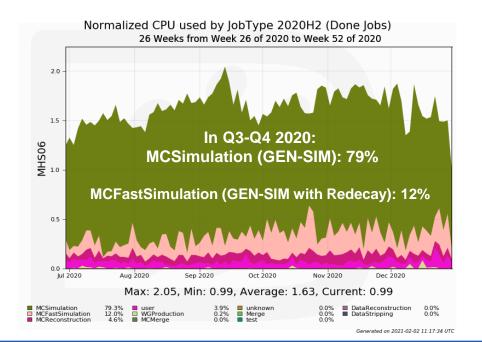


LHCb workloads in the HEPscore benchmark

Andrea Valassi (CERN IT)


HEPscore workshop, Monday 19th September 2022 https://indico.cern.ch/event/1170924/contributions/4954486/

Many thanks to C. Bozzi, G. Corti and the whole LHCb Simulation team! Many thanks to R. Sobie and V. Innocente for the studies cited here!

LHCb Grid workloads (slide from Feb 2021)

- MCSimulation is by far the largest LHCb consumer of CPU for Grid jobs —MCFastSimulation is a similar workload involving "ReDecay" —Around ~90% overall at the end of 2020, expect this throughout Run3
- GEN-SIM jobs: event generation (e.g. Pythia) + detector simulation (Geant4)
 SIM is >> GEN: in other words, *almost all of LHCb Grid CPU is Geant4*
 - -Today, single-threaded, single-process application, Gauss (will change)

LHCb "v2021" SIM workload for HEPscore

- HEP-SCORE candidate uses workload agreed with LHCb Simulation team in 2021

 See the benchmark <u>script</u> for details
- Software details: this uses an LHCb "SIM10" software release from 2021
 - -See a typical logfile for details
 - -Gauss v55r1 on x86_64-centos7-gcc9-opt, single process, single threaded
 - -GEN: Pythia8, inclusive B-physics events (options/1000000.py)
 - -Pileup configuration nu=3.8, minimum bias is generated for each event (no I/O)
 - -No spillover from adjacent beam crossings ("off-time pileup": prev/next event)
 - -SIM: Geant4-10-06-patch02 (29 May 2020)
 - AppConfig v3r404, DecFiles v31r7, CondDB sim-20210617-vc-md100
 - -Default setup processes 5 reproducible events, ~10 minutes on a typical CPU
- The application runs GEN+SIM (starts from random seeds), separate scores exist
 - The recommended SIM score uses SIM-only throughput for n-1 events
 - Skip readback of magnetic field and other initialization tasks during the 1st event
- This is representative of what LHCb runs in production jobs on the Grid

 "SIM9" is the default for Run2, but "SIM10" productions already exist for Run3

Aside: LHCb SIM differs from other SIMs

- Context (extensively described in this workshop! also see backup slides)
 - -(1) Analysis of correlation of experiment workloads with one another [R. Sobie]
 - Goal: speed up HEPscore can we remove some workloads from the "mix"?
 - Finding: large deviations (20% to 40%) between LHCb SIM and other SIMs
 - -(2) Analysis of software profiles of experiment workloads [V. Innocente]
 - Finding: ~50% of CPU time in LHCb SIM is in G4LogicalBorderSurface::GetSurface!
 - -This is very different from the SIM profiles in other experiments
 - -Vincenzo's observation: workload uses G4 10.6, performance was improved in G4 10.7
- LHCb reply on these observations
 - -Thanks a lot, extremely useful studies! Will certainly try G4 10.7 soon
 - -Large use of G4LogicalBorderSurface is due to RICH detector physics (mirrors)
 - RICH and CALO have always been the two largest consumers of CPU in LHCb SIM
 - RICH was optimized in SIM9
 - CALO (via Geant4) was optimized in SIM10 (for info, SIM10 is 40% faster than SIM9)
 - It is important to keep LHCb in the HEPscore mix precisely because it differs
- More generally (personal observation):
 - -Different workloads stress the CPUs in different ways and may scale differently
 - (This will be a theme in my talk tomorrow about Madgraph on SIMD CPUs)
 - If a workload scales differently, it is not necessarily "wrong", it is just different

Expected evolution of LHCb SIM

- The "v2021" LHCb workload is now ~as-good-as-it-gets representative of Run3
 – "SIM10": as of today, there is no more recent SIM version in production
 – Several changes are on the way, however...
- LHCb has moved from gcc9 to gcc11 as default compiler since 2021

 But this change by itself does not justify building a new container today
- LHCb will move from single-threaded Gauss to multi-threaded Gauss-on-Gaussino – Timescale: fully replace SIM10 by end 2023, not before
- LHCb will move from G4 10.6 to a more recent version of G4 such as G4 10.7
 Timescale: not before the migration to Gauss-on-Gaussino is completed
- More exotic changes on the way: ARM (and Power9)
 - -x86 is still the only CPU architecture used in production (and for Grid jobs)
 - -An old ARM build exists, and the effort to port the code to ARM is restarting
 - -No builds on Power9 yet the interest and motivation are there, not the effort...
 - -Note: GPUs in LHCb are used for HLT but not in Grid/SIM (no Geant4 on GPU)

Other questions from the TF

As per the guidelines: https://new.cernbox.cern.ch/s/AMLHAgWKPMWjNjp

- Experience in integrating LHCb workloads in the HEP standalone containers?

 Integration was easy for LHCb (AV co-developed the HEP-workloads framework)
- About the HEPscore "mix"
 - It seems reasonable to keep the benchmark mix unchanged for 3-5 years
 - -LHCb SIM should be part of the "mix" because it is different from other SIMs
 - -Averaging technique: no strong opinion (give more weight to SIMs, if anything)
- Any other comments
 - -Thanks for the good work! The studies by Randy and Vincenzo were very useful

Backup slides

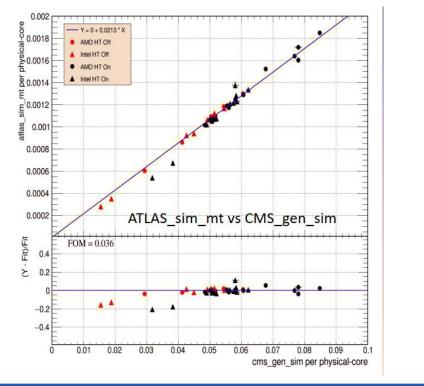
A. Valassi – LHCb workload

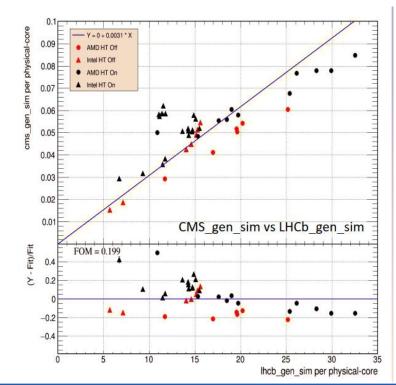
For reference – previous talks

- In LHCb
 - LHCb Simulation Meeting, Wed 24th Aug 2022, https://indico.cern.ch/event/1187106
 - LHCb Simulation Meeting, Tue 9th Feb 2021, https://indico.cern.ch/event/1004421
 - LHCb Computing Management, Thu 28th Jan 2021, https://indico.cern.ch/event/984385
 - LHCb Week, Computing Parallel, Thu 04th Mar 2019, https://indico.cern.ch/event/802489
- In the benchmarking WG and TF
 - (HEPscore Task Force, Wed 16th Jun 2021, https://indico.cern.ch/event/1030676)
 - (HEPscore Task Force, Wed 5th May 2021, https://indico.cern.ch/event/1030672)
 - HEPscore Task Force, Wed 3rd Feb 2021, https://indico.cern.ch/event/992804
 - (HEPiX benchmarking WG, Fri 3rd Jul 2020, https://indico.cern.ch/event/872154)
 - Benchmarking pre-GDB, Tue 8th Oct 2019, https://indico.cern.ch/event/739897
 - System performance WG, Wed 6th Mar 2019, https://indico.cern.ch/event/772026
 - HEPiX benchmarking WG, Fri 1st Feb 2019, https://indico.cern.ch/event/782598

Backup slides

(from LHCb Simulation Meeting, Wed 24th Aug 2022) https://indico.cern.ch/event/1187106




LHCb SIM is different (1) – throughput scaling

• Results presented by Randy Sobie to the WG in May 2022

-https://indico.cern.ch/event/1104203

- Study correlation of SIM throughputs of LHCb/ATLAS/CMS SIM on different CPUs –ATLAS and CMS are in reasonable agreement with one another
 - -LHCb behaves quite differently! Why?...

LHCb SIM is different (2) – software profiling

- Results presented by Vincenzo Innocente in email threads in July 2022

 He will make a detailed presentation at the workshop in September
- CPU time profiling in LHCb/ATLAS/CMS/ALICE SIM on different CPUs
 - -LHCb behaves very differently! (See details on the next three slides)
 - Almost 50% of CPU time is in G4LogicalBorderSurface::GetSurface
 - –Why? Vincenzo's suggestion: "the code in question (G4LogicalBorderSurface) has changed between G4 10.6 and 10.7: it is now a map and the search should be faster (in may opinion a hashmap would be even better)"
- Questions:
 - –Was it known in LHCb that 40-50% of SIM is in G4LogicalBorderSurface?
 - -Which official Geant4 version does Geant4-10-06-patch02 correspond to?
 - -Have you tried Geant4 10.7 and did you observe different performance?

SIM software profiling – LHCb

Results presented by Vincenzo Innocente in email threads in July 2022

 He will make a detailed presentation at the workshop in September

LHCb 20 events

>>> 40.69% python >>> 5.18% python >>> 2.34% python >>> 1.63% python >>> 1.51% python >>> 0.97% python >>> 0.95% python >>> 0.94% python >>> 0.80% python >>> 0.78% python >>> 0.75% python >>> 0.75% python >>> 0.68% python >>> 0.67% python >>> 0.60% python >>> 0.54% python >>> 0.52% python >>> 0.51% python

libG4geometry.so libCLHEP-2.4.4.0.so libCLHEP-2.4.4.0.so libxerces-c-3.2.so libG4geometry.so libG4processes.so libG4tracking.so libG4geometry.so libG4tracking.so libG4processes.so libDetDescLib.so libG4global.so libstdc++.so.6.0.27 libG4geometry.so libm-2.17.so libG4processes.so libGaussTools.so libG4processes.so

[.] G4LogicalBorderSurface::GetSurface

- [.] CLHEP::RanluxEngine::flat
- [.] CLHEP::RanluxEngine::flatArray
- [.] xercesc_3_2::DOMDeepNodeListImpl::nextMatchingElementAfter
- [.] G4Navigator::LocateGlobalPointAndSetup
- [.] G4VEmProcess::PostStepGetPhysicalInteractionLength
- [.] G4SteppingManager::DefinePhysicalStepLength
- [.] G4VoxelNavigation::ComputeStep
- [.] G4SteppingManager::InvokePSDIP
 - [.] G4VProcess::ResetNumberOfInteractionLengthLeft
- [.] LHCb::MagneticFieldGrid::fieldVectorLinearInterpolation
- [.] G4PhysicsVector::Value
- [.] __cxxabiv1::__vmi_class_type_info::__do_dyncast
- [.] G4SubtractionSolid::Inside
- [.] __ieee754_log_avx
 - [.] G4ProductionCutsTable::ScanAndSetCouple
 - [.] virtual thunk to GiGaStepActionSequence::UserSteppingAction(G4Step const*)
 - [.] G4UniversalFluctuation::SampleFluctuations

SIM software profiling – ATLAS

Results presented by Vincenzo Innocente in email threads in July 2022

 He will make a detailed presentation at the workshop in September

ATLAS 10 events

libGeoSpecialShapes.so [.] LArWheelCalculator Impl::DistanceCalculatorSaggingOff::DistanceToTheNeutralFibre >> 9.01% athena.py >> 3.32% athena.py libimf.so [.] libm sincos e7 >> 2.92% athena.py libG4processes.so [.] G4VEmProcess::PostStepGetPhysicalInteractionLength [.] G4Navigator::LocateGlobalPointAndSetup >> 2.12% athena.py libG4geometry.so libGeoSpecialShapes.so [.] LArWheelCalculator::parameterized sincos >> 1.97% athena.py >> 1.85% athena.py libG4processes.so [.] G4UniversalFluctuation::SampleFluctuations >> 1.61% athena.py libimf.so [.] __libm_atan2_l9 >> 1.51% athena.py libG4processes.so [.] G4UrbanMscModel::SampleCosineTheta >> 1.43% athena.py libG4geometry.so [.] G4PolyconeSide::Inside >> 1.43% athena.py libG4geometry.so [.] G4VoxelNavigation::ComputeStep >> 1.40% athena.py libG4tracking.so [.] G4SteppingManager::DefinePhysicalStepLength >> 1.22% athena.py libMagFieldElements.so [.] BFieldCache::getB >> 1.16% athena.py libGeo2G4Lib.so [.] LArWheelSolid::search for nearest point [.] G4Navigator::LocateGlobalPointWithinVolume >> 1.14% athena.py libG4geometry.so >> 1.11% athena.py libG4geometry.so [.] G4AtlasRK4::Stepper libG4tracking.so >> 1.03% athena.py [.] G4SteppingManager::Stepping >> 1.01% athena.py libG4geometry.so [.] G4VCSGfaceted::Inside >> 1.01% athena.py libG4geometry.so [.] G4Navigator::ComputeStep >> 1.01% athena.py libG4geometry.so [.] G4NavigationLevel::operator= [.] G4TouchableHistory::GetVolume >> 1.01% athena.py libG4geometry.so >> 1.00% athena.py libG4tracking.so [.] G4SteppingManager::InvokePSDIP >> 0.94% athena.py libG4processes.so [.] G4Transportation::PostStepDolt

SIM software profiling – ALICE

Results presented by Vincenzo Innocente in email threads in July 2022

 He will make a detailed presentation at the workshop in September

ALICE 10 events

- > 2.91% o2-sim-device-r libg4root.so
- > 2.74% o2-sim-digitize libO2TPCSimulation.so
- > 2.19% o2-sim-digitize libO2TRDSimulation.so
- > 1.86% o2-sim-device-r libO2Field.so
- > 1.72% o2-sim-device-r libG4processes.so
- > 1.57% o2-sim-digitize libO2TRDSimulation.so
- > 1.51% o2-sim-device-r libGeom.so.6.24.06
- > 1.45% o2-sim-device-r libG4processes.so
- > 1.13% o2-sim-device-r libGeom.so.6.24.06
- > 0.99% o2-sim-digitize libO2TPCSimulation.so
- > 0.89% o2-sim-device-r libGeom.so.6.24.06
- > 0.88% o2-sim-device-r libHist.so.6.24.06
- > 0.78% o2-sim-device-r libGeom.so.6.24.06
- > 0.77% o2-sim-digitize libO2TRDSimulation.so
- > 0.72% o2-sim-device-r libGeom.so.6.24.06
- > 0.72% o2-sim-device-r libg4root.so
- > 0.67% o2-sim-device-r libBase.so.18.4.7
- > 0.66% o2-sim-device-r libGeom.so.6.24.06
- > 0.62% o2-sim-device-r libG4processes.so
- > 0.61% o2-sim-device-r libG4tracking.so
- > 0.61% o2-sim-device-r libG4geometry.so
- > 0.61% o2-sim-device-r libO2SimulationDataFormat.so
- > 0.58% o2-sim-device-r libg4root.so

- [.] TG4RootDetectorConstruction::GetG4VPhysicalVolume
 - [.] o2::tpc::Digitizer::process
 - [.] o2::trd::Digitizer::convertHits
- [.] o2::math_utils::Chebyshev3D::Eval
 - [.] G4RToEConvForGamma::ComputeValue
 - [.] o2::trd::SimParam::timeResponse
 - [.] TGeoSubtraction::Contains
 - [.] G4GEMProbability::CalcProbability
 - [.] TGeoUnion::Contains
 - [.] o2::tpc::SAMPAProcessing::getShapedSignal
 - [.] TGeoNavigator::Safety
- [.] TGraph::Eval
 - [.] TGeoTranslation::MasterToLocal
 - [.] o2::trd::SimParam::crossTalk
 - [.] TGeoldentity::MasterToLocal
- [.] TG4RootNavigator::SynchronizeHistory
 - [.] FairMCApplication::Stepping
 - [.] TGeoVoxelFinder::GetNextCandidates
 - [.] G4RToEConvForElectron::ComputeValue
 - [.] G4SteppingManager::DefinePhysicalStepLength
 - [.] G4Region::BelongsTo
 - [.] o2::data::Stack::ReorderKine
- [.] TG4RootDetectorConstruction::GetNode

>