
CMS workloads (and
needs)

outline
● In a single slide, the basic needs we have expressed
● The HepScore solution: our proposed workloads for the production level

benchmark
● The future / work in progress

The ideal benchmark (suite + benchmark)
(on top of what HS06 – which served us
well for more than a decade – offers)

1. Openly distributed (no license needed)
2. Scaling linearly with our workloads, now

and for the CPUs coming in the next
decade

3. Tunable for specific use cases (not for
pledges!) – for example in single VO
environments

4. Open to the technologies we think may
become relevant (GPUs, FPGAs, ….)

5. Easy to deploy even in testbench setups
(no network, bare systems)

6. Measuring full systems, not only the CPU
(fast / slow drives, memory setups, …)

7. Automatically building an
as-large-as-possible DB of configurations;
(no more handwritten twikis on best effort)

8. DB as complete as possible: no only CPU
but also type of disks, memory setups,
GPUs, buses available to accelerators,
versions of most important drivers

9. Fast enough to be practical (no >> 1 day
runs)

10. Working in realistic situations (full machine,
no turbo boost, …)

The CMS workloads
● As close as possible to what we really run

on our distributed system
○ While details may vary, we mostly run

separated processes for (GEN+)SIM, DIGI
and RECO - as in the workloads

● Use a typical generator, which does not
need access to large gridpacks → Pythia

● Use a Run3 Configuration / Setup / Pileup
● Use a newish CMSSW release (11, from last

year), after evaluation of whether we would
miss anything from going to something
newer we might still need for the
“experimental” part, see later)

CMSSW_10_2_9 CMSSW_11_2_0

CMSSW 11 includes all the features CMS has
been pushing in the last ~ 10 years. No revolution
expected with CMSSW 12 (but see the GPU talk)

The current proposal
● Preload the container with a Premixed PU=35

Run3 library
○ There was also the option to generate it on the

fly, but this is not what we typically do in
production

● Generate 1000 (tunable for total test speed,
linear scaling) Pythia TTbar events (“SIM”)

● Mix them with the PU library (“DIGI”)
● Reconstruct them, and produce AODSIM and

MINIAODSIM (“RECO”)
● Add some mild data quality monitoring (in

production we do that for data reprocessing
and for a fraction of Monte Carlo)

● Execution at 8 threads would be our
preference (it is what we do in production
since 2017)

Typical running times in an early test setup:

● x86 (a random lxplus node): 40 min
● IBM Power8 (ibm minsky): 55 min
● AARCH64 (thunderX): 140 min

YES! CMSSW is already multiarch since long; we are now ready
for WMS (WMAgent) for non x86 archs, and almost ready for
multiarch support (a single workflow can use more than 1
architecture)

We are closing on physics validation on Power, to be able to
use some large HPCs lying around; but also to define the
procedure to validate a new architecture (in practice, not
different from the validation procedure we do everytime we
change gcc, Geant4, or when we switched from 32 to 64 bits)

A more future oriented look
● CMSSW supports “external work” (GPUs,

remote facilities, …) since at least 3 years
● Currently GPUs are used in production at the

HLT, and are measured to boost by 74% our
online processing
○ This is not ad-hoc code, fully integrated in

CMSSW and usable also offline
● We have plans to increase consistently the

fraction of offloaded code from now to Run4
● One of the possible configurations we will

evaluate on the GRID is to autodiscover
hardware at runtime, and use best sw modules
at any moment

● We would like to start experiencing how a
future version of HepScore would behave on
the large variety of systems which can include
accelerators (starting from Nvidia GPUs)

● See Andrea Sciaba’s talk on this, based on
CMSSW 12

● Our proposal for the moment would be to
execute the “HLT” payload (which is not a
production level HLT, but a setup chosen to
maximise the offloading to GPU) with final
weight “0” on the HepScore result, but in a
way to still collect results.
○ Also Power+GPU and ARM+GPU have been

tested, we do not lose any universality!

By the time HepScore 2 is out (Run4? LS3?)
heterogeneous offloading could become part of
the “standard” benchmark

Put credit where it is!

● CMSSW is a fantastic tool, adaptable to many
configurations. As such, it was easily adapted
to the needs of an HepScore; we could not
thank more the hundreds of developers who
took part in developing it since 2004

● David Lange was selecting the best
workflows, and providing proper
configurations

● Andrea Sciaba’ was packing the payloads in a
self sufficient container, as needed for the
execution

● Andrea Bocci provided an ad-hoc HLT setup,
and hints on how to allow for containerized
execution

● OpenLab, TechLab and CINECA have
provided heterogeneous hardware to test for
Power and ARM setups

OK (“once per Run or once per Run+LS”)

In principle OK, but please do
not exclude those from major
experiments! (and: not all G4
are equale: vecgeom, fastsim
algorithms, tricks, …)

Difficult answer. We would
like to be convinced (with
numbers) that the difference
between 1-4 is minimal

