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What is Madgraph5 aMC@NLO (MG5aMC)?

« A MC physics event generator routinely used by ATLAS, CMS and others
— One of the many GEN steps in the LHC experiment production workflows
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The automated computation of tree-level and
next-to-leading order differential cross sections, and
their matching to parton shower simulations

J. Alwall,” R. Frederix,” S. Frixione,” V. Hirschi,” F. Maltoni,’ O. Mattelaer,?
H.-S. Shao," T. Stelzer,” P. Torrielli’ and M. Zaro""

A highly flexible software application supporting many physics scenarios
— The relevant code for a given collision process is auto-generated
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What is madgraph4gpu?

» An ongoing project (since 2020) to speed up MG5aMC and port it to GPUs
— Specifically: speed up "matrix elements" (ME) calculations: scattering amplitudes
— No production release for the experiments yet, but hopefully soon...

EPJ Web of Conferences 251, 03045 (2021)
CHEP 2021

https://doi.org/10.1051/epjconf/202125103045

Design and engineering of a simplified workflow execution
for the MG5aMC event generator on GPUs and vector CPUs

Andrea Valassi'**, Stefun Roiser'", Olivier Mattelaer’, and Stephan Hageboeck'

'CERN, IT-SC group, Geneva, Switzerland
*Université Catholique de Louvain, Belgium
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* The software behind the HEP-workloads container described in this talk!
— | will only describe here the implementation in CUDA/C++ (but others exist)

* Last status update was at ICHEP (July), next one will be at ACAT (October)

— New results in this talk with respect to the ICHEP talk include:

» C++/CPU performance with several CPU processes in parallel
* C++/CPU performance on Intel Gold 6130 using gccll (and with many CPU processes)

* CUDA/GPU performance with several CPU processes in parallel
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\

~Z_

w A. Valassi — MG5aMC on GPUs and vector CPUs

HEPscore workshop — 20 Sep 2022




Why a HEP-workloads container
based on madgraph4gpu?

Interesting for future HEPscore extensions to GPUs
— Potentially a future GPU workload consuming significant Grid resources?

Interesting for future HEPscore extensions for vectorisation on CPUs

— Huge (up to x16) overall performance differences between no-SIMD and SIMD
» The current HEPscore workloads are largely insensitive to SIMD (i.e. exploit it poorly)

— Benchmarking is a multi-dimensional problem: AVX512 support, FMA units etc...

Interesting for future HEPscore extensions to heterogeneous processing
— Work in progress on understanding how to keep both the CPU and the GPU busy

With one essential perk: cross-platform reproducibility of results
— The exact same results can be obtained on GPUs, CPUs or CPUs+GPUs
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Why MG5aMC on GPUs and vector CPUs?
An ideal fit for (event-level) data parallelism!

MG5aMC computational anatomy and data parallelism strategy

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)
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Most other HEP workloads are not so lucky

MC event generators are a great fit for GPUs and vector CPUs!

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw 0 0

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

INPUT O @

S e SAME CALCULATION
(before ME calculation): ON DIFFERENT DATA!

- MC integration
(cross sections)
- MC generation

(event samples)
Lockstep processing |

OUTPUT

Db Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT

DECISION

OUTPUT

Stochastic branching
Bad for SIMT/SIMD

MC DECISIONS [@

Detector simulation (Geant4)

- Particle/matter interaction
(when? how?)

- Particle decays (when?)

Event generators®

(after ME calculation):

- MC unweighting (keep/reject)
Parton showers (PS)

- Fragmentation and decays

Software performance and portability in Madgraphb_aMC@NLO

ICHEP, Bologna, 8 July 2022
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"Standalone" and "MadEvent" applications
T = T
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« We are working on two applications in parallel
— 1. Standalone: used since 2020 to optimize the ME calculation (all CUDA/C++)

— 2. MadEvent: current main focus, future production version for the experiments
* Inject the new/faster CUDA/C++ ME calculation into the existing Fortran framework

* The current HEP-workloads container (v0.6) is based on the standalone app
— Eventually, the MadEvent app will also be integrated into HEP-workloads
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A few details on the v0.6 container

It includes different software builds covering the combinations of many options:
— Four physics processes: e*e—u*u, gg—tt, gg—ttg, gg—ttgg
— Two floating point precisions: double and single (float)

— One CUDA build for GPU and five C++ builds for CPU with different SIMD scenarios
* “none”, “ssed”, “avx2”, “5612y” (AVX512, 256-bit ymm registers), “512z” (AVX512, 512-bit zmm)
* For the same process and precision, all six builds give the same physics results

— (Experimental) Two builds with and without “aggressive inlining” of C++ functions

It is highly configurable: it is possible to run only a subset of the tests above
— And it is possible to change other parameters (e.g. numbers of GPU blocks and threads)

Recommendation: run the CPU and GPU benchmarks separately
— CPU benchmarking: use $(nproc) copies of the single-threaded benchmarks (all SIMDs)

— GPU benchmarking: use a single copy (1 CPU process)
* A (rough!) different tuning of GPU blocks and threads exists for each physics process

Many different scores may be produced in each benchmark run
— Suggestion: use ggttgg-d-in/0 as the most relevant scores (“cuda” for GPU, “cpp-best” for CPU)
— But computing, storing and comparing the different benchmarks is very interesting!
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Are we efficiently exploiting the hardware?

(a.k.a. estimating “realized potential” [Markus Schulz])

* In the following | present the results of a few tests using the v0.6 container
— Out of the many independent dimensions of efficiency | will try to probe only two
— (...After Vincenzo's talk yesterday | realize there’s so many other ways to study this!...)

» Data parallelism (SIMD and SIMT): lockstep processing on multiple data
— CPU, AVX512 example: 512-bit “zmm?” registers fit 8 (8-byte) doubles or 16 floats (4-byte)
« Compare no-SIMD to “512z" (AVX512/zmm) SIMD builds, maximum speedup is x8 and x16
— GPU, NVidia V100 example: every “warp” includes 32 threads
» The number of GPU “threads per block” is hardcoded in madgraph4gpu to multiples of 32
» Not shown in next slides: NVidia profiling tools show no thread divergence (branch efficiency 100%)

» Task parallelism: filling the system with as many hardware threads as possible
— CPU: increase #copies (single-threaded CPU processes) in parallel in the bmk-driver
» throughput plateau around $(nproc) i.e. number of physical cores time hyper-threading
— GPU: increase the GPU “grid size” (#blocks * #threads-per-block) in low-level options
« throughput plateau depends (in ways | do not yet understand) on #SM, #threads-per-SM etc...

« in addition: increase #copies (CPU processes, each with a GPU grid) in the bmk-driver
— this is useful with a view to future heterogenous processing scenarios...
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SIMD on CPU (C++)
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4-core Silver 4216, double precision (double)

ggttgg check. exe scalability on itscrd70 (1x 4-core 2. 1GHz Xeon Silver 4216 without HT) for 10 cycles
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» Both plots - with respect to throughput of no-SIMD (blue)
— SSE4 (yellow) ~ x2 (two 8-byte doubles in a 128-bit register)
— AV X2 (green) ~ x4 (four 8-byte doubles in a 256-bit register)
— 512y (red) ~x4 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”
— 512z (purple) is worse than AVX2 or 512y (?! will come back to this...)

 Right plot, absolute scale is ratio to one-core no-SIMD: total speedup ~ x16 because
— ~ x4 from SIMD (512y)
— ~ x4 from 4 cores

CERN
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Throughput (E6 events per second)

4-core Silver 4216, single precision (float)

ggttgg check.exe scalability on itscrd70 (1x 4-core 2.1GHz Xeon Silver 4216 without HT) for 10 cycles
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» Both plots - with respect to throughput of no-SIMD (blue)

— SSE4 (yellow) ~ x4 (four 8-byte floats in a 128-bit register)

— AV X2 (green) ~ x8 (eight 8-byte floats in a 256-bit register)

— 512y (red) ~ x8 is 10% higher than AVX2 (same register width + AVX512 set): “‘BEST”
— 512z (purple) is worse than AVX2 or 512y (?! will come back to this...)

 Right plot, absolute scale is ratio to one-core no-SIMD: total speedup ~ x32 because

CERN
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4-core Silver 4216, double precision (double)

check.exe scalability on itscrd70 {1x 4-core 2.1GHz Xeon Silver 4216 without HT) for 10 cycles
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« Compare the four physics processes
— one order of magnitude slower throughput on each extra gluon — more Feynman diagrams
—and gg—tt is even one order of magnitude slower than e*te—pu*u

* Focus on gg—ttgg for any realistic (and LHC-relevant) benchmarking
—e*te—ptuis limited by memory access
— gg—ttgg is limited by computations
— both on the CPU and later on the GPU
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2x16-core 2xHT Gold 6130, double precision

ggttgg check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles
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» Both plots - with respect to throughput of no-SIMD (blue)

— SSE4 (yellow) ~ x2 (two 8-byte doubles in a 128-bit register)

— AV X2 (green) ~ x4 (four 8-byte doubles in a 256-bit register)

— 512y (red) ~x4 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”"

— 512z (purple) ~ x6-x8 (eight 8-byte doubles in a 512-bit register): “BEST”
* AVX512/zmm much better on Gold 6130 (two FMA units) than on Silver 4216 (one FMA unit)!
» The speedup of 512z is lower than x8 (and decreases with #cores) — clock slowdown?

 Right plot, ratio to one-core no-SIMD: total no-HT speedup ~ x150 because
—~ X6 from SIMD (512z)... lower than x8 but not bad!
— ~ x25 from 32 cores... lower than x32 but not bad!
— HT also gains a tiny bit more...
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2x16-core 2xHT Gold 6130, single precision

ggttgg check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles
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» Both plots - with respect to throughput of no-SIMD (blue)
— SSEA4 (yellow) ~ x4 (four 8-byte floats in a 128-bit register)
— AV X2 (green) ~ x8 (eight 8-byte floats in a 256-bit register)
— 512y (red) ~x8 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”"

— 512z (purple) ~ x12-x16 (sixteen 8-byte floats in a 512-bit register): “‘BEST”
* AVX512/zmm much better on Gold 6130 (two FMA units) than on Silver 4216 (one FMA unit)!
» The speedup of 512z is lower than x16 (and decreases with #cores) — clock slowdown?

 Right plot, ratio to one-core no-SIMD: total no-HT speedup ~ x300 because
—~x12 from SIMD (512z)... lower than x16 but not bad!
— ~ x25 from 32 cores... lower than x32 but not bad!
— HT also gains a tiny bit more...
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2x8-core 2xHT Haswell E5-2630, double

ggttgg check.exe scalability on pmpe04 (2x 8-core 2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles
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» Bestis AVX2 — Haswell does not support AVX512
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Throughput (E6 events per second}

Throughput {E6 events per second)

Throughput {E6 events per second)

Throughput (E6 events per second)

Gold 6130, double —compare four processes

check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles
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A. Valassi — MG5aMC on GPUs and vector CPUs

* The relative benefit of 512y
and 512z is different in
different processes

— 512y is best for gg—tt

— Complex interplay of data
access and computation?

» Even for the same type of
GEN workload using the
same software, different
processes stress different
parts of the hardware...

Note: throughput increase for overcommit in ggttgg is
a measurement bug (processes run too few events)
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Correlation plot (a la HEPscore vs HS06)

14 y

o * Blue curve: no SIMD
17 1 Gold — essentially a straight line
= Best is 5127 — three nodes have similar frequencies
8 10 ~1.5 x 512y — power per core very similar
! ”
% g -  Focus on brown curve: best SIMD
e — Silver (reference) has best=512y
Ol — Haswell has best=avx2
£  No support for AVX512
EL . I gg::ggz:zzz::::gz::f » Haswell ~10% below the diagonal
~- gottog-sa-cop-d-ini0-avx2 — Gold has best best=512z
—®- ogttgg-sa-cpp-d-ini0-512y « Two FMA units instead of one
23 : 33EE§32§E§E;‘:§I§E§§E » Gold ~50% above the diagonal
é -'-Il \é lID ll2 14
Tpytinode)/Tputiref node\for ggttgg-sa-cpp-d-inl0-none
Silver Ha_swell “A computer system’s performance cannot be characterized by a single number or
(reference node) Best is avx2 a single benchmark. [...] Many users (decision makers), however, are looking for a
Best is 512y ~0.9 x 512y single-number performance characterization. [...] There are no simple answers.

Both the press and the customer, however, must be informed about the danger and
the folly of relying on either a single performance number or a single benchmark.”

Kaivalya M. Dixit, Overview of the SPEC Benchmarks,
in J. Gray (Ed.), The Benchmark Handbook for Database and Transaction Systems, 1993.
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GPU (CUDA)

and heterogenous (GPU/CUDA + CPU/Fortran)
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GPU vs CPU throughput with the same output

Implementation MEs/second | MEs/second H H
N oo || Matrix Element (ME) calculation
[
o 1-core Standalone C++ 2.39E3 2.50E3 1 .
£ setar wmo | o | IN cudacpp: results
E 1-core Standalone C++ 4.59E3 9.42E3 . i
© | 2obitSSES 2 (x1.9) a6 | (1) First area of development: MEs in “cudacpp”
) 1‘ °;t dI °:‘5’ Single code base (#ifdef's) for C++ on CPUs and CUDA on Nvidia GPUs
- -~ ++ - . . . .
$ O b bt AVX 1.06E4 2154 | S|IMD vectorization on CPUs through Compiler Vector Extensions in C++
S (x4.4) (x9.0)
IS} (x4 doubles, x8 floats)
:§. 1-core Standalone C++
¢ n 1.15E4 2.28E4 . .
g A ET N (x4.8) (x9.5) Main new results since vCHEP2021:
Q (x4 doubles, x8 floats)
g 1-core Standalone C++
< . 1.96E4 4.03E4 H
< 512-bit AVX512 x8.2) (%16.0) * Backport to code generation (test more complex processes)
=~ LS doubles 10 floats) —speedups seen for ee_mumu now also ~confirmed for gg_ttgg
Intel Gold 6148 CPU (Juwels Cluster HPC) —but GPU speedups decrease a bit (higher "register pressure”)

Better AV. at CERN
8 has two FMA units, Silver 4216 has one i

Achieve full theoretically possible SIMD speedup on CPUs

i T T ez || MEeesmm: x8 double, x16 float from AVX512 on high-end Intel CPUs
(gg—ttgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3
scalar (=1.00) (x0.98) * New Yeatures added for MadEvent integration
Standalone CUDA (thisgslide shows numbers from the standalone test application;
NVidia V100S-PCIE-32GB 4'8297%5 9'257)%5 segfthe final slides for performance numbers within madevent)
[iFicps*: 7.1 FPe4, 14.1 FP32) D (L,

NVidia V100 GPU + Intel Silver 4216 CPU (CERN)

(i UcL,
ICHEP, Bologna, 8 July 2022 Argggpgﬂﬁ A (@

arunh
Alamn N

Softw: nce and portability in Madgra|

* One full NVidia V100 GPU vs 1 typical CPU core gives a O(100)-O(1000) speedup
— Internally, maximizing the throughput depends on a lot of fine tuning...
— Note also that float performance is x2 double performance (twice the number of FLOPS)
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O(100) speedup? Don’t forget Amdahl!

mad mad mad sa/brdg

gettegeg [sec] tot = mad + MEs [TOT/sec] [MEs/sec] [MEs/sec]
nevt/grid 8192 8192 8192 8192
nevt total 98112 08112 ggl11z2 25673271
FORTRAN 1286.89 = 62.74 + 1223.35 7.8le+81 (= 1.8) 7.37es81 (= 1.8)

CUDA/8192 77.86 = 64.87 + 12.19 1.17e+83 (x16.7) 7.3%9e+83 (xlee.) 7.48e+03
nevt/grid 16384
nevt total 512#32%1
CUDA/ max 9.33e+83

 Current production MG5aMC (MadEvent/Fortran + MEs/Fortran)
— Matrix Element calculation is 95% of the overall time

* Prototype new MG5aMC (MadEvent/Fortran + MES/CUDA)
— Using a GPU speeds up the ME calculation by a factor 100 here (can do even better)
— The overall speedup is only a factor 20 - Amdahl’s law: 1/ (1.00 - 0.95)
— Currently, the bottleneck in our full prototype is still on the CPU (MadEvent)
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One NVidia V100 on a 4-core Silver CPU

gt00256

0.6

Throughput variation as a function of
GPU grid size (#blocks * #threads)

0.5 1
0.4

This is the number of events
processed in parallel in one cycle

0.3 4

0.2 1
= ggttgg-sa-cuda-d-inl0 {njobsCPU=1})

=— ggttgg-sa-cuda-d-inl0 {njobsCPU=2)

Throughput (E6 events per second)

0.1 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
=— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)
O-G T T LA | T L | T L L | T T T T T
102 103 104 107 106 107

nblocksGPU * nthreadsGPU

Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau
— The numbers in the table on the previous slides are the throughput ~ at this plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed if several CPU processes use the GPU
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)
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256 vs 32 threads per GPU block

» Very similar results, ~no change

E 0.6 -
g
b
5 037 . . .
& « Some fine tuning possible of course
5 04_
=
[1h)
o 0.3 1
o
§. 0.2 - :
= —8~ ggttgg-sa-cuda-d-inl0 (njobsCPU=1)
g‘ =@~ ggttgg-sa-cuda-d-inl0 (njobsCPU=2)
_;:':’— 0.1 A —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
= —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

0-0 T T UL T LA | T L | T AL | T L LA

10 103 104 10° 106 107

nblocksGPU * nthreadsGPU

K

g 0.6 1

o1}

73]

g 0.5

o

4

g 0.4 +

=

]

& 0.3 A

¥

.g 0.2 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=1)
g —#— ggttgg-sa-cuda-d-inl0 (njobsCPU=2)
= 0.1 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
'—

—#— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)
0.0 1 T T T T T L L LR | U L RN R | T T T T T T T rrTTg
102 103 104 10° 108 107
nblocksGPU * nthreadsGPU
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One NVidia V100 on a 4-core Silver CPU

=]

o
i

=]

o
i

o

i
i

o

i
i

s 2
L*Y] 4=
1 1
e e
L*¥] 4=
1 1

=

M
1

e

rJ
1

=8~ gottgg-sa-cuda-d-inl0 (njobsCPU=1)
=~ ggttgg-sa-cuda-d-inl0 (njobsCPLU=2)

=8~ gottgg-sa-cuda-d-inl0 (njobsCPU=1)
=~ ggttgg-sa-cuda-d-inl0 (njobsCPLU=2)

Throughput (E6 events per second)
Throughput (E6 events per second)

0.1+ —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4) 0.1+ —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
=& gottgg-sa-cuda-d-inl0 (njobsCPU=8) =& gottgg-sa-cuda-d-inl0 (njobsCPU=8)
0.0 T T T T T T T T T T T T LR R | T 0.0 T T T T T T T T T T T T T T L R R LR | Tl
10? 10° 10% 10° 108 107 102 103 10* 102 108 107
nblocksGPU * nthreadsGPU nblocksGPU * nthreadsGPUp* njobsCPUI

« The same four curves as before — with the x-axis redefined
— Total throughput as a function of GPU grid size per CPU process times #processes

» Using several processes reaches the same throughput faster, with a small overhead
— (Does it even allow you to reach higher throughputs? To be understood...)
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Why is this relevant? Heterogeneous apps
(TOY APPLICATION) / GE:::::V :\::::ow\ (LHC PRODUCTION)

NUMBERS

Previous numbers are FoRmRAn: Production MadEvent

from v0.6 container "Shmeiine. T app is heterogeneous:
(standalone app) MADEVENT MEs on the GPU,

Everything on the GPU! “ MadEvent on the CPU

« Remember: in our current CPU+GPUoffload prototype, the bottleneck is the CPU!

* One likely development in the future:
— spread out the MadEvent Fortran processing to several CPU cores in parallel
— use smaller GPU grids in each CPU process
— as per the previous slide, the overall GPU throughput should be the same (or higher?)

 The message: tuning a heterogenous CPU+GPU system depends on the application!
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A few thoughts on GPU benchmarks

» Benchmarking GPUs for a realistic workload is in itself a complex task
—“Filling” a GPU depends on non trivial details of the hardware and the application
— Number of blocks, threads per block, register pressure, occupancy...

» Heterogeneous performance depends even more heavily on the application

» We are probably better off benchmarking CPUs and GPUs separately?
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Summary and outlook

MC matrix element generators are a perfect fit for data parallelism (GPUs, SIMD)

A HEP-workloads container based on the standalone madgraph4gpu exists
— And makes it possible to easily collect a lot of useful information

CPU benchmarking is a complex multi-dimensional problem!
— Heavily-vectorized workloads stress non obvious CPU features (e.g. how many FMA units?)

For heterogenous applications, better benchmark GPUs and CPUs separately?
— Fine tuning the performance of these applications is heavily application-dependent

Our priority now is to complete the functionality of the full MadEvent-based app
— This will be the basis of a software release usable by the LHC experiments

Once that is done, a new HEP-workloads container will be built on top of that
— Analysis performance using that (possibly with Vincenzo’s tool) will be very interesting
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Backup slides
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A few useful links for reference

* Previous talks about the MG5aMC benchmark container
— HEPiX benchmarking WG, 30 Aug 2022, https://indico.cern.ch/event/1164106
— HEPiX benchmarking WG, 23 Aug 2022, https://indico.cern.ch/event/1164125
— HEPiX benchmarking WG, 05 Nov 2020, https://indico.cern.ch/event/946409

» Conference talks and papers about MG5aMC on GPUs and vector CPUs
— ICHEP, 08 July 2022, https://agenda.infn.it/event/28874/contributions/169193
— VCHEP paper, 23 Aug 2021, https://doi.org/10.1051/epjconf/202125103045
— vCHEP, 15 May 2021, https://indico.cern.ch/event/948465/contributions/4323568
— HSF Workshop, 20 Nov 2020, https://indico.cern.ch/event/941278/contributions/4101793

» Software repository of madgraph4gpu
— Project repository: https://github.com/madgraph5/madgraph4gpu
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https://github.com/madgraph5/madgraph4gpu

Matrix element integration in MadEvent: detailed results (GPU)

Z

o mad

w

@)

—

D ggttggg [sec] tot = mad + MEs

o

&)

© nevt/grid 8192
o

<t nevt total 98112
o
=

wn FORTRAN 1286.89 = 62.74 + 1223.35
..g CUDA/8192 77.86 = 64.87 + 12.19
+

2 nevt/grid

o '8

O nevt total

o

QO --emmmmmmm--e- ‘

—

> CUDA/max

S s TIME

S MadEvent (scalar)

p

1. REDUCE THIS TO
INCREASE SPEEDUP

Software performance and portability in Madgraph5_aMC@NLO

7.01e+081 (= 1.8)
1.17e+03 (x16.7)

7.37e+01 (= 1.8)
7.30e+03 (x100.)

gattgg GPU MEs
speedup is lower than
eemumu (higher
register pressure)
3. SMALLER GPU
KERNELS TO
INCREASE SPEEDUP

ICHEP, Bologna, 8 July 2022

8k events
7.480403 dum——
: per GPU grid
16384
512*32*1

0. 330:83 «—— 10K events
per GPU grid

2. INCREASE GPU
GRIDS (REDUCE
CPU MEMORY) TO
INCREASE SPEEDUP

’_'-'T ~
Argonne @ (1 2SE@) 14
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CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

)
Page: Detals

Current makin 8, 1, : NV i 5M Frequency: 1. : 7.0 Process: [124

NO_DIVERGENCE makin 8,1, i} It NV 1 SM Frequency: 1 : 7.0 Process: [126.

VCHEP - 19 May 2021 14
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Implementati MEs/second | MEs/second : '
N oome | " | Matrix Element (ME) calculation
©
o 1-core Standalone C++ 2.39E3 2.50E3 1 .
£ ccalar =00 | wos | IN cudacpp: results
g 1'°°1r;§ft“gggze2c“ 459E3 9.42E3 1) Eirst f devel t MEs in “cud ”
2 oSSz x1.9) wass | (1) First area of development: MEs in “cudacpp
2 1( s d’ — Single code base (#ifdef's) for C++ on CPUs and CUDA on Nvidia GPUs
vy 1.06E4 2.15E4 | SIMD vectorization on CPUs through Compiler Vector Extensions in C++
2 (x4.4) (x9.0)
IS} (x4 doubles, x8 floats)
:Q' 1-core Standalone C++
ore Stan 1.15E4 2.28E4 . :
S 256-bit” AVX512 (x4.8) (x9.5) Main new results since vCHEP2021:
o x4 doubles, x8 floats
g 1-core Standalone C++ 4.03E4 .
% 512-bit AVX512 (x16.9) » Backport to code generation (test more complex processes)
~ L& oublos XIR o2t —speedups seen for ee_mumu now also ~confirmed for gg_ttgg
Intel Gold 6148 CPU (Juwels Cluster HPC) —but GPU speedups decrease a bit (higher "register pressure")

Better AVX512/zmm results than on Intel Silver 4216 at CERN
(Gold 6148 has two FMA units, Silver 4216 has one FMA unit)

* Achieve full theoretically possible SIMD speedup on CPUs

Implementation MEs/second | MEs/second —x8 double, x16 float from AVX512 on high-end Intel CPUs
(gg— ttgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3 . .
scalar (=1.00) (x0.98) * New features added for MadEvent integration

Standalone CUDA (this slide shows numbers from the standalone test application;
NVidia V100S-PCIE-32GB e — see the final slides for performance numbers within madevent)

TFlops*: 7.1 FP64, 14.1 Fpag)|  (*270) (x500)
NVidia V100 GPU + Intel Silver 4216 CPU (CERN)
) uCL

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne o '\

aaaaaaaaaaaaaaa
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ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

* Good news 1: all four implementations look similar for Nvidia in gg_ttgg!

—The benefit of direct CUDA over a PF is limited, if any at all
NVIDIAA100 — gg_ttgg

. _ _ _ ® sva " TEREN N
NB: focus on gg_ttgg which is computationally intensive! A Kokkos ®
. [l cupA e
In simpler processes like ee_mumu, performance is more affected by data 0 TF Alpaka ™
copies, memory access or kernel launching overheads (and the observed é % 10° i
SYCL implementation is faster than the CUDA one - to be understood) ﬁ 5 Py
[ -
=N
104_
(gg_ttgg) 16k threads _
block 256
TV T LS TR AP
nched

Total Threads Lau

En passant, keep in mind this for later: you need at least 16k “events per GPU grid” to fill up a V100 or A100 with gg_ttgg+
— Simpler processes need even more, e.g. 500k for ee_mumu

ICHEP, Bologna, 8 July 2022

Argonne & (™))

Software performance and portability in Madgraph5_aMC@NLO
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Matrix element integration in MadEvent: results

* Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
—Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)
—Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

» Performance results = Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)
—The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)
—Amdahl’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

—~ -]
E._) Implementation Evis/second | MEs/second + o
I (99> tigg) IO e el Implemegtation Evts/second | MEs/second a g
@ | 1-core MadEvent Fortran 1.96E3 2.12E3 (99—>ttggyg) full workflow |~ MEs only O3 =
7 = = o
8 scalar (£1.00) (£1.00) 1-core MadEvent Fortran 7.01E1 7.37E1 oY
O 1-core Standalone C++ 1.72E3 1.85E3 scalar (=1.00) (=1.00) ; g g
2 el ekt b2kt Standalone CUDA 1.17E3 7.39E3 S5

- NVidia V100S-PCIE-32GB 16.7 100 2 =
. “{ezasﬁfgg'gzezc“ 3.56E3 4.08E3 e = = S @
= ol : (x1.8) (x1.9) Z c
“:'J’ (x2 doubles, x4 floats)
) 1'°°r;’586‘1?td:{?£§ G+ 6.72E3 8.80E3

- 3.4 4.2 s .

% | (x4 doubles, x8 floats) Fel (.2) Summary of performance within madevent so far:
3
© | 1-core Standalone C++ 7 08E3 9.41E3 - on CPU: ~x8 for MEs alone, ~x5 for madevent+MEs
) “256-bit” AVX512 ' :
8 (x4 doubles, x8 floats) PR bl - on GPU: ~x100-300 for MEs alone, ~x20 for madevent+MEs
o 1-core Standalone C++
< 512-bit AVX512 -
- 8 doubles, x16 floats) d (y  UCL /2y

& ’ ICHEP, Bologna, 8 July 2022 Argonne & {7 w(f) 12
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Matrix element integration in MadEvent: detailed results (CPU)

%) mad (81952 MEs) mad mad sa/brdg
o
T SO —
Fg ggttgg [sec] tot = mad + MEs [TOT/sec] [MEs/sec] [MEs/sec]
-S 2 3 2 2 3 2 3 2 3 2 3 2 32 2 3 3 2 2 3 3 3 3 3 3 3 3 3 2 2 2 3 2 2 3 2 2 3 3 2 2 3 3 3 3 2 3 3 3 2 3 2 2 3 2 3 3 3 3 3 3 3 3 3 2 3 3 2 2 3 2 3 & 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3
% FORTRAN 41.82 = 3.23 + 38.60 1.96e+03 (= 1.0) 2.12e+03 (= 1.0) ---
g CPP/none 47.78 = 3.56 + 44.22 1.72e+03 (x ©.9) 1.85e+03 (x ©.9) 1.96e+03
-
2 CPP/sse4d 23.04 = 2.97 + 20.07 3.56e+03 (x 1.8) 4.08e+03 (x 1.9) 4.85e+03
2 CPP/avx2 12.19 = 2.88 + 9.32 6.72e+03 (x 3.4) 8.80e+03 (x 4.2) 9.24e+083
8 CPP/512y 11..57 = 2.86 + Y i ) 7.88e+@83 (x 3.6) 9.41e+03 (x 4.4) 1.81e+084
v
= CPP/5122 8.26 = 2.88 + 5.38 9.92e+03 (x 5.1) 1.52e+04 (x 7.2) 1.66e+084
L R e R e T A T T T B b e ey
(_8 ----"'---'--"/4 ------------------ f --------------------------------- \- ----------------
o4 TIME Total =
o TIME THROUGHPUT
< MadEvent (scalar)
= MEs (parallel) s paRES] MEs THROUGHPUT
+ MEs (paralle e
P THROUGHPUT (within madevent) MEs
TIME MadEvent + MEs ithi dal
(within madevent) (within standalone
MadEvent (scalar) test application)
— a Gy ucL 2
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne & WA :‘:m.::\ﬂﬁ/ 13
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"Standalone" and "MadEvent" applications

GENERIC WORKFLOW
1. STANDALONE / \ 2. MADEVENT
(TOY APPLICATION)

PSEUDO RANDOM (LHC PRODUCTION)

NUMBERS
00000000
FORTRAN:
PHASE SPACE R.A.l:l.ﬂ.A.R
SAMPLING W
MOMENTA FORTRAN:
MADEVENT

MATRIX ELEMENTS
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What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”) a 0

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
L PSEUDO\RANDOM ELEMENT
1 NUMBERS GENERATOR
Output: random numbers i’ (e.g. MG5aMC)
) > PHASE SPACE
Input: random numbers . ) HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
(e.g. PYTHIA)
3.
Input: particle 4-momenta : s:mggs
Output: Matrix Element (ME) PHASE SPACE W
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT_i, W_i} = AND DECAY
A -: : -
U T i PARTICLE
%, MONTE CARLO MONTE CARLO Ei FILTERING
INTEGRATION UNWEIGHTING ni
: 2 - ok
v w i DETECTOR
_ _ CROSS-SECTIONS etc... ~ UNWEIGHTED EVENTS :ii SIMULATION
(NB: Matrix Element is an (AVG W _i, MAX W _i) {EVT i, W_i=1}
element of the scattering matrix... H (GEANT4)

almost no linear algebra here!)

A. Valassi — Reengineering Madgraph5_aMC®@NLO for GPUs and vector CPUs vVCHEP — 19 May 2021
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Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python
— The more patrticles in the collision, the more Feynman diagrams and the more lines of code

>_<—< >_<<< >_< >_<<< Process LOC  functions function calls

ete” - utu 776 8 16
- e o gg — tig 1082 36 106

e s as gg — tigg 1985 222 786

\\?‘)' NN

\\ DRI X
DEVELOP
"y

2)

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e— w1 (two diagrams, few lines of C++"cod

—(2,3) Add CUDA and improve C++, port upstream to Python meta-code
— (4) Generate more complex LHC processes gg— tt, ttg, ttgg . .
epoch” UPSTREAM

— Add missing functionality, fix issues, improve performance, iterate
1. IXXXXX 1. IXXXXX 1. IXXXXX 1. IXXXXX

PRODUCE
\\ SAME

\ AUTO-GENERATED
CUDA/C++ CODE

(\F/“W A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP - 19 May 2021
L

3. FFV1_0
2. FFV1PO_3

1. OXXXXX 1. OXXXXX
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A complex outer shell — with a CPU-intensive core: the ME

* To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)

— A complex software infrastructure with many functionalities and a stable user interface

Resst Search

Flame Graph

Python

madevent (Fortran + external libraries)

MATRIX ELEMENT i
calculation (Fortran) ;
4 it

Gridpack to generate

100k gg—ttgg events
(./run.sh 100000 1)

[
I { I
Function:

matrixi_ (76,239 samples, 42.00%)

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

gg — tt g9 — ttgg g9 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

(Mattelaer, Ostrolenk — https://arxiv.org/abs/2102.00773)

VCHEP — 19 May 2021
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Event-level parallelism in practice — coding and #events
Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

CUDA (GPU) implementation
— For SIMT, event loop is “orthogonal”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

C++ (CPU) implementation
— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

To be efficient, CUDA needs O(10k)-O(1M) events in parallel — much more than C++!

— CUDA: lockstep within each warp (32 threads) + many warps in parallel to fill the GPU
— C++ lockstep within a vector register (2-8 doubles) + multi-threading or multi-processing

E hl‘)sa = L 00000 | ee [ | o N e %S =
I<E 128 T 128 AN @
'5 12. : Double precision e Double precision §
e a NVidia V100 . NVidia V100 v =2
g = (2560 FP64 cores) > (2560 FP6&4 cores) &
o “E"' 35 >
€5 ! - 2
= T
= " | et'e>prp — 7E8 MEs/s [ gg—tt —5E5 MEs/s | 8
= L e for 500k MEs in parallel e for 16k MEs in parallel | £
FEVENTSINPARALLEL periteration | mThvsadsPecmlck hamBlockaperr )

#Threads Per Block * #Blocks

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector GPUs vCHEP — 19 May 2021 12

C\_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs
S

HEPscore workshop — 20 Sep 2022 40




CUDA/C++: ME code example (complex number scalar/vector)

Formally the same code for three back-ends (cxtype sv represents three types)

- CUDA: scalar complex — (typedef thrust::complex<fptype> cxtype; // two doubles: RI
- C++, no SIMD:  scalar complex — |typedef std::complex<fptype> cxtype; // two doubles: RI

- C++, with SIMD: vector complex — | class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA

_ device__ e u FFV1 O:
void FFV1_@( const Fl[], // input: wavefunctioni[e] 1 IXKXXX 1. TXXXXX heli " .
- : elicity amplitude
const cxtype sv F2[], // input: wavefunction2[6] for th Y _+;? t
const cxtype sv V3[], // input: wavefunction3[6] (a) 3. Frvi_o|| Torthe yuru vertex
> FEVIRO-3 Soon to be

const cxtype COUP, 1. OXXXXX

1. OXXXXX automatically generated

cxtype _sv¥ vertex ) // output: amplitude

mgDebug( ®, _ FUNCTION__ );
const cxtype cI( @., 1. );

const cxtype _sv TMPO = (F1[2] * (F2[4] * (Vv3[2] + V3[5]) + F2[5] * (V3[3] + cI * (v3[4]))) + “+" is the usual sum of two
(F1[3] * (F2[4] * (V3[23] - cI * (V3[4])) + F2[5] * (Vv3[2] - V3[5])) + (thrust/std) scalar complex,
(F1[4] * (F2[2] * (v3[2] - V3[5]) - F2[3] * (V3[3] + cI * (v3[4]))) + or the user defined sum of

eI * (v3[4])) + F2[3] * (v3[2] + V3[S]))))); two vector complex

inline

Fl[S] = (F2[2] * (—V3[3]
(*vertex) = COUP * - cI * TMPO@;
mgDebug( 1, _ FUNCTION__ );

cxtype v operator+( const cxtype v& a, const cxtype v& b )

{

return cxmake( a.real() + b.real(), a.imag() + b.imag() );

¥

return;

#ifdef _ clang__

C++ SIMD.- gCC/CIang typedef fptype fptype_v _ attribute_ ((ext_vector_type(neppV))); // RRRR

. . #el
compiler vector extensions " °*° _ . .
typedef fptype fptype_v _ attribute_ ((vector_size (neppV*sizeof(fptype)))); // RRRR

#endif
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CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

« Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—pu*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are ( number of MEs ) / ( time for ME calculation + ME copy )

NVTX |

00 CudaFree [325.083 ms]
CUDA AP1

’3""“"“ = llllllllllllllllllll&‘fmsml -
adsor| (ad =" 4 . l l ll I . I ' II {E_-.;' __ oxdaDeviceReset

| cudaFree § lox
ZOOM (ME calculation ~ ME copv)

ete >ty
X
CUDA APL

3 G 051

» But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

NVTX O | BT 8 s siomsin {1 |32 Somakin [1

CEmeTTa TS e e e
CUDA AP [ | (EErEa) cdabevicesy. ) (cdabevkesy . | [uemmacesy v 5y Devicesy. | (cudaDes

~ZOOM (ME calculation >> MEcopy)

3 CpOTHmes [381.898 ps]
CUDA AP

ggtigg

48 DumpL.oop [3.945 ms]

. . S ) S5 |
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