MadGraph5 aMC@NLO (MG5aMCQC)
as a benchmark for

GPUs and vector CPUs
Andrea Valassi (CERN IT)

HEPscore Workshop, Tuesday 20" September 2022
https://indico.cern.ch/event/1170924/contributions/4954511

Many thanks to S. Roiser, O. Mattelaer and the whole madgraph4gpu team!

And many thanks to S. Ponce, H. Grasland, S. Lantz, L. Atzori, D. Giordano for useful discussions on SIMD!

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022
N

https://indico.cern.ch/event/1170924/contributions/4954511

What is Madgraph5 aMC@NLO (MG5aMC)?

« A MC physics event generator routinely used by ATLAS, CMS and others
— One of the many GEN steps in the LHC experiment production workflows

g E.n- PUBLISHED FOR SISSA BY €) SPRINGER

RECEIVED: May 20, 2014
ACCEPTED: June 25, 2014
PUBLISHED: July 17, 2014

The automated computation of tree-level and
next-to-leading order differential cross sections, and
their matching to parton shower simulations

J. Alwall,” R. Frederix,” S. Frixione,” V. Hirschi,” F. Maltoni,’ O. Mattelaer,?
H.-S. Shao," T. Stelzer,” P. Torrielli’ and M. Zaro""

A highly flexible software application supporting many physics scenarios
— The relevant code for a given collision process is auto-generated

CERN

_W A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022
N

What is madgraph4gpu?

» An ongoing project (since 2020) to speed up MG5aMC and port it to GPUs
— Specifically: speed up "matrix elements" (ME) calculations: scattering amplitudes
— No production release for the experiments yet, but hopefully soon...

EPJ Web of Conferences 251, 03045 (2021)
CHEP 2021

https://doi.org/10.1051/epjconf/202125103045

Design and engineering of a simplified workflow execution
for the MG5aMC event generator on GPUs and vector CPUs

Andrea Valassi'**, Stefun Roiser'", Olivier Mattelaer’, and Stephan Hageboeck'

'CERN, IT-SC group, Geneva, Switzerland
*Université Catholique de Louvain, Belgium

BOLOGNA
Developments in software
performance and portability

for Madgraph5_aMC@NLO

Taylor Childers
Walter Hopkins
Nathan Nichols

Argonne & o

* The software behind the HEP-workloads container described in this talk!
— | will only describe here the implementation in CUDA/C++ (but others exist)

* Last status update was at ICHEP (July), next one will be at ACAT (October)

— New results in this talk with respect to the ICHEP talk include:

» C++/CPU performance with several CPU processes in parallel
* C++/CPU performance on Intel Gold 6130 using gccll (and with many CPU processes)

* CUDA/GPU performance with several CPU processes in parallel

CERN
\

~Z_

w A. Valassi — MG5aMC on GPUs and vector CPUs

HEPscore workshop — 20 Sep 2022

Why a HEP-workloads container
based on madgraph4gpu?

Interesting for future HEPscore extensions to GPUs
— Potentially a future GPU workload consuming significant Grid resources?

Interesting for future HEPscore extensions for vectorisation on CPUs

— Huge (up to x16) overall performance differences between no-SIMD and SIMD
» The current HEPscore workloads are largely insensitive to SIMD (i.e. exploit it poorly)

— Benchmarking is a multi-dimensional problem: AVX512 support, FMA units etc...

Interesting for future HEPscore extensions to heterogeneous processing
— Work in progress on understanding how to keep both the CPU and the GPU busy

With one essential perk: cross-platform reproducibility of results
— The exact same results can be obtained on GPUs, CPUs or CPUs+GPUs

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

Why MG5aMC on GPUs and vector CPUs?
An ideal fit for (event-level) data parallelism!

MG5aMC computational anatomy and data parallelism strategy

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

'
PSEUDO RANDOM i
vergen = NUMBERS
L ime
3 e0000000 A2
| vy 1
S %4 PHASE SPACE
S no divergence SAMPLING £
g ks v
ZE MOMENTA + optional event cuts
5 4444%44 \ will need to repack data once) [: 1
§ sync i \ Time | B
SIMT CPU [w = e =] | I=
M,, MATRIX ELEMENTS | o35y e e
IA1+B1 |A2+BZ l A3+B3 | A4+84I IAMBAI
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

(Y UCLA
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne & () :mm(ﬁ\ 20

e J
AAAAAAAAAAAAAAAAA lique &%
de Louvain \

C_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022
N

Most other HEP workloads are not so lucky

MC event generators are a great fit for GPUs and vector CPUs!

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw 0 0

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

INPUT O @

S e SAME CALCULATION
(before ME calculation): ON DIFFERENT DATA!

- MC integration
(cross sections)
- MC generation

(event samples)
Lockstep processing |

OUTPUT

Db Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT

DECISION

OUTPUT

Stochastic branching
Bad for SIMT/SIMD

MC DECISIONS [@

Detector simulation (Geant4)

- Particle/matter interaction
(when? how?)

- Particle decays (when?)

Event generators®

(after ME calculation):

- MC unweighting (keep/reject)
Parton showers (PS)

- Fragmentation and decays

Software performance and portability in Madgraphb_aMC@NLO

ICHEP, Bologna, 8 July 2022

Argonne & () Y@

de Louvain

C_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs
S

HEPscore workshop — 20 Sep 2022

"Standalone" and "MadEvent" applications
T = T

PSEUDO RANDOM (LHC PRODUCTION)
NUMBERS

FORTRAN:

PHASE SPACE RANMAR
SAMPLING ‘N
| i1
MOMENTA FORTRAN:
MADEVENT

« We are working on two applications in parallel
— 1. Standalone: used since 2020 to optimize the ME calculation (all CUDA/C++)

— 2. MadEvent: current main focus, future production version for the experiments
* Inject the new/faster CUDA/C++ ME calculation into the existing Fortran framework

* The current HEP-workloads container (v0.6) is based on the standalone app
— Eventually, the MadEvent app will also be integrated into HEP-workloads

(\ﬁw A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022
NS

A few details on the v0.6 container

It includes different software builds covering the combinations of many options:
— Four physics processes: e*e—u*u, gg—tt, gg—ttg, gg—ttgg
— Two floating point precisions: double and single (float)

— One CUDA build for GPU and five C++ builds for CPU with different SIMD scenarios
* “none”, “ssed”, “avx2”, “5612y” (AVX512, 256-bit ymm registers), “512z” (AVX512, 512-bit zmm)
* For the same process and precision, all six builds give the same physics results

— (Experimental) Two builds with and without “aggressive inlining” of C++ functions

It is highly configurable: it is possible to run only a subset of the tests above
— And it is possible to change other parameters (e.g. numbers of GPU blocks and threads)

Recommendation: run the CPU and GPU benchmarks separately
— CPU benchmarking: use $(nproc) copies of the single-threaded benchmarks (all SIMDs)

— GPU benchmarking: use a single copy (1 CPU process)
* A (rough!) different tuning of GPU blocks and threads exists for each physics process

Many different scores may be produced in each benchmark run
— Suggestion: use ggttgg-d-in/0 as the most relevant scores (“cuda” for GPU, “cpp-best” for CPU)
— But computing, storing and comparing the different benchmarks is very interesting!

C\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

Are we efficiently exploiting the hardware?

(a.k.a. estimating “realized potential” [Markus Schulz])

* In the following | present the results of a few tests using the v0.6 container
— Out of the many independent dimensions of efficiency | will try to probe only two
— (...After Vincenzo's talk yesterday | realize there’s so many other ways to study this!...)

» Data parallelism (SIMD and SIMT): lockstep processing on multiple data
— CPU, AVX512 example: 512-bit “zmm?” registers fit 8 (8-byte) doubles or 16 floats (4-byte)
« Compare no-SIMD to “512z" (AVX512/zmm) SIMD builds, maximum speedup is x8 and x16
— GPU, NVidia V100 example: every “warp” includes 32 threads
» The number of GPU “threads per block” is hardcoded in madgraph4gpu to multiples of 32
» Not shown in next slides: NVidia profiling tools show no thread divergence (branch efficiency 100%)

» Task parallelism: filling the system with as many hardware threads as possible
— CPU: increase #copies (single-threaded CPU processes) in parallel in the bmk-driver
» throughput plateau around $(nproc) i.e. number of physical cores time hyper-threading
— GPU: increase the GPU “grid size” (#blocks * #threads-per-block) in low-level options
« throughput plateau depends (in ways | do not yet understand) on #SM, #threads-per-SM etc...

« in addition: increase #copies (CPU processes, each with a GPU grid) in the bmk-driver
— this is useful with a view to future heterogenous processing scenarios...

C\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

SIMD on CPU (C++)

(\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 10
N

4-core Silver 4216, double precision (double)

ggttgg check. exe scalability on itscrd70 (1x 4-core 2. 1GHz Xeon Silver 4216 without HT) for 10 cycles

2 :) 2 5n 1 _
g No HT : Overcommit o 20 NoHT Overcommit
% 0.03 : — = : _
[[¥4]
2 gg—ttgg 2 151 gg—titgg
b -
=
2 0.02 8
] o 10 4
E —#— gottgg-sa-cpp-d-inl0-none E —#— gottgg-sa-cpp-d-inl0-none
= 0.01 —@— oottgg-sa-cpp-d-inl0-ssed s —— ogttgg-sa-cpp-d-inl0-sse4
a -8~ gottgg-sa-cpp-d-inl0-avx2 2 5 —8— ogttgg-sa-cpp-d-inl0-avx2
‘E-. —— gottgg-sa-cpp-d-inl0-512y g" —— ggttgg-sa-cpp-d-inl0-512y
g = ggttgg-sa-cpp-d-inl0-512z o —#— ggttgg-sa-cpp-d-inl0-512z
= £
IE 0.00 T t T T T = 0 T T T

0 2 4 6 8 10 0 2 4 6 8 10

Level of parallelism (number of ST jobs) Level of parallelism {number of ST jobs)

» Both plots - with respect to throughput of no-SIMD (blue)
— SSE4 (yellow) ~ x2 (two 8-byte doubles in a 128-bit register)
— AV X2 (green) ~ x4 (four 8-byte doubles in a 256-bit register)
— 512y (red) ~x4 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”
— 512z (purple) is worse than AVX2 or 512y (?! will come back to this...)

 Right plot, absolute scale is ratio to one-core no-SIMD: total speedup ~ x16 because
— ~ x4 from SIMD (512y)
— ~ x4 from 4 cores

CERN

\w A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 11

~Z_

Throughput (E6 events per second)

4-core Silver 4216, single precision (float)

ggttgg check.exe scalability on itscrd70 (1x 4-core 2.1GHz Xeon Silver 4216 without HT) for 10 cycles

No HT Overcommit
gg—ttgg

—8— dgottgg-sa-cpp-Finl0-none
—— gottgg-sa-cpp-f-inl0-ssed
—— gottgg-sa-cpp-Finl0-avx2
—— gottgg-sa-cpp-Finl0-512y
—8— ggttgg-sa-cpp-finl0-512z

T T
8 10
Level of parallelism (number of ST jobs)

Throughput ratie to 1 no-SIMD job

40 -

30 4

20 1

10 ~

NoHT Overcommit
gg—ttgg

—8— qottgg-sa-cpp-Finl0-none
~— ggttgg-sa-cpp-f-inld-ssed
—— qgttgg-sa-cpp-finl0-avx2
=8~ qgttgg-sa-cpp-finl0-512y
—— ggttgg-sa-cpp-f-inl0-512z

T T
8 10
Level of parallelism (number of 5T jobs)

» Both plots - with respect to throughput of no-SIMD (blue)

— SSE4 (yellow) ~ x4 (four 8-byte floats in a 128-bit register)

— AV X2 (green) ~ x8 (eight 8-byte floats in a 256-bit register)

— 512y (red) ~ x8 is 10% higher than AVX2 (same register width + AVX512 set): “‘BEST”
— 512z (purple) is worse than AVX2 or 512y (?! will come back to this...)

 Right plot, absolute scale is ratio to one-core no-SIMD: total speedup ~ x32 because

CERN

\

~Z_

—~ x8 from SIMD (512y)
— ~ X4 from 4 cores

w A. Valassi — MG5aMC on GPUs and vector CPUs

HEPscore workshop — 20 Sep 2022 12

4-core Silver 4216, double precision (double)

check.exe scalability on itscrd70 {1x 4-core 2.1GHz Xeon Silver 4216 without HT) for 10 cycles

102] Mo HT Overcommit

10_1 . "/"//‘7—_‘

] —8— eemumu-sa-cpp-d-inl0-best
10—2_; /—‘ ~®— ggtt-sa-cpp-d-inl0-best

E : —8— ogttg-sa-cpp-d-inl0-best

] =— ggttgg-sa-cpp-d-inl0-best

Throughput (E6 events per second)

10~3 T T
0 2 4 6 8 10
Level of parallelism (number of 5T jobs)

« Compare the four physics processes
— one order of magnitude slower throughput on each extra gluon — more Feynman diagrams
—and gg—tt is even one order of magnitude slower than e*te—pu*u

* Focus on gg—ttgg for any realistic (and LHC-relevant) benchmarking
—e*te—ptuis limited by memory access
— gg—ttgg is limited by computations
— both on the CPU and later on the GPU

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 13

~Z_

2x16-core 2xHT Gold 6130, double precision

ggttgg check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

No HT 2% HT | Overcommit

gg—ttgg

No HT 2x HT | Overcommit

gg—ttgg

0.4 4
150 +

0.3

100 ~
0.2 H -
—#~ gogttgg-sa-cpp-d-inl0-none

—— ggttgg-sa-cpp-d-inl0-ssed

i —8~ ogttgg-sa-cpp-d-inl0-none
'* —8 =8 gottgg-sa-cpp-d-inl0-avx2

4 N

|

! —— ggttgg-sa-cpp-d-inl0-ssed
-*— — =8 ggtitgg-sa-cpp-d-inl0-avx2
1 .

l

50 4

—— ogttgg-sa-cpp-d-inl0-512y
=@~ ggttgg-sa-cpp-d-inl0-512z

—&— oottgg-sa-cpp-d-inl0-512y
—— ggttgg-sa-cpp-d-inl0-512z

Throughput (E6 events per second)
Throughput ratio to 1 no-SIMD job

0 ZID 4ID GID EID l[:'lC' 12|0 ltll(} lEI'D 0 ZID 4ID GID BID l[|)0 12|0 ltll() lﬁlD
Level of parallelism (number of ST jobs) Level of parallelism (number of ST jobs)

» Both plots - with respect to throughput of no-SIMD (blue)

— SSE4 (yellow) ~ x2 (two 8-byte doubles in a 128-bit register)

— AV X2 (green) ~ x4 (four 8-byte doubles in a 256-bit register)

— 512y (red) ~x4 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”"

— 512z (purple) ~ x6-x8 (eight 8-byte doubles in a 512-bit register): “BEST”
* AVX512/zmm much better on Gold 6130 (two FMA units) than on Silver 4216 (one FMA unit)!
» The speedup of 512z is lower than x8 (and decreases with #cores) — clock slowdown?

 Right plot, ratio to one-core no-SIMD: total no-HT speedup ~ x150 because
—~ X6 from SIMD (512z)... lower than x8 but not bad!
— ~ x25 from 32 cores... lower than x32 but not bad!
— HT also gains a tiny bit more...

CERN

\w A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

2x16-core 2xHT Gold 6130, single precision

ggttgg check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

No HT 2% HT | Cvercommit MNo HT 2x HT | Overcommit

0.8 1
300

0.6

gg—ttgg

- dqottgg-sa-cpp-finld-none
=~ ggttgg-sa-cpp--inl0-ssed

gg—ttgg

—@— oottgg-sa-cpp-finld-none
=— ggttgg-sa-cpp-f-inl0-ssed

200

0.4

] 100

Throughput (E6 events per second)
Throughput ratio to 1 no-SIMD job

0.2 ! —i— gogttgg-sa-cpp-finl0-avx2 ! —& —— ggttgg-sa-cpp-finl0-avx2
| —i— ggttgg-sa-cpp-finl0-512y | =~ qgttgg-sa-cpp-f-inl0-512y
* "] —— oottgg-sa-cpp-finl0-512z * T 8~ gqottgg-sa-cpp-finl0-512z
0-0 T T T T T T T 0 T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Level of parallelism (number of 5T jobs) Level of parallelism (number of 5T jobs)

» Both plots - with respect to throughput of no-SIMD (blue)
— SSEA4 (yellow) ~ x4 (four 8-byte floats in a 128-bit register)
— AV X2 (green) ~ x8 (eight 8-byte floats in a 256-bit register)
— 512y (red) ~x8 is 10% higher than AVX2 (same register width + AVX512 set): “BEST”"

— 512z (purple) ~ x12-x16 (sixteen 8-byte floats in a 512-bit register): “‘BEST”
* AVX512/zmm much better on Gold 6130 (two FMA units) than on Silver 4216 (one FMA unit)!
» The speedup of 512z is lower than x16 (and decreases with #cores) — clock slowdown?

 Right plot, ratio to one-core no-SIMD: total no-HT speedup ~ x300 because
—~x12 from SIMD (512z)... lower than x16 but not bad!
— ~ x25 from 32 cores... lower than x32 but not bad!
— HT also gains a tiny bit more...

CERN

\w A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

2x8-core 2xHT Haswell E5-2630, double

ggttgg check.exe scalability on pmpe04 (2x 8-core 2.4GHz Xeon E5-2630 v3 with 2x HT) for 10 cycles

No HT 2% HT |

No HT 2x HT |

!
!
|
r
+ —— ggttgg-sa-cpp-d-inl0-none
I

Throughput ratio to 1 no-SIMD job

Throughput (E6 events per second)

—— gogttgg-sa-cpp-d-inl0-none
—— ggttgg-sa-cpp-d-inl0-ssed —— gogttgg-sa-cpp-d-inl0-ssed
H —— gottgg-sa-cpp-d-inl0-avx2 ' —#— gottgg-sa-cpp-d-inl0-avx2
0.00 I T . T T T T 0 = T : T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Level of parallelism (number of ST jobs) Level of parallelism (number of 5T jobs)

» Bestis AVX2 — Haswell does not support AVX512

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 16

Throughput (E6 events per second}

Throughput {E6 events per second)

Throughput {E6 events per second)

Throughput (E6 events per second)

Gold 6130, double —compare four processes

check.exe scalability on "bmk6130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

300 1

No HT

2x HT

i Qvercommit

Throughput ratio to 1 no-SIMD job

140 1

T
No HT | Overcommit

efe—-utu

—8- eemumu-sa-cpp-d-inl0-none —8— eemumu-sa-cpp-d-iniD-none
—®- eemumu-sa-cpp-d-inl0-ssed ~®- eemumu-sa-cpp-d-ini0-ssed
—® cemumu-sa-cpp-d-inl0-avx2 —& eemumu-sa-cpp-d-inl0-avx2
—®~ eemumu-sa-cpp-d-inl0-512y —®- eemumu-sa-cpp-d-inld-512y
—® cemumu-sa-cpp-d-inl0-512z —8 eemumu-sa-cpp-d-inl0-512z
0 T T T T T T T T 0 T T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Level of parallelism (number of ST jobs) Level of parallelism {(number of 5T jobs)
B T T
NoHT 2X HT | Cvercommit - No HT 2x HT | Qvercommit
25 4 H o 1007 H
g —
o —>
204 s 804 g g tt
—
g
15 E 60
E
10 H —® qott-sa-cpp-d-ini0-none [& 40 —®— ggtt-sa-cpp-d-inl0-none
-- 2 —8~ ggtt-sa-cpp-d-iniD-ssed
5 Y - 2 50 ' —8- ggtt-sa-cpp-d-iniD-avx2
| - 2 | —8— ggtt-sa-cpp-d-inl0-512y
i —®- gottsa-cpp-d-inl0-512z | £ | —® ggtt-sa-cpp-d-inl0-512z
0 T T T T T T T 0 T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Level of parallelism (number of ST jobs) Level of parallelism (number of ST jobs)
T T T -
NoHT ! 2x HT i Overcommit 175 1 NoHT 2% HT i Overcommit
5 H H

)
=8
o
= 150 —
I
44 2 125 A g g — ttg
—
) 4
3 £ 100
£ 754
2 —®— ggttg-sa-cpp-d-ini0-none | & —®— ggttg-sa-cpp-d-ini0-none
- £ 507 ~#- ggttg-sa-cpp-d-inl0-ssed.
| - 4 —®— qgttg-sa-cpp-d-ini0-avx2
! b al e 254 —8— gottg-sa-cpp-
H - S H —8— ggttg-sa-cpp-d-inlD-
0 | : |
T T T T T T T T 0 T T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Level of parallelism (number of ST jobs) Level of parallelism {(number of 5T jobs)
B T T
No HT H 2x HT 1 Overcommit i No HT 2x HT H Overcommit
0.4 H | 175 |

0.0

ggttgg-sa-cpp-d-inl0-none

bhodd

Throughput ratio to 1 no-SIMD job

150 4

125 1

gg—ttgg

ggttgg-sa-cpp-d-inl0-none
gottgg-sa-cpp-d-inl0-ssed
ggttgg-sa-cpp-d-inl0-avx2

bhodd

25 ¥ - 0gttgg-sa-cpp-d-inl0-512y
ggttgg-sa-cpp-d-inl0-512z i ggttog-sa-cpp-d-inl0-512z
T T T T T T T T [} T T T T T T T
20 40 60 80 100 120 140 160 [} 20 40 60 80 100 120 140 160

Level of parallelism (number of ST jobs)

Level of parallelism (number of ST jobs)

A. Valassi — MG5aMC on GPUs and vector CPUs

* The relative benefit of 512y
and 512z is different in
different processes

— 512y is best for gg—tt

— Complex interplay of data
access and computation?

» Even for the same type of
GEN workload using the
same software, different
processes stress different
parts of the hardware...

Note: throughput increase for overcommit in ggttgg is
a measurement bug (processes run too few events)

HEPscore workshop — 20 Sep 2022

17

Correlation plot (a la HEPscore vs HS06)

14 y

o * Blue curve: no SIMD
17 1 Gold — essentially a straight line
= Best is 5127 — three nodes have similar frequencies
8 10 ~1.5 x 512y — power per core very similar
! ”
% g - Focus on brown curve: best SIMD
e — Silver (reference) has best=512y
Ol — Haswell has best=avx2
£ No support for AVX512
EL . I gg::ggz:zzz::::gz::f » Haswell ~10% below the diagonal
~- gottog-sa-cop-d-ini0-avx2 — Gold has best best=512z
—®- ogttgg-sa-cpp-d-ini0-512y « Two FMA units instead of one
23 : 33EE§32§E§E;‘:§I§E§§E » Gold ~50% above the diagonal
é -'-Il \é lID ll2 14
Tpytinode)/Tputiref node\for ggttgg-sa-cpp-d-inl0-none
Silver Ha_swell “A computer system’s performance cannot be characterized by a single number or
(reference node) Best is avx2 a single benchmark. [...] Many users (decision makers), however, are looking for a
Best is 512y ~0.9 x 512y single-number performance characterization. [...] There are no simple answers.

Both the press and the customer, however, must be informed about the danger and
the folly of relying on either a single performance number or a single benchmark.”

Kaivalya M. Dixit, Overview of the SPEC Benchmarks,
in J. Gray (Ed.), The Benchmark Handbook for Database and Transaction Systems, 1993.

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 18

~Z_

GPU (CUDA)

and heterogenous (GPU/CUDA + CPU/Fortran)

(\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 19
N

GPU vs CPU throughput with the same output

Implementation MEs/second | MEs/second H H
N oo || Matrix Element (ME) calculation
[
o 1-core Standalone C++ 2.39E3 2.50E3 1 .
£ setar wmo | o | IN cudacpp: results
E 1-core Standalone C++ 4.59E3 9.42E3 . i
© | 2obitSSES 2 (x1.9) a6 | (1) First area of development: MEs in “cudacpp”
) 1‘ °;t dI °:‘5’ Single code base (#ifdef's) for C++ on CPUs and CUDA on Nvidia GPUs
- -~ ++ -
$ O b bt AVX 1.06E4 2154 | S|IMD vectorization on CPUs through Compiler Vector Extensions in C++
S (x4.4) (x9.0)
IS} (x4 doubles, x8 floats)
:§. 1-core Standalone C++
¢ n 1.15E4 2.28E4 . .
g A ET N (x4.8) (x9.5) Main new results since vCHEP2021:
Q (x4 doubles, x8 floats)
g 1-core Standalone C++
< . 1.96E4 4.03E4 H
< 512-bit AVX512 x8.2) (%16.0) * Backport to code generation (test more complex processes)
=~ LS doubles 10 floats) —speedups seen for ee_mumu now also ~confirmed for gg_ttgg
Intel Gold 6148 CPU (Juwels Cluster HPC) —but GPU speedups decrease a bit (higher "register pressure”)

Better AV. at CERN
8 has two FMA units, Silver 4216 has one i

Achieve full theoretically possible SIMD speedup on CPUs

i T T ez || MEeesmm: x8 double, x16 float from AVX512 on high-end Intel CPUs
(gg—ttgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3
scalar (=1.00) (x0.98) * New Yeatures added for MadEvent integration
Standalone CUDA (thisgslide shows numbers from the standalone test application;
NVidia V100S-PCIE-32GB 4'8297%5 9'257)%5 segfthe final slides for performance numbers within madevent)
[iFicps*: 7.1 FPe4, 14.1 FP32) D (L,

NVidia V100 GPU + Intel Silver 4216 CPU (CERN)

(i UcL,
ICHEP, Bologna, 8 July 2022 Argggpgﬂﬁ A (@

arunh
Alamn N

Softw: nce and portability in Madgra|

* One full NVidia V100 GPU vs 1 typical CPU core gives a O(100)-O(1000) speedup
— Internally, maximizing the throughput depends on a lot of fine tuning...
— Note also that float performance is x2 double performance (twice the number of FLOPS)

C(_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 20

O(100) speedup? Don’t forget Amdahl!

mad mad mad sa/brdg

gettegeg [sec] tot = mad + MEs [TOT/sec] [MEs/sec] [MEs/sec]
nevt/grid 8192 8192 8192 8192
nevt total 98112 08112 ggl11z2 25673271
FORTRAN 1286.89 = 62.74 + 1223.35 7.8le+81 (= 1.8) 7.37es81 (= 1.8)

CUDA/8192 77.86 = 64.87 + 12.19 1.17e+83 (x16.7) 7.3%9e+83 (xlee.) 7.48e+03
nevt/grid 16384
nevt total 512#32%1
CUDA/ max 9.33e+83

 Current production MG5aMC (MadEvent/Fortran + MEs/Fortran)
— Matrix Element calculation is 95% of the overall time

* Prototype new MG5aMC (MadEvent/Fortran + MES/CUDA)
— Using a GPU speeds up the ME calculation by a factor 100 here (can do even better)
— The overall speedup is only a factor 20 - Amdahl’s law: 1/ (1.00 - 0.95)
— Currently, the bottleneck in our full prototype is still on the CPU (MadEvent)

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

21

One NVidia V100 on a 4-core Silver CPU

gt00256

0.6

Throughput variation as a function of
GPU grid size (#blocks * #threads)

0.5 1
0.4

This is the number of events
processed in parallel in one cycle

0.3 4

0.2 1
= ggttgg-sa-cuda-d-inl0 {njobsCPU=1})

=— ggttgg-sa-cuda-d-inl0 {njobsCPU=2)

Throughput (E6 events per second)

0.1 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
=— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)
O-G T T LA | T L | T L L | T T T T T
102 103 104 107 106 107

nblocksGPU * nthreadsGPU

Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau
— The numbers in the table on the previous slides are the throughput ~ at this plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed if several CPU processes use the GPU
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 22

~Z_

256 vs 32 threads per GPU block

» Very similar results, ~no change

E 0.6 -
g
b
5 037 . . .
& « Some fine tuning possible of course
5 04_
=
[1h)
o 0.3 1
o
§. 0.2 - :
= —8~ ggttgg-sa-cuda-d-inl0 (njobsCPU=1)
g‘ =@~ ggttgg-sa-cuda-d-inl0 (njobsCPU=2)
_;:':’— 0.1 A —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
= —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

0-0 T T UL T LA | T L | T AL | T L LA

10 103 104 10° 106 107

nblocksGPU * nthreadsGPU

K

g 0.6 1

o1}

73]

g 0.5

o

4

g 0.4 +

=

]

& 0.3 A

¥

.g 0.2 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=1)
g —#— ggttgg-sa-cuda-d-inl0 (njobsCPU=2)
= 0.1 —8— ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
'—

—#— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)
0.0 1 T T T T T L L LR | U L RN R | T T T T T T T rrTTg
102 103 104 10° 108 107
nblocksGPU * nthreadsGPU

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 23

One NVidia V100 on a 4-core Silver CPU

=]

o
i

=]

o
i

o

i
i

o

i
i

s 2
L*Y] 4=
1 1
e e
L*¥] 4=
1 1

=

M
1

e

rJ
1

=8~ gottgg-sa-cuda-d-inl0 (njobsCPU=1)
=~ ggttgg-sa-cuda-d-inl0 (njobsCPLU=2)

=8~ gottgg-sa-cuda-d-inl0 (njobsCPU=1)
=~ ggttgg-sa-cuda-d-inl0 (njobsCPLU=2)

Throughput (E6 events per second)
Throughput (E6 events per second)

0.1+ —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4) 0.1+ —8 ggttgg-sa-cuda-d-inl0 (njobsCPU=4)
=& gottgg-sa-cuda-d-inl0 (njobsCPU=8) =& gottgg-sa-cuda-d-inl0 (njobsCPU=8)
0.0 T T T T T T T T T T T T LR R | T 0.0 T T T T T T T T T T T T T T L R R LR | Tl
10? 10° 10% 10° 108 107 102 103 10* 102 108 107
nblocksGPU * nthreadsGPU nblocksGPU * nthreadsGPUp* njobsCPUI

« The same four curves as before — with the x-axis redefined
— Total throughput as a function of GPU grid size per CPU process times #processes

» Using several processes reaches the same throughput faster, with a small overhead
— (Does it even allow you to reach higher throughputs? To be understood...)

(\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 24
N

Why is this relevant? Heterogeneous apps
(TOY APPLICATION) / GE:::::V :\::::ow\ (LHC PRODUCTION)

NUMBERS

Previous numbers are FoRmRAn: Production MadEvent

from v0.6 container "Shmeiine. T app is heterogeneous:
(standalone app) MADEVENT MEs on the GPU,

Everything on the GPU! “ MadEvent on the CPU

« Remember: in our current CPU+GPUoffload prototype, the bottleneck is the CPU!

* One likely development in the future:
— spread out the MadEvent Fortran processing to several CPU cores in parallel
— use smaller GPU grids in each CPU process
— as per the previous slide, the overall GPU throughput should be the same (or higher?)

 The message: tuning a heterogenous CPU+GPU system depends on the application!

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 25
N

A few thoughts on GPU benchmarks

» Benchmarking GPUs for a realistic workload is in itself a complex task
—“Filling” a GPU depends on non trivial details of the hardware and the application
— Number of blocks, threads per block, register pressure, occupancy...

» Heterogeneous performance depends even more heavily on the application

» We are probably better off benchmarking CPUs and GPUs separately?

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022

~Z_

Summary and outlook

MC matrix element generators are a perfect fit for data parallelism (GPUs, SIMD)

A HEP-workloads container based on the standalone madgraph4gpu exists
— And makes it possible to easily collect a lot of useful information

CPU benchmarking is a complex multi-dimensional problem!
— Heavily-vectorized workloads stress non obvious CPU features (e.g. how many FMA units?)

For heterogenous applications, better benchmark GPUs and CPUs separately?
— Fine tuning the performance of these applications is heavily application-dependent

Our priority now is to complete the functionality of the full MadEvent-based app
— This will be the basis of a software release usable by the LHC experiments

Once that is done, a new HEP-workloads container will be built on top of that
— Analysis performance using that (possibly with Vincenzo’s tool) will be very interesting

C\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 27

~Z_

Backup slides

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 28
N

A few useful links for reference

* Previous talks about the MG5aMC benchmark container
— HEPiX benchmarking WG, 30 Aug 2022, https://indico.cern.ch/event/1164106
— HEPiX benchmarking WG, 23 Aug 2022, https://indico.cern.ch/event/1164125
— HEPiX benchmarking WG, 05 Nov 2020, https://indico.cern.ch/event/946409

» Conference talks and papers about MG5aMC on GPUs and vector CPUs
— ICHEP, 08 July 2022, https://agenda.infn.it/event/28874/contributions/169193
— VCHEP paper, 23 Aug 2021, https://doi.org/10.1051/epjconf/202125103045
— vCHEP, 15 May 2021, https://indico.cern.ch/event/948465/contributions/4323568
— HSF Workshop, 20 Nov 2020, https://indico.cern.ch/event/941278/contributions/4101793

» Software repository of madgraph4gpu
— Project repository: https://github.com/madgraph5/madgraph4gpu

C(E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 29

~Z_

https://indico.cern.ch/event/1164106
https://indico.cern.ch/event/1164125
https://indico.cern.ch/event/946409
https://agenda.infn.it/event/28874/contributions/169193
https://doi.org/10.1051/epjconf/202125103045
https://indico.cern.ch/event/948465/contributions/4323568
https://indico.cern.ch/event/941278/contributions/4101793
https://github.com/madgraph5/madgraph4gpu

Matrix element integration in MadEvent: detailed results (GPU)

Z

o mad

w

@)

—

D ggttggg [sec] tot = mad + MEs

o

&)

© nevt/grid 8192
o

<t nevt total 98112
o
=

wn FORTRAN 1286.89 = 62.74 + 1223.35
..g CUDA/8192 77.86 = 64.87 + 12.19
+

2 nevt/grid

o '8

O nevt total

o

QO --emmmmmmm--e- ‘

—

> CUDA/max

S s TIME

S MadEvent (scalar)

p

1. REDUCE THIS TO
INCREASE SPEEDUP

Software performance and portability in Madgraph5_aMC@NLO

7.01e+081 (= 1.8)
1.17e+03 (x16.7)

7.37e+01 (= 1.8)
7.30e+03 (x100.)

gattgg GPU MEs
speedup is lower than
eemumu (higher
register pressure)
3. SMALLER GPU
KERNELS TO
INCREASE SPEEDUP

ICHEP, Bologna, 8 July 2022

8k events
7.480403 dum——
: per GPU grid
16384
512*32*1

0. 330:83 «—— 10K events
per GPU grid

2. INCREASE GPU
GRIDS (REDUCE
CPU MEMORY) TO
INCREASE SPEEDUP

’_'-'T ~
Argonne @ (1 2SE@) 14

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs
S

HEPscore workshop — 20 Sep 2022

30

CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

)
Page: Detals

Current makin 8, 1, : NV i 5M Frequency: 1. : 7.0 Process: [124

NO_DIVERGENCE makin 8,1, i} It NV 1 SM Frequency: 1 : 7.0 Process: [126.

VCHEP - 19 May 2021 14

C(_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 31
N

Implementati MEs/second | MEs/second : '
N oome | " | Matrix Element (ME) calculation
©
o 1-core Standalone C++ 2.39E3 2.50E3 1 .
£ ccalar =00 | wos | IN cudacpp: results
g 1'°°1r;§ft“gggze2c“ 459E3 9.42E3 1) Eirst f devel t MEs in “cud ”
2 oSSz x1.9) wass | (1) First area of development: MEs in “cudacpp
2 1(s d’ — Single code base (#ifdef's) for C++ on CPUs and CUDA on Nvidia GPUs
vy 1.06E4 2.15E4 | SIMD vectorization on CPUs through Compiler Vector Extensions in C++
2 (x4.4) (x9.0)
IS} (x4 doubles, x8 floats)
:Q' 1-core Standalone C++
ore Stan 1.15E4 2.28E4 . :
S 256-bit” AVX512 (x4.8) (x9.5) Main new results since vCHEP2021:
o x4 doubles, x8 floats
g 1-core Standalone C++ 4.03E4 .
% 512-bit AVX512 (x16.9) » Backport to code generation (test more complex processes)
~ L& oublos XIR o2t —speedups seen for ee_mumu now also ~confirmed for gg_ttgg
Intel Gold 6148 CPU (Juwels Cluster HPC) —but GPU speedups decrease a bit (higher "register pressure")

Better AVX512/zmm results than on Intel Silver 4216 at CERN
(Gold 6148 has two FMA units, Silver 4216 has one FMA unit)

* Achieve full theoretically possible SIMD speedup on CPUs

Implementation MEs/second | MEs/second —x8 double, x16 float from AVX512 on high-end Intel CPUs
(gg— ttgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3 . .
scalar (=1.00) (x0.98) * New features added for MadEvent integration

Standalone CUDA (this slide shows numbers from the standalone test application;
NVidia V100S-PCIE-32GB e — see the final slides for performance numbers within madevent)

TFlops*: 7.1 FP64, 14.1 Fpag)| (*270) (x500)
NVidia V100 GPU + Intel Silver 4216 CPU (CERN)
) uCL

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne o '\

aaaaaaaaaaaaaaa

C(_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 32
N

ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

* Good news 1: all four implementations look similar for Nvidia in gg_ttgg!

—The benefit of direct CUDA over a PF is limited, if any at all
NVIDIAA100 — gg_ttgg

. _ _ _ ® sva " TEREN N
NB: focus on gg_ttgg which is computationally intensive! A Kokkos ®
. [l cupA e
In simpler processes like ee_mumu, performance is more affected by data 0 TF Alpaka ™
copies, memory access or kernel launching overheads (and the observed é % 10° i
SYCL implementation is faster than the CUDA one - to be understood) ﬁ 5 Py
[-
=N
104_
(gg_ttgg) 16k threads _
block 256
TV T LS TR AP
nched

Total Threads Lau

En passant, keep in mind this for later: you need at least 16k “events per GPU grid” to fill up a V100 or A100 with gg_ttgg+
— Simpler processes need even more, e.g. 500k for ee_mumu

ICHEP, Bologna, 8 July 2022

Argonne & (™))

Software performance and portability in Madgraph5_aMC@NLO

33

HEPscore workshop — 20 Sep 2022

Matrix element integration in MadEvent: results

* Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
—Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)
—Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

» Performance results = Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)
—The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)
—Amdahl’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

—~ -]
E._) Implementation Evis/second | MEs/second + o
I (99> tigg) IO e el Implemegtation Evts/second | MEs/second a g
@ | 1-core MadEvent Fortran 1.96E3 2.12E3 (99—>ttggyg) full workflow |~ MEs only O3 =
7 = = o
8 scalar (£1.00) (£1.00) 1-core MadEvent Fortran 7.01E1 7.37E1 oY
O 1-core Standalone C++ 1.72E3 1.85E3 scalar (=1.00) (=1.00) ; g g
2 el ekt b2kt Standalone CUDA 1.17E3 7.39E3 S5

- NVidia V100S-PCIE-32GB 16.7 100 2 =
. “{ezasﬁfgg'gzezc“ 3.56E3 4.08E3 e = = S @
= ol : (x1.8) (x1.9) Z c
“:'J’ (x2 doubles, x4 floats)
) 1'°°r;’586‘1?td:{?£§ G+ 6.72E3 8.80E3

- 3.4 4.2 s .

% | (x4 doubles, x8 floats) Fel (.2) Summary of performance within madevent so far:
3
© | 1-core Standalone C++ 7 08E3 9.41E3 - on CPU: ~x8 for MEs alone, ~x5 for madevent+MEs
) “256-bit” AVX512 ' :
8 (x4 doubles, x8 floats) PR bl - on GPU: ~x100-300 for MEs alone, ~x20 for madevent+MEs
o 1-core Standalone C++
< 512-bit AVX512 -
- 8 doubles, x16 floats) d (y UCL /2y

& ’ ICHEP, Bologna, 8 July 2022 Argonne & {7 w(f) 12

C\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 34

~Z_

Matrix element integration in MadEvent: detailed results (CPU)

%) mad (81952 MEs) mad mad sa/brdg
o
T SO —
Fg ggttgg [sec] tot = mad + MEs [TOT/sec] [MEs/sec] [MEs/sec]
-S 2 3 2 2 3 2 3 2 3 2 3 2 32 2 3 3 2 2 3 3 3 3 3 3 3 3 3 2 2 2 3 2 2 3 2 2 3 3 2 2 3 3 3 3 2 3 3 3 2 3 2 2 3 2 3 3 3 3 3 3 3 3 3 2 3 3 2 2 3 2 3 & 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3
% FORTRAN 41.82 = 3.23 + 38.60 1.96e+03 (= 1.0) 2.12e+03 (= 1.0) ---
g CPP/none 47.78 = 3.56 + 44.22 1.72e+03 (x ©.9) 1.85e+03 (x ©.9) 1.96e+03
-
2 CPP/sse4d 23.04 = 2.97 + 20.07 3.56e+03 (x 1.8) 4.08e+03 (x 1.9) 4.85e+03
2 CPP/avx2 12.19 = 2.88 + 9.32 6.72e+03 (x 3.4) 8.80e+03 (x 4.2) 9.24e+083
8 CPP/512y 11..57 = 2.86 + Y i) 7.88e+@83 (x 3.6) 9.41e+03 (x 4.4) 1.81e+084
v
= CPP/5122 8.26 = 2.88 + 5.38 9.92e+03 (x 5.1) 1.52e+04 (x 7.2) 1.66e+084
L R e R e T A T T T B b e ey
(_8 ----"'---'--"/4 ------------------ f --------------------------------- \- ----------------
o4 TIME Total =
o TIME THROUGHPUT
< MadEvent (scalar)
= MEs (parallel) s paRES] MEs THROUGHPUT
+ MEs (paralle e
P THROUGHPUT (within madevent) MEs
TIME MadEvent + MEs ithi dal
(within madevent) (within standalone
MadEvent (scalar) test application)
— a Gy ucL 2
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne & WA :‘:m.::\ﬂﬁ/ 13

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 35
N

"Standalone" and "MadEvent" applications

GENERIC WORKFLOW
1. STANDALONE / \ 2. MADEVENT
(TOY APPLICATION)

PSEUDO RANDOM (LHC PRODUCTION)

NUMBERS
00000000
FORTRAN:
PHASE SPACE R.A.l:l.ﬂ.A.R
SAMPLING W
MOMENTA FORTRAN:
MADEVENT

MATRIX ELEMENTS

‘\M A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 36
N

What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”) a 0

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
L PSEUDO\RANDOM ELEMENT
1 NUMBERS GENERATOR
Output: random numbers i’ (e.g. MG5aMC)
) > PHASE SPACE
Input: random numbers .) HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
(e.g. PYTHIA)
3.
Input: particle 4-momenta : s:mggs
Output: Matrix Element (ME) PHASE SPACE W
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT_i, W_i} = AND DECAY
A -: : -
U T i PARTICLE
%, MONTE CARLO MONTE CARLO Ei FILTERING
INTEGRATION UNWEIGHTING ni
: 2 - ok
v w i DETECTOR
_ _ CROSS-SECTIONS etc... ~ UNWEIGHTED EVENTS :ii SIMULATION
(NB: Matrix Element is an (AVG W _i, MAX W _i) {EVT i, W_i=1}
element of the scattering matrix... H (GEANT4)

almost no linear algebra here!)

A. Valassi — Reengineering Madgraph5_aMC®@NLO for GPUs and vector CPUs vVCHEP — 19 May 2021

C_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022
N

37

Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python
— The more patrticles in the collision, the more Feynman diagrams and the more lines of code

>_<—< >_<<< >_< >_<<< Process LOC functions function calls

ete” - utu 776 8 16
- e o gg — tig 1082 36 106

e s as gg — tigg 1985 222 786

\\?‘)' NN

\\ DRI X
DEVELOP
"y

2)

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e— w1 (two diagrams, few lines of C++"cod

—(2,3) Add CUDA and improve C++, port upstream to Python meta-code
— (4) Generate more complex LHC processes gg— tt, ttg, ttgg . .
epoch” UPSTREAM

— Add missing functionality, fix issues, improve performance, iterate
1. IXXXXX 1. IXXXXX 1. IXXXXX 1. IXXXXX

PRODUCE
\\ SAME

\ AUTO-GENERATED
CUDA/C++ CODE

(\F/“W A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP - 19 May 2021
L

3. FFV1_0
2. FFV1PO_3

1. OXXXXX 1. OXXXXX

‘\E/RW A. Valassi — MG5aMC on GPUs and vector CPUs HEPscore workshop — 20 Sep 2022 38
N4

A complex outer shell — with a CPU-intensive core: the ME

* To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)

— A complex software infrastructure with many functionalities and a stable user interface

Resst Search

Flame Graph

Python

madevent (Fortran + external libraries)

MATRIX ELEMENT i
calculation (Fortran) ;
4 it

Gridpack to generate

100k gg—ttgg events
(./run.sh 100000 1)

[
I { I
Function:

matrixi_ (76,239 samples, 42.00%)

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

gg — tt g9 — ttgg g9 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

(Mattelaer, Ostrolenk — https://arxiv.org/abs/2102.00773)

VCHEP — 19 May 2021

”/"W A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs

\\
N

HEPscore workshop — 20 Sep 2022 39

Cﬁw A. Valassi — MG5aMC on GPUs and vector CPUs

\
~Z_

Event-level parallelism in practice — coding and #events
Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

CUDA (GPU) implementation
— For SIMT, event loop is “orthogonal”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

C++ (CPU) implementation
— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

To be efficient, CUDA needs O(10k)-O(1M) events in parallel — much more than C++!

— CUDA: lockstep within each warp (32 threads) + many warps in parallel to fill the GPU
— C++ lockstep within a vector register (2-8 doubles) + multi-threading or multi-processing

E hl‘)sa = L 00000 | ee [| o N e %S =
I<E 128 T 128 AN @
'5 12. : Double precision e Double precision §
e a NVidia V100 . NVidia V100 v =2
g = (2560 FP64 cores) > (2560 FP6&4 cores) &
o “E"' 35 >
€5 ! - 2
= T
= " | et'e>prp — 7E8 MEs/s [gg—tt —5E5 MEs/s | 8
= L e for 500k MEs in parallel e for 16k MEs in parallel | £
FEVENTSINPARALLEL periteration | mThvsadsPecmlck hamBlockaperr)

#Threads Per Block * #Blocks

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector GPUs vCHEP — 19 May 2021 12

C_E/RW A. Valassi — MG5aMC on GPUs and vector CPUs
S

HEPscore workshop — 20 Sep 2022 40

CUDA/C++: ME code example (complex number scalar/vector)

Formally the same code for three back-ends (cxtype sv represents three types)

- CUDA: scalar complex — (typedef thrust::complex<fptype> cxtype; // two doubles: RI
- C++, no SIMD: scalar complex — |typedef std::complex<fptype> cxtype; // two doubles: RI

- C++, with SIMD: vector complex — | class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA

_ device__ e u FFV1 O:
void FFV1_@(const Fl[], // input: wavefunctioni[e] 1 IXKXXX 1. TXXXXX heli " .
- : elicity amplitude
const cxtype sv F2[], // input: wavefunction2[6] for th Y _+;? t
const cxtype sv V3[], // input: wavefunction3[6] (a) 3. Frvi_o|| Torthe yuru vertex
> FEVIRO-3 Soon to be

const cxtype COUP, 1. OXXXXX

1. OXXXXX automatically generated

cxtype _sv¥ vertex) // output: amplitude

mgDebug(®, _ FUNCTION__);
const cxtype cI(@., 1.);

const cxtype _sv TMPO = (F1[2] * (F2[4] * (Vv3[2] + V3[5]) + F2[5] * (V3[3] + cI * (v3[4]))) + “+" is the usual sum of two
(F1[3] * (F2[4] * (V3[23] - cI * (V3[4])) + F2[5] * (Vv3[2] - V3[5])) + (thrust/std) scalar complex,
(F1[4] * (F2[2] * (v3[2] - V3[5]) - F2[3] * (V3[3] + cI * (v3[4]))) + or the user defined sum of

eI * (v3[4])) + F2[3] * (v3[2] + V3[S]))))); two vector complex

inline

Fl[S] = (F2[2] * (—V3[3]
(*vertex) = COUP * - cI * TMPO@;
mgDebug(1, _ FUNCTION__);

cxtype v operator+(const cxtype v& a, const cxtype v& b)

{

return cxmake(a.real() + b.real(), a.imag() + b.imag());

¥

return;

#ifdef _ clang__

C++ SIMD.- gCC/CIang typedef fptype fptype_v _ attribute_ ((ext_vector_type(neppV))); // RRRR

. . #el
compiler vector extensions " °*° _ . .
typedef fptype fptype_v _ attribute_ ((vector_size (neppV*sizeof(fptype)))); // RRRR

#endif

\m A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 13

HEPscore workshop — 20 Sep 2022 41

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

« Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—pu*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are (number of MEs) / (time for ME calculation + ME copy)

NVTX |

00 CudaFree [325.083 ms]
CUDA AP1

’3""“"“ = llllllllllllllllllll&‘fmsml -
adsor| (ad =" 4 . l l ll I . I ' II {E_-.;' __ oxdaDeviceReset

| cudaFree § lox
ZOOM (ME calculation ~ ME copv)

ete >ty
X
CUDA APL

3 G 051

» But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

NVTX O | BT 8 s siomsin {1 |32 Somakin [1

CEmeTTa TS e e e
CUDA AP [| (EErEa) cdabevicesy.) (cdabevkesy . | [uemmacesy v 5y Devicesy. | (cudaDes

~ZOOM (ME calculation >> MEcopy)

3 CpOTHmes [381.898 ps]
CUDA AP

ggtigg

48 DumpL.oop [3.945 ms]

. . S) S5 |

CERN

\/"W A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs
S

VCHEP - 19 May 2021 15

‘\ﬁw A. Valassi — MG5aMC on GPUs and vector CPUs

~Z_

HEPscore workshop — 20 Sep 2022 42

