

HEPscore Workshop: Study of MLPF-based GPU benchmarking

Eduard Cuba, David Southwick Eric Wulff, Maria Girone September 20, 2022

The role of AI workloads in HEP

Increasing interest in ML for event reconstruction due to

- Increased data volume and processing requirements
- Possibly better scalability
- Data-driven
- Use-cases at ATLAS, CMS, LHCb, ALICE
- \rightarrow Changing paradigm and new requirements for HPC
- \rightarrow Resource intensive training, efficient inference

Example event

Bottleneck: Large matrix multiplications

 \rightarrow Accelerators required

HEPscore Workshop 2022

 \rightarrow GPUs: Optimized for parallel computing

Massive parallelism (6912 cores @ Nvidia A100)

- divide and conquer mechanism using high number of computing cores (more than provided by CPUs)
- possibly multiple GPUs per node

Matrix multiplication on GPU

Benchmark definition

ML workflow: First training, then inference.

Training goal: learn a function from training data, such that it generalizes well to unseen data.

Take an ML model (e.g. neural network) and select:

- > architecture (layers, activation functions)
- > dataset
- > optimizer, loss function
- > number of epochs (passes through the dataset)
- batch size (samples per weight update step)
- \rightarrow We get an execution graph
- \rightarrow Perform a fixed number of executions
- \rightarrow Compute benchmark metrics

HEPscore Workshop 2022

Benchmarking goals

Measure how fast and efficiently we can train on the given hardware

- does it fit? can this HW train the model?
- how fast does it train? >
- how much does it cost?

Metrics of interest:

- training time (on a fixed dataset and num. of epochs) events per second (throughput)

 \rightarrow Find the best hardware for training the model

(a) Results on Tesla K80.

Benchmarking of AlexNet-S on TeslaK80 GPU using different ML frameworks.

Figure source: [2] Wulff et. al. (2022): <u>https://arxiv.org/abs/2203.01112</u>6

HEPscore Workshop 2022

MLPF: Machine-Learned Particle-Flow

Graph Neural Network (GNN) for particle-flow reconstruction.

- Representative AI workflow in HEP
 Experience with training and hyperparameter tuning within the RAISE project [2]
 - 4 NVIDIA A100 series GPUs per node took -75k core-hours, 83 hours on 12 nodes

MLPF-based benchmark shows feasibility of training HEP AI applications on HPC hardware.

Previous hypertuning results from ACAT 2021, thanks to the CMS collaboration

Approach ML/AI workloads as repeatable benchmark

- Containerized in similar manner to traditional CPU benchmarks (Docker, Singularity)
- Support (multi) GPU accelerators
- Allow configuration (number of GPUs, batch size, etc.)
- Report metrics in a HEPscore compatible format
- Small dataset portion (~1GB) within the container
- Using a subset of a public Delphes dataset (Pata et. al., 2021 [3], <u>https://zenodo.org/record/4559324</u>)

Benchmark integration

Benchmark metrics

Inspired by the events/second processed used in HEPiX CPU jobs

- \rightarrow events as training samples in the ML context
- → throughout (training samples/second)
- \rightarrow = batch_size * batches_per_second

Additionally, report epoch time \rightarrow epoch: one pass through the dataset

Hardware	Mean Epoch time	Mean Throughput
Intel Xeon Gold 6148 40-Core	365.3 s	3.01 eps
2 x AMD EPYC 7742 64-Core	780.7 s	1.41 eps
Intel Xeon Platinum 8358 + 4 x NVIDIA A100 40GB	13.48 s	128.5 eps

Reproducibility

Same computational graph on each platform

- results are platform independent (in model accuracy)
 - as long as the hyper-parameters are the same (batch size, lr, optimizer...)
- network training uses randomness
 - fix the random seeds for weight initialization and optimizer
 - same workflow executed -> same results
- minor differences in FP representations
 - potentially different order of operations (math kernel, massive parallelism)

Reproducibility results

Validation accuracy (1100 events, batch size 16, 5 epochs), 2 runs:

Metric	Nvidia V100	Nvidia A100	Intel Skylake 40-core	AMD Rome 128-core
Validation Accuracy	0.9576	0.957 9	0.9576	0.9576
	0.9576	0.957 8	0.9576	0.9576
Mean throughput	16.70	45.68	3.02	2.00
[e/s]	16.70	45.60	3.01	1.90
Mean epoch time	65.87	24.08	364.47	549.32
[s]	65.88	24.12	365.65	579.43

- 0.01% difference in validation accuracy on GPUs

Tests performed on native (AMD), Intel and Nvidia tensorflow backends.

Scalability studies

Benchmarking is focused on single nodes

possibly with multiple GPUs

Benchmarking of multi-node jobs is not supported

We explored scalability effects in training to large numbers of nodes in actual training

 scaling is near linear for smaller number of nodes

HOROVOD

Discussion

Now: Applicable on single nodes (with multiple GPUs)

Open questions:

- Adjusting configuration for data-parallelism
 - batch size for multiple GPUs
 - batch size for large or small memory GPUs
 - leads to different model results?
 - dataset needs to be large enough

Conclusions

First ML/AI workloads for HEPiX benchmark working group introduced

- > train the same AI model (e.g. MLPF) in a fixed setting on different platforms
- test feasibility of training / tuning HEP-driven AI applications on HPC hardware
- growing support for heterogeneous workloads in the benchmarking suite

We can investigate questions like:

- > how fast and efficiently can we train this AI models on this platform
- what is the required compute time
- > what is the impact of HW settings on the performance (e.g. clock speed)

[1] Pata, J., Duarte, J., Vlimant, J.-R., Pierini, M., and Spiropulu, M., "MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks", European Physical Journal C, vol. 81, no. 5, 2021. doi:10.1140/epjc/s10052-021-09158-w.

[2] Wulff, E., Girone, M., and Pata, J., "Hyperparameter optimization of data-driven AI models on HPC systems", arXiv e-prints, 2022. <u>https://arxiv.org/abs/2101.08578</u>

[3] Pata, Joosep, Duarte, Javier Mauricio, Vlimant, Jean-Roch, Pierini, Maurizio, & Spiropulu, Maria. (2021). Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 for machine learned particle flow (MLPF) (v1.1) [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.4559324</u>

drive. enable. innovate.

The CoE RAISE project has received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

15