHz	Skylake	CaltechLIGO		2 13	705 6		4.1 4.1
tel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz	CascadeLake	BNL		2 10	1088 1		2.0
tel(R)_Xeon(R)_Gold_6326_CPU_0_2.90GHz	IceLake	CC-IN2P3	32	2 10	989 2	30.89 0.07	4.1
tel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz	Skylake	CC-IN2P3		2 10	454 1		3.3
tel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz	CascadeLake	CCIPL-SUBATECH		2 1	483 nan		3.3
	CascadeLake	IJCLAB		2 28	714 9		2.1
tel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz							
tel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz tel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz	IceLake	CC-IN2P3		2 10	896 1		4.1


N histograms = 72 N reuslts = 1778

72 systems and 1778 measurements

Individual histograms of each system (red = HT off). (blue = HT on) Most results consistent to <1%

HEPSPEC06, SPEC2017 plots I

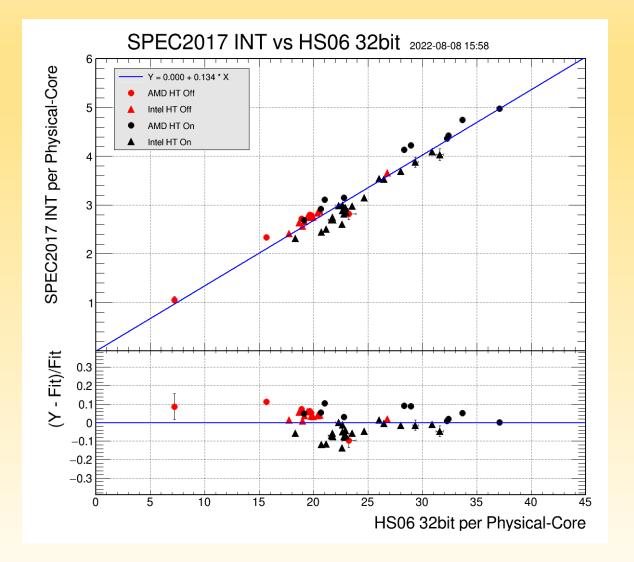


HEPSPEC06 32 vs 64 bit benchmarks (per physical core)

Y (64bit) = 1.15 X(32bit) Fit (blue-line) constrained to (0,0)

Red points Black points	HT Off HT ON
Circles Triangles	AMD Intel
Tables available on	web site

HEPSPEC06, SPEC2017 plots II

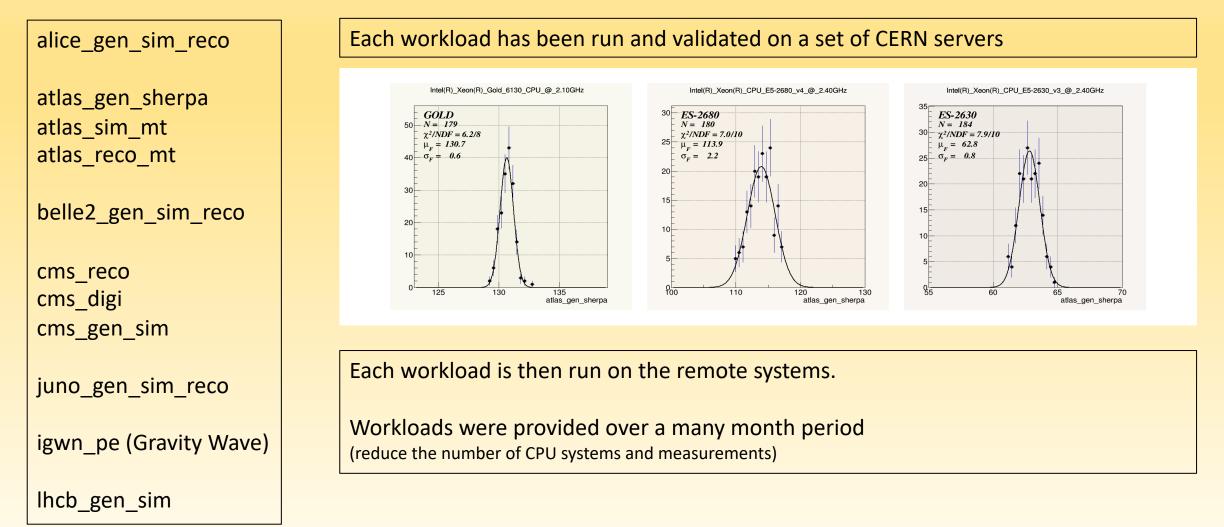


SPEC2017 intrate vs cpp (per physical core)

Y(INT) = 0.94 X(CPP) Fit (blue-line) constrained to (0,0)

Red points	HT Off						
Black points	HT ON						
Circles	AMD						
Triangles	Intel						
Tables available on web site							

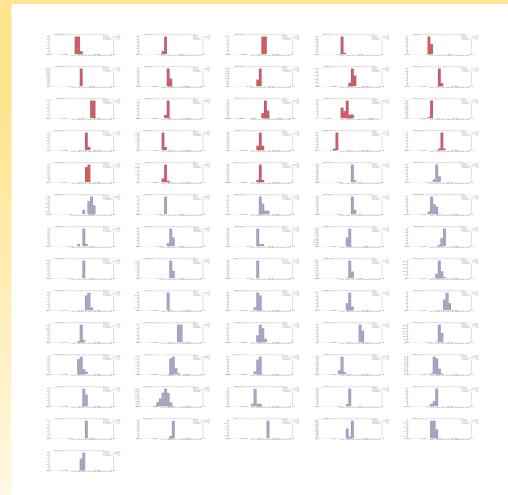
HEPSPEC06, SPEC2017 plots III



SPEC2017 intrate vs HEPSPEC06-32bit (per physical core)

Y(INT) = 0.134 X(32bit) Fit (blue-line) constrained to (0,0)

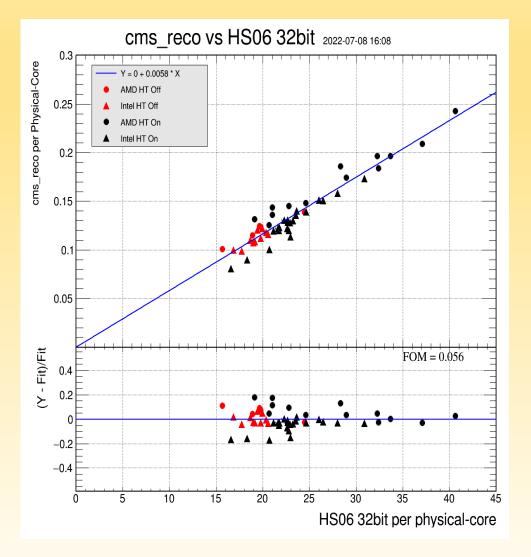
Red points Black points	HT Off HT ON						
Circles Triangles	AMD Intel						
Tables available on web site							


Workloads Run3 workloads for LHC experiments

Example: CMS reco I 66 systems, 3000+ measurements

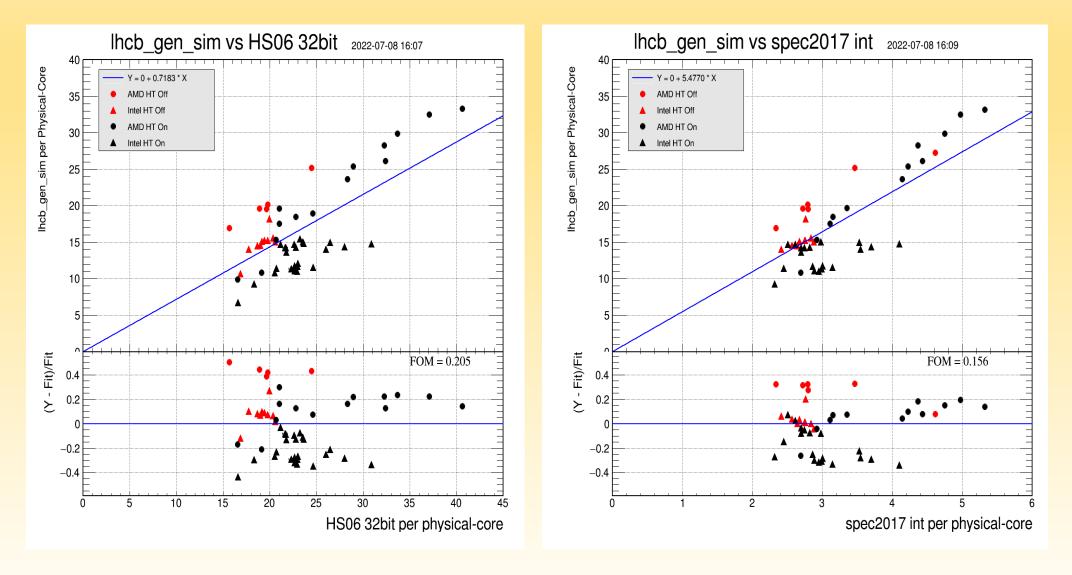
cms_reco

2022-08-10 10:51:41 hepscore wl scores cms reco run3 bmk reco								
Note: all values of benchmarks/core use the PHYS	SICAL number of cores							
CPU	Architecture	Site	Physical HT N	Benc	hmark	Bmk/PCore	No	orm Bmk RAM GB/core
			Cores	mean	std	mean std	mean	std
AMD_EPYC_7302_16-Core_Processor	Rome	CERN	32 1 13	4.44	0.01	0.139 0.000	1.40	0.00 8.2
AMD_EPYC_7543_32-Core_Processor	Milan	CaltechLIGO	32 1 7 32 1 20	5.83	0.01	0.182 0.000 0.101 0.000	1.84	0.00 8.2 0.00 8.2
AMD_EPYC_7551P_32-Core_Processor AMD_EPYC_7573X_32-Core_Processor	Naples Milan	Nikhef CaltechLIGO	32 1 20 64 1 15	11.61	0.01	0.101 0.000 0.181 0.000	1.83	0.00 8.2 0.00 8.2
AMD EPYC 75F3 32-Core Processor	Milan	CaltechLIGO	32 1 11	6.10	0.01	0.191 0.000	1.93	0.00 8.2
AMD EPYC 7702P 64-Core Processor	Rome	Nikhef	64 1 20	7.36	0.01	0.115 0.000	1.16	0.00 8.3
AMD_EPYC_7713_64-Core_Processor	Milan	GridKa-Tier3	256 1 18	15.23	0.04	0.059 0.000	0.60	0.00 4.1
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	128 1 48	15.97	0.06	0.125 0.000	1.26	0.00 4.6
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	256 1 240 128 1 7	18.17	0.11	0.071 0.000	0.72	0.00 2.3 2.3
AMD_EPYC_7763_64-Core_Processor AMD_EPYC_7H12_64-Core_Processor	Milan Rome	CaltechLIGO Nikhef	128 1 7 64 1 20	19.22 7.91	0.02	0.150 0.000 0.124 0.000	1.52	0.00 4.1 0.00 8.3
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	Broadwell	CERN	24 1 13	2.38	0.01	0.099 0.000	1.00	0.00 11.0
Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz	SandyBridgeEP	GridKa	32 1 24	1.31	0.00	0.041 0.000	0.41	0.00 1.5
Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz	SandyBridgeEP	GridKa	32 1 24	1.59	0.01	0.050 0.000	0.50	0.00 2.1
Intel(R)_Xeon(R)_CPU_E5-2680_v3_@_2.50GHz	Haswell	Nikhef	24 1 20	2.58	0.01	0.108 0.000	1.09	0.00 8.2
Intel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz	CascadeLake	CERN	32 1 13	3.58	0.01	0.112 0.000	1.13	0.00 6.1
Intel(R)_Xeon(R)_Gold_6148_CPU_@_2.40GHz	Skylake	Nikhef	40 1 20	4.71	0.01	0.118 0.000	1.19	0.00 9.9
Intel(R)_Xeon(R)_Gold_6238R_CPU_@_2.20GHz Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz	CascadeLake CascadeLake	IHEP IHEP	56 1 12 40 1 13	6.16 4.64	0.02	0.110 0.000 0.116 0.000	1.11	0.00 4.7 0.00 4.9
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz	CascadeLake	IHEP	40 1 13	4.64	0.01	0.121 0.000	1.17	0.00 4.9
Intel(R)_Xeon(R)_Gold_6338_CPU_@_2.00GHz	IceLake	IHEP	64 1 13	7.80	0.01	0.122 0.000	1.23	0.00 4.1
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz	CascadeLake	CERN	32 1 31	3.47	0.01	0.108 0.000	1.09	0.00 6.1 6.1
<pre>Intel_Core_Processor_(Haswell,_no_TSX,_IBRS)</pre>	Haswell	NDGF-T1	24 1 10	2.40	0.01	0.100 0.000	1.01	0.00 5.0
AMD_EPYC_7302_16-Core_Processor	Rome	CC-IN2P3 CERN	32 2 10 32 2 18	6.29 5.88	0.01	0.197 0.000 0.184 0.001	1.99	0.00 3.1 0.01 4.1
AMD_EPYC_7302_16-Core_Processor AMD_EPYC_7313_16-Core_Processor	Rome Milan	CC-IN2P3	32 2 18	6.69	0.02	0.209 0.001	2.11	0.01 4.1
AMD_EPYC_7313_16-Core_Processor	Milan	CaltechLIGO	32 2 10	7.77	0.01	0.243 0.000	2.45	0.00 4.1
AMD EPYC 7351 16-Core Processor	Naples	INFN-T1	32 2 10	4.82	0.02	0.151 0.001	1.52	0.01 4.1
AMD_EPYC_7443_24-Core_Processor	Milan	CC-IN2P3	48 2 10	9.44	0.01	0.197 0.000	1.99	0.00 5.5
AMD_EPYC_7452_32-Core_Processor	Rome	PIC	64 2 15	9.48	0.05	0.148 0.001	1.50	0.01 2.1
AMD_EPYC_7453_28-Core_Processor	Milan	CC-IN2P3	56 2 10	10.42	0.04	0.186 0.001	1.88	0.01 4.7
AMD_EPYC_74F3_24-Core_Processor AMD_EPYC_7513_32-Core_Processor	Milan Milan	CaltechLIGO CC-IN2P3	24 2 10 64 2 10	5.64 11.15	0.02	0.235 0.001 0.174 0.001	2.38	0.01 2.7 0.01 4.1
AMD_EPYC_7543_32-Core_Processor	Milan	CaltechLIGO	32 2 3	7.02	0.03	0.219 0.000	2.22	0.00 8.2
AMD_EPYC_7551P_32-Core_Processor	Naples	Nikhef	32 2 20	4.20	0.02	0.131 0.000	1.33	0.00 4.1
AMD_EPYC_7702_64-Core_Processor	Rome	IJCLAB	128 2 14	17.45	0.04	0.136 0.000	1.38	0.00 2.1 2.1
AMD_EPYC_7702_64-Core_Processor	Rome	GridKa	128 2 24	16.07	0.06	0.126 0.000	1.27	0.00 2.3 2.3
AMD_EPYC_7713_64-Core_Processor	Milan	GridKa-Tier3	128 2 18	18.40	0.03	0.144 0.000	1.45	0.00 4.1
AMD_EPYC_7742_64-Core_Processor	Rome Haswell	GridKa CERN	128 2 240 16 2 459	18.60	0.05	0.145 0.000 0.120 0.001	1.47	0.00 2.3 0.01 4.1
Intel(R)_Xeon(R)_CPU_E5-2630_v3_@_2.40GHz Intel(R)_Xeon(R)_CPU_E5-2630_v3_@_2.40GHz	Haswell	GridKa	16 2 439	1.92	0.01	0.120 0.001 0.122 0.001	1.21	0.01 3.1
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz	Broadwell	CCIPL-SUBATECH	20 2 3	2.38	0.00	0.119 0.000	1.20	0.00 3.3
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz	Broadwell	GridKa	20 2 12	2.39	0.01	0.119 0.001	1.21	0.01 2.5
Intel(R)_Xeon(R)_CPU_E5-2640_v3_@_2.60GHz	Haswell	PIC	16 2 16	2.08	0.01	0.130 0.000	1.31	0.00 2.1
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CC-IN2P3	24 2 10	2.93	0.01	0.122 0.000	1.24	0.00 3.1
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CERN	24 2 18	2.88	0.01	0.120 0.000	1.21	0.00 5.5
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz Intel(R)_Xeon(R)_CPU_E5-2665_0_@_2.40GHz	Broadwell SandyBridgeEP	Nikhef GridKa	24 2 20 16 2 24	2.95	0.01	0.123 0.000 0.100 0.001	1.24	0.00 4.1 0.01 2.1
Intel(R) Xeon(R) CPU E5-2685 v2 @ 2.40GHz	IvyBridgeEP	CC-IN2P3	20 2 10	2.27	0.01	0.114 0.000	1.15	0.00 3.3
Intel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	CERN	28 2 492	3.79	0.01	0.135 0.000	1.37	0.00 4.7
Intel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	PIC	28 2 16	3.92	0.02	0.140 0.001	1.41	0.01 2.4
Intel(R)_Xeon(R)_CPUE5520_@_2.27GHz	NehalemEP	CA-UVic-Cloud	8 2 67	0.65	0.00	0.081 0.001	0.81	0.01 3.1 3.1
Intel(R)_Xeon(R)_CPUE5630_@_2.53GHz	WestmereEP	GridKa	8 2 12	0.72	0.00	0.090 0.000	0.91	0.00 1.5
Intel(R)_Xeon(R)_Gold_5118_CPU_@_2.30GHz	Skylake CascadeLake	GridKa CERN	24 2 12 32 2 196	3.30	0.01	0.138 0.000 0.139 0.001	1.39	0.00 8.2 0.01 3.1 3.1
Intel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz Intel(R)_Xeon(R)_Gold_5320_CPU_@_2.20GHz	IceLake	CC-IN2P3	52 2 196	4.45	0.02	0.139 0.001	1.40	0.00 5.1 3.1
Intel(R) Xeon(R) Gold_6130_CPU @ 2.10GHz	Skylake	CERN	32 2 495	4.10	0.02	0.128 0.001	1.29	0.01 3.1
Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz	CascadeLake	BNL	48 2 10	6.18	0.03	0.129 0.001	1.30	0.01 2.0
Intel(R)_Xeon(R)_Gold_6326_CPU_@_2.90GHz	IceLake	CaltechLIGO	32 2 9	5.91	0.00	0.185 0.000	1.87	0.00 4.1
<pre>Intel(R)_Xeon(R)_Gold_6326_CPU_@_2.90GHz</pre>	IceLake	CC-IN2P3	32 2 10	5.55	0.03	0.173 0.001	1.75	0.01 4.1
Intel(R)_Xeon(R)_Gold_6334_CPU_@_3.60GHz	IceLake	CaltechLIGO	16 2 10	3.48	0.00	0.217 0.000	2.19	0.00 8.2
Intel(R)_Xeon(R)_Silver_4114_CPU_02.20GHz	Skylake	CC-IN2P3	20 2 10	2.62	0.01	0.131 0.000	1.32	0.00 3.3
Intel(R)_Xeon(R)_Silver_4210_CPU_@_2.20GHz Intel(R)_Xeon(R)_Silver_4216_CPU_@_2.10GHz	CascadeLake CascadeLake	IN2P3-SUBATECH IJCLAB	20 2 3 32 2 33	2.85	0.00	0.142 0.000 0.130 0.001	1.44	0.00 3.3 0.01 2.1
Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz	IceLake	CC-IN2P3	32 2 33	5.06	0.04	0.158 0.001	1.60	0.01 2.1
Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz	IceLake	CC-IN2P3	40 2 10	6.02	0.02	0.150 0.000	1.52	0.00 3.3
· · _ ·······								

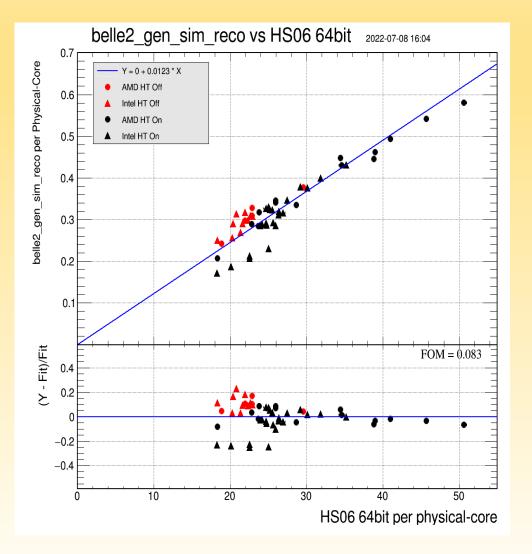

Sanity checks: N histograms = 66 N results = 3046

Example: CMS reco II (table of HT off)

cms_reco


2022-08-10 10:51:41							
hepscore_wl_scores_cms_reco_run3_bmk_reco Note: all values of benchmarks/core use the PHY	SICAL number of core	20					
CPU	Architecture	Site	Physical HT N	Benchmark	Bmk/PCore	Norm Bmk	RAM GB/core
	memiceeture	DICC	Cores	mean std	mean std	mean std	Mail OD/COIC
AMD EPYC 7302 16-Core Processor	Rome	CERN	32 1 13	4.44 0.01	0.139 0.000	1.40 0.00	8.2
AMD EPYC 7543 32-Core Processor	Milan	CaltechLIGO	32 1 7	5.83 0.01	0.182 0.000	1.84 0.00	8.2
AMD EPYC 7551P 32-Core Processor	Naples	Nikhef	32 1 20	3.24 0.01	0.101 0.000	1.02 0.00	8.2
AMD EPYC 7573X 32-Core Processor	Milan	CaltechLIGO	64 1 15	11.61 0.02	0.181 0.000	1.83 0.00	8.2
AMD EPYC 75F3 32-Core Processor	Milan	CaltechLIGO	32 1 11	6.10 0.01	0.191 0.000	1.93 0.00	8.2
AMD_EPYC_7702P_64-Core_Processor	Rome	Nikhef	64 1 20	7.36 0.01	0.115 0.000	1.16 0.00	8.3
AMD_EPYC_7713_64-Core_Processor	Milan	GridKa-Tier3	256 1 18	15.23 0.04	0.059 0.000	0.60 0.00	
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	128 1 48	15.97 0.06	0.125 0.000	1.26 0.00	4.6
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	256 1 240	18.17 0.11	0.071 0.000	0.72 0.00	2.3 2.3
AMD_EPYC_7763_64-Core_Processor	Milan	CaltechLIGO	128 1 7	19.22 0.02	0.150 0.000	1.52 0.00	
AMD_EPYC_7H12_64-Core_Processor	Rome	Nikhef	64 1 20	7.91 0.01	0.124 0.000		8.3
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CERN	24 1 13	2.38 0.01	0.099 0.000		11.0
Intel(R)_Xeon(R)_CPU_E5-2665_0_@_2.40GHz	SandyBridgeEP	GridKa	32 1 24	1.31 0.00	0.041 0.000	0.41 0.00	
Intel(R)_Xeon(R)_CPU_E5-2670_0_@_2.60GHz	SandyBridgeEP	GridKa	32 1 24	1.59 0.01	0.050 0.000	0.50 0.00	
Intel(R)_Xeon(R)_CPU_E5-2680_v3_@_2.50GHz	Haswell	Nikhef	24 1 20	2.58 0.01	0.108 0.000	1.09 0.00	
<pre>Intel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz</pre>	CascadeLake	CERN	32 1 13	3.58 0.01	0.112 0.000	1.13 0.00	
<pre>Intel(R)_Xeon(R)_Gold_6148_CPU_@_2.40GHz</pre>	Skylake	Nikhef	40 1 20	4.71 0.01	0.118 0.000	1.19 0.00	
<pre>Intel(R)_Xeon(R)_Gold_6238R_CPU_@_2.20GHz</pre>	CascadeLake	IHEP	56 1 12	6.16 0.02	0.110 0.000	1.11 0.00	
<pre>Intel(R)_Xeon(R)_Gold_6248_CPU_@_2.50GHz</pre>	CascadeLake	IHEP	40 1 13	4.64 0.01	0.116 0.000	1.17 0.00	
<pre>Intel(R)_Xeon(R)_Gold_6258R_CPU_@_2.70GHz</pre>	CascadeLake	IHEP	56 1 13	6.76 0.01	0.121 0.000	1.22 0.00	
Intel(R)_Xeon(R)_Gold_6338_CPU_@_2.00GHz	IceLake	IHEP	64 1 13	7.80 0.01	0.122 0.000	1.23 0.00	4.1
Intel(R)_Xeon(R)_Silver_4216_CPU_@_2.10GHz	CascadeLake	CERN	32 1 31	3.47 0.01	0.108 0.000	1.09 0.00	
<pre>Intel_Core_Processor_(Haswell,_no_TSX,_IBRS)</pre>	Haswell	NDGF-T1	24 1 10	2.40 0.01	0.100 0.000	1.01 0.00	5.0

Workloads vs HEPSpec06 and SPEC2017



	HT On
~· I	
Circle	AMD
Friangle	Intel

Example: LHCb (gen_sim) vs HS06-32 and SP-Int

Impact of hyper-threading

Observation:

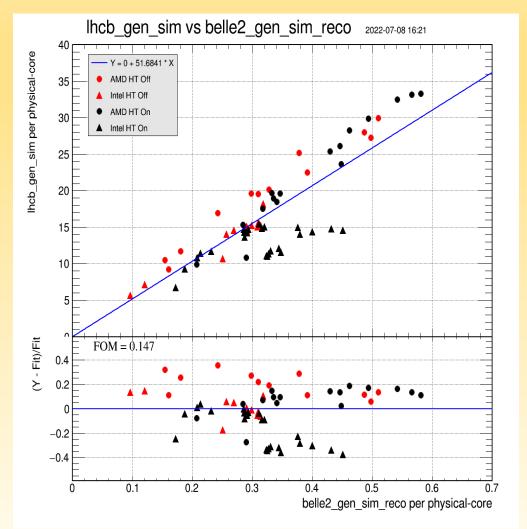
Some workloads have a higher benchmark relative to HS06 with HT off

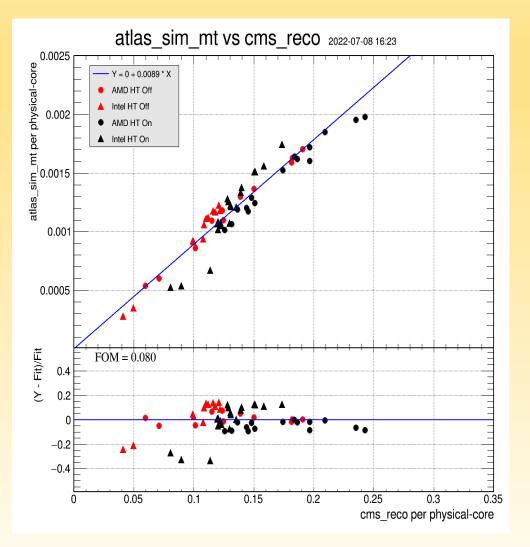
HT off	red
HT on	black

Workloads vs HS/SP - Mean deviation from fit

Mean deviation from fit 202

22-07-08	16:18


						0.22
juno_gen_sim_reco	0.18	0.19	0.22	0.20		0.2
lhcb_gen_sim	0.15	0.16	0.20	0.19		
atlas_gen_sherpa	0.11	0.12	0.14	0.13		0.18
igwn_pe	0.10	0.09	0.09	0.08		0.16
atlas_sim_mt	0.08	0.08	0.09	0.11		0.14
alice_gen_sim	0.10	0.11	0.14	0.14	_	0.12
cms_gen_sim	0.07	0.07	0.08	0.09		0.1
belle2_gen_sim_reco	0.04	0.04	0.08	0.08		80.0
cms_reco	0.04	0.04	0.06	0.05		0.06
cms_digi	0.05	0.05	0.04	0.04		0.04
atlas_reco_mt	0.04	0.03	0.05	0.05		0.02
	spec2017_cpp	spec2017_int	HS06_32bit	HS06_64bit		


Workloads are more correlated with SPEC2017 than HEPSpec06

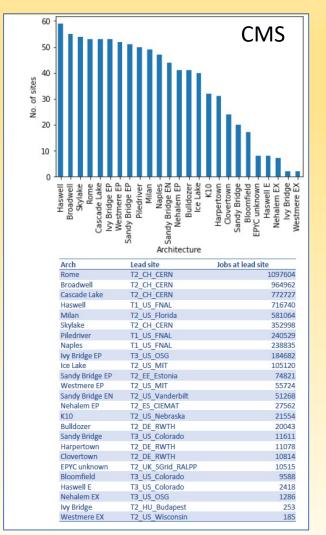
Conclude that the workloads are not wildly inconsistent with HS/SP

Consider the "deviation" from HS/SP as a feature of the workload

Workloads vs Workloads 50 combinations

WvsW - mean deviation from fits

IVIEAN DEVIATION TROM TIT All CPU-arch 2022-07-08 16:43												
juno_gen_sim_reco	0.23	0.23	0.18	0.20	0.22	0.21	0.20	0.28	0.12	0.13		0.05
lhcb_gen_sim	0.22	0.20	0.15	0.19	0.21	0.22	0.17	0.25	0.12		0.13	 0.25
atlas_gen_sherpa	0.19	0.13	0.14	0.14	0.16	0.15	0.14	0.18		0.12	0.12	
igwn_pe	0.17	0.09	0.13	0.07	0.12	0.08	0.17		0.18	0.25	0.28	0.2
alice_gen_sim	0.08	0.12	0.08	0.12	0.09	0.15		0.17	0.14	0.17	0.20	
cms_digi	0.11	0.04	0.09	0.05	0.09		0.15	0.08	0.15	0.22	0.21	 0.15
cms_gen_sim	0.03	0.05	0.04	0.06		0.09	0.09	0.12	0.16	0.21	0.22	
cms_reco	0.08	0.02	0.05		0.06	0.05	0.12	0.07	0.14	0.19	0.20	 0.1
belle2_gen_sim_reco	0.06	0.05		0.05	0.04	0.09	0.08	0.13	0.14	0.15	0.18	
atlas_reco_mt	0.08		0.05	0.02	0.05	0.04	0.12	0.09	0.13	0.20	0.23	 0.05
atlas_sim_mt		0.08	0.06	0.08	0.03	0.11	0.08	0.17	0.19	0.22	0.23	
atlas_sim_mt_reco												


Moon doviation from fit

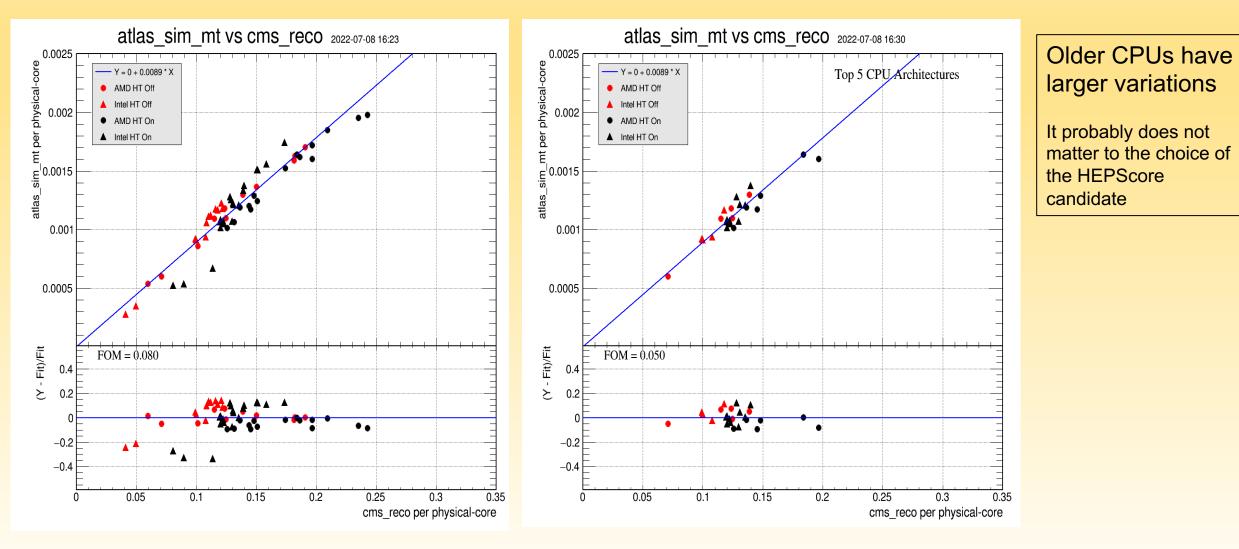
Matrix gives an indication of the correlation between the workloads

Could be used to help determine optimal workloads for HEPScore

Should we drop some workloads that are highly correlated with each other? (speed up the time to run HEPScore)

WvsW - Top 5 CPU architectures

Results courtesy of Andrea Sciaba


	120 -		_																_				•	~	٦
	100 -		ATLAS																						
s	80 -																								
No. of sites	60 -							l																	
z	40 -									_	_														
	20 -												ì						_	_					
	0 -	1	e :	- -	- e	¥e	8	6	8	- ux	8	es -	er -	er -	Milan -	K10	- uv	ge -	ke	- LN	- un	EN	ge -	- fu	-J
		Broadwell	Skylake	Haswell	Rome	Cascade Lake	Ivy Bridge EP	Westmere EP	Nehalem EP	Harpertown	Sandy Bridge EP	Naples	Bulldozer	Piledriver	Mill	Σ	Xeon unknown	Sandy Bridge	lce Lake	Clovertown	EPYC unknown	Sandy Bridge EN	lvy Bridge	Knights Landing	IDAMODIL
												Arc	hit	ect	ure	2						0,			
	Arch						Lead site Job							ob	os at lead site										
	Rome						Ve	ga	Μ	CO	RE												1	2935	887
	Casca	cade Lake					CERN-TO														1	2117	166		
	Skylak	Skylake					IN2P3-CC														1	1723	182		
		Broadwell					BNL																L406		
	Ice La	ke					TOKYO							1065133											
	Naples Sandy Bridge EP Haswell			BNL									915110												
				RRC-KI-T1														383							
				RRC-KI-T1														352							
	Nehalem EP Ivy Bridge EP Bulldozer				TW-FTT									332688											
					IN2P3-CC									270132											
					CYFRONET UIO CLOUD								213434 183310												
	EPYC unknown Westmere EP					IHEP									183310										
		mor								INFN-COSENZA-RECAS									1/5322						
)			IN		DESY-HH								126822								
	Piledr	iver								4														126	
	Piledr Sandy	iver / Bri	dge	EN	1		D	SY	-HI		UIK	(
	Piledr	iver / Bri	dge	EN	I		DE	esy Do	-HI Gle	_в	ULK		A											112	081
	Piledr Sandy Xeon K10	iver / Bri unk	dge nov	EN	I		DE	SY DO 2P	-HI Gle	_в	ULK MU		Ą											112 109	081 464
	Piledr Sandy Xeon K10 Harpe	iver / Bri unk	dge nov	EN			DE GC IN	SY DO 2P	'-HH GLE 3-LI	E_B PC-			Ą											112 109 107	081
	Piledr Sandy Xeon K10 Harpe Milan	iver / Bri unk	dge nov wn	EN /n			DE GC IN IFI DE	ESY DO 2P C ESY	'-HH GLE 3-LI	E_B PC-	MU	C2/		re										112 109 107 107	081 464 506
	Piledr Sandy Xeon K10 Harpe	iver / Bri unk ertor	dge nov wn andi	EN /n			DE GO IN IFI DE NE	ESY 200 2P IC ESY ERS	'-HH GLE 3-LI '-HH	E_B PC- H Cor		C2/ 2_n	nco		EP									112 109 107 107 37	081 464 506 020
	Piledr Sandy Xeon K10 Harpe Milan Knigh Hasw	iver v Bri unk ertov ts La ell E	dge nov wn andi	EN /n	1		DE GC IN IFI DE NE	ESY 200 2P: IC ESY ERS (I-N	-HI GLE 3-LI -HI GC_0	E_B PC- H Cor	MU	C2/ 2_n	nco		EP									112 109 107 107 37 22	081 464 506 020 756
	Piledr Sandy Xeon K10 Harpe Milan Knigh	iver / Bri unk ertor ts La ell E / Bri	dge nov wn andi dge	EN /n			DE GC IN IFI DE NE UI	ESY 2P 2P C ESY ERS (I-N agu	'-HH GLE 3-LI '-HH	E_B PC- H Cor RTH 2g2	MU i_pi	C2/ 2_n	nco		EP									112 109 107 107 37 22 12	081 464 506 020 756 229
	Piledr Sandy Xeon K10 Harpe Milan Knigh Haswe Sandy	iver / Bri unk ertov ts La ell E / Bri idge	dge nov wn andi	EN /n			DE GO IN IFI DE NE UI pr CA	ESY 200 2P: C ESY ERS KI-N agu	-HF GLE 3-LI 3-LI 6C_0 NOF	E_B PC- H Cor RTH 2g2 -T3	MU i_pi	C2/ 2_n	nco		EP									112 109 107 107 37 22 12 10	081 464 506 020 756 229 791

The following CPU architectures account for >80% of the ATLAS and CMS usage on the Grid:

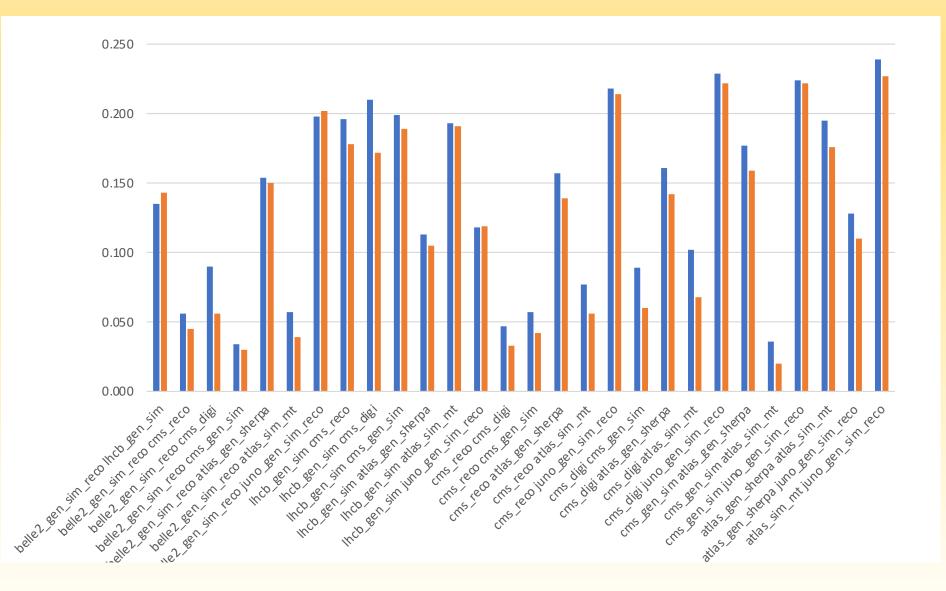
Rome Broadwell Haswell Cascade Lake Skylake

Should we develop a HEPScore based on the performance on the Top5 architectures? Likely these CPUs will become more prevalent in the future

ATLAS (sim_mt) vs CMS (reco) for All and Top5 CPUs

ATLAS (sim_mt) vs CMS (reco)

2022-07-08 16:23:51 atlas_sim_mt vs cms_reco #scale[0.5]{2022-07-08 16:23} Note: all values of benchmarks/core use the PHYSICAL number of cores X benchmark : cms_reco


Measurements in each Y-category:

Y benchmark : atlas sim mt								
CPU	Architecture	Host	Physical	нт		x-b	mk/core	y-bmk/core YFIT
			Cores		N	mean	std	N mean std
AMD EPYC 7302 16-Core Processor	Rome	CERN		1	13	0.1388		14 0.00130 0.00001 0.00124
AMD_EPYC_7543_32-Core_Processor	Milan	CaltechLIGO	32	1	7		0.0002	10 0.00163 0.00000 0.00162
AMD_EPYC_7551P_32-Core_Processor	Naples	Nikhef	32	1	20	0.1011	0.0003	20 0.00086 0.00000 0.00090
AMD_EPYC_7573X_32-Core_Processor	Milan	CaltechLIGO	64	1	15	0.1815	0.0003	8 0.00159 0.00000 0.00162
AMD EPYC 75F3 32-Core Processor	Milan	CaltechLIGO	32	1	11	0.1907	0.0004	10 0.00170 0.00001 0.00170
AMD EPYC 7702P 64-Core Processor	Rome	Nikhef	64	1	20	0.1150	0.0002	20 0.00109 0.00000 0.00102
AMD_EPYC_7713_64-Core_Processor	Milan	GridKa-Tier3	256	1	10	0.0595	0.0002	10 0.00054 0.00000 0.00053
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	128	1	48	0.1247	0.0004	48 0.00110 0.00000 0.00111
AMD EPYC 7742 64-Core Processor	Rome	GridKa	256	1	180	0.0710	0.0004	104 0.00060 0.00001 0.00063
AMD EPYC 7763 64-Core Processor	Milan	CaltechLIG0	128	1	7	0.1501	0.0002	6 0.00136 0.00000 0.00134
AMD_EPYC_7H12_64-Core_Processor	Rome	Nikhef	64	1	20	0.1236	0.0001	20 0.00118 0.00000 0.00110
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CERN	24	1	13	0.0990	0.0003	8 0.00092 0.00000 0.00088
Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz	SandyBridgeEP	GridKa	32	1	12	0.0410	0.0001	12 0.00028 0.00000 0.00036
Intel(R)_Xeon(R)_CPU_E5-2670_0_@_2.60GHz	SandyBridgeEP	GridKa	32	1	12	0.0497	0.0003	12 0.00035 0.00000 0.00044
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz	Haswell	Nikhef	24	1	20	0.1076	0.0002	20 0.00094 0.00000 0.00096
Intel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz	CascadeLake	CERN	32	1	13	0.1118	0.0002	8 0.00112 0.00000 0.00100
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz	Skylake	Nikhef	40	1	20	0.1178	0.0002	20 0.00117 0.00000 0.00105
Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz	CascadeLake	IHEP	56	1	12	0.1100		16 0.00111 0.00000 0.00098
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz	CascadeLake	IHEP	40	1		0.1160	0.0003	16 0.00118 0.00000 0.00103
Intel(R)_Xeon(R)_Gold_6258R_CPU_@_2.70GHz	CascadeLake	IHEP	56	1		0.1207		16 0.00123 0.00000 0.00108
Intel(R)_Xeon(R)_Gold_6338_CPU_02.00GHz	IceLake	IHEP	64	1	13	0.1219	0.0002	16 0.00118 0.00000 0.00109
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz	CascadeLake	CERN	32	1	31	0.1083	0.0003	92 0.00106 0.00000 0.00096
Intel Core Processor (Haswell, no TSX, IBRS)	Haswell	NDGF-T1	24	1	10	0.1000	0.0003	10 0.00092 0.00000 0.00089
AMD EPYC 7302 16-Core Processor	Rome	CERN	64	2	18	0.1839	0.0007	229 0.00164 0.00001 0.00164
AMD EPYC 7302 16-Core Processor	Rome	CC-IN2P3	64	2	10	0.1965	0.0003	10 0.00160 0.00000 0.00175
AMD_EPYC_7313_16-Core_Processor	Milan	CaltechLIGO	64	2	10	0.2428	0.0003	10 0.00198 0.00001 0.00216
AMD EPYC 7313 16-Core Processor	Milan	CC-IN2P3	64	2	10		0.0013	10 0.00185 0.00001 0.00186
AMD_EPYC_7351_16-Core_Processor	Naples	INFN-T1	64	2	10	0.1506	0.0007	10 0.00125 0.00000 0.00134
AMD_EPYC_7443_24-Core_Processor	Milan	CC-IN2P3	96	2	10	0.1966	0.0003	10 0.00172 0.00001 0.00175
AMD EPYC 7452 32-Core Processor	Rome	PIC	128	2	15	0.1481	0.0007	16 0.00129 0.00001 0.00132
AMD_EPYC_7453_28-Core_Processor	Milan	CC-IN2P3	112	2	10	0.1861	0.0008	10 0.00162 0.00001 0.00166
AMD EPYC 74F3 24-Core Processor	Milan	CaltechLIGO	48	2	10	0.2352	0.0007	10 0.00196 0.00001 0.00210
AMD_EPYC_7513_32-Core_Processor	Milan	CC-IN2P3	128	2	10	0.1742	0.0007	10 0.00152 0.00001 0.00155
AMD_EPYC_7551P_32-Core_Processor	Naples	Nikhef	64	2	20	0.1314	0.0005	19 0.00106 0.00000 0.00117
AMD EPYC 7702 64-Core Processor	Rome	IJCLAB	256	2	14	0.1364	0.0003	10 0.00119 0.00000 0.00121
AMD_EPYC_7702_64-Core_Processor	Rome	GridKa	256	2	24	0.1256		20 0.00102 0.00000 0.00112
AMD EPYC 7713 64-Core Processor	Milan	GridKa-Tier3	256	2	8		0.0002	8 0.00120 0.00000 0.00128
AMD_EPYC_7742_64-Core_Processor	Rome	GridKa	256	2	48	0.1453	0.0004	21 0.00117 0.00001 0.00130
Intel(R)_Xeon(R)_CPU_E5-2630_v3_@_2.40GHz	Haswell	CERN	32	2	459	0.1201	0.0006	67 0.00102 0.00001 0.00107
Intel(R)_Xeon(R)_CPU_E5-2630_v4_@_2.20GHz	Broadwell	GridKa	40	2	12	0.1194	0.0005	12 0.00107 0.00000 0.00106
Intel(R)_Xeon(R)_CPU_E5-2640_v3_@_2.60GHz	Haswell	PIC	32	2	16	0.1299	0.0004	16 0.00107 0.00000 0.00116
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	CC-IN2P3	48	2	10	0.1223	0.0005	10 0.00108 0.00000 0.00109
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	Broadwell	CERN	48	2	18	0.1200	0.0003	89 0.00108 0.00000 0.00107
Intel(R)_Xeon(R)_CPU_E5-2650_v4_@_2.20GHz	Broadwell	Nikhef	48	2	20	0.1228	0.0002	20 0.00105 0.00000 0.00109
Intel(R)_Xeon(R)_CPU_E5-2680_v2_@_2.80GHz	IvyBridgeEP	CC-IN2P3	40	2	10	0.1136	0.0004	10 0.00067 0.00000 0.00101
Intel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	PIC	56	2	16	0.1399	0.0006	16 0.00138 0.00003 0.00125
Intel(R)_Xeon(R)_CPU_E5-2680_v4_@_2.40GHz	Broadwell	CERN	56	2	492	0.1354	0.0005	78 0.00121 0.00001 0.00121
Intel(R)_Xeon(R)_CPUE5520_@_2.27GHz	NehalemEP	CA-UVic-Cloud	16	2	67	0.0807	0.0006	56 0.00053 0.00002 0.00072
Intel(R)_Xeon(R)_CPUE5630_@_2.53GHz	WestmereEP	GridKa	16	2	12	0.0896	0.0004	12 0.00054 0.00000 0.00080
Intel(R)_Xeon(R)_Gold_5218_CPU_@_2.30GHz	CascadeLake	CERN	64	2	196	0.1389	0.0006	37 0.00134 0.00002 0.00124
Intel(R)_Xeon(R)_Gold_5320_CPU_@_2.20GHz	IceLake	CC-IN2P3	104	2	10	0.1511	0.0003	10 0.00151 0.00000 0.00135
Intel(R)_Xeon(R)_Gold_6130_CPU_@_2.10GHz	Skylake	CERN	64	2	495	0.1281	0.0011	74 0.00128 0.00001 0.00114
Intel(R)_Xeon(R)_Gold_6252_CPU_@_2.10GHz	CascadeLake	BNL	96	2		0.1287	0.0006	10 0.00126 0.00000 0.00115
Intel(R)_Xeon(R)_Gold_6326_CPU_@_2.90GHz	IceLake	CC-IN2P3	64	2	10	0.1735	0.0008	10 0.00174 0.00000 0.00155
Intel(R)_Xeon(R)_Silver_4114_CPU_@_2.20GHz	Skylake	CC-IN2P3	40	2		0.1308		10 0.00122 0.00000 0.00117
Intel(R)_Xeon(R)_Silver_4216_CPU_@_2.10GHz	CascadeLake	IJCLAB	64	2	33	0.1304	0.0014	33 0.00123 0.00001 0.00116
Intel(R)_Xeon(R)_Silver_4314_CPU_@_2.40GHz	IceLake	CC-IN2P3	64	2		0.1582	0.0005	10 0.00156 0.00000 0.00141
Intel(R)_Xeon(R)_Silver_4316_CPU_@_2.30GHz	IceLake	CC-IN2P3	80	2	10	0.1505	0.0004	10 0.00151 0.00000 0.00134
N measurements = 58								
Mean deviation from fit = 0.080								
Number in each category: 11 12	15 20 Sum =	58						
Measurements in each X-category: 351 182	227 1915 Sum =	2675						
Measurements in each Y-category: 270 246	403 590 Sum =	1509						

270 246 403 590 Sum = 1509

We were provided more "older" CPU systems for the benchmark measurements

All CPUs (blue) vs Top5 CPUs (red)

Y-Axis is the: Mean deviation in yaxis from the fit (figure of merit)

Reduces the scatter for some workloads

Task Force Survey Surveyed the TF for thoughts on how to select HEPScore

- 1. Support for a HEPScore benchmark based on LHC and other experimental workloads
- 2. HEPScore should reflect the relative CPU usage of the experiments and application
- 3. HEPScore should run in a timely manner 3-6 hours
- 4. HEPScore should be valid for ALL and Top5 CPU architectures
- 5. HEPScore should be valid for one or more LHC beam period
- 6. Interest in a "fast HEPscore" and a "CPU+GPU HEPScore"

CPU usage

WLCG C	CPU usage:
ATLAS	40%
CMS	30%
ALICE	15%
LHCb	15%

Some data from other experiments but not all sites report to WLCG Other experiments < 5%

Run time

Workload	Running Time (m)	# of events * # of threads
Atlas_gen_sherpa	31	200 * 1
Atlas_reco_mt	69	100 * 4
Atlas_sim_mt	156	5 * 4
CMS_gen_sim	42	20 * 4
CMS_digi	31	50 * 4
CMS_reco	51	50 * 4
Belle2_gen_sim_reco	25	50 * 1
Alice_gen_sim_reco	194 [*]	3 * 4
LHCb_gen_sim	104	5 * 1
Juno_gen_sim_reco	67	50 * 1
Gravitational Wave	138	1 * 4
Total	908 (15+ hours)	

Times for three runs on reference machine

* - Alice reco currently not included in benchmark score, due to technical problems with reco workload. Reco is ~ 50% of running time. Once issue is resolved, could run only reco to shorten workload length.

Summary

We have a good set of data on benchmarks and workloads

We believe we have enough data to identify a number of potential HEPScore candidates

We hope that the current experiment workloads are finalized and can be reliably used for some years

Next step is to study different combinations for a HEPScore benchmark

Many options but we have reduced them to some logical choices