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The role of AI workloads in HEP

Increasing interest in ML for event reconstruction due to

➢ Increased data volume and processing 
requirements

➢ Possibly better scalability
➢ Data-driven
➢ Use-cases at ATLAS, CMS, LHCb, ALICE

→ Changing paradigm and new requirements for HPC

→ Resource intensive training, efficient inference

2Figure source: [1] Pata et. al. (2021): https://arxiv.org/abs/2101.08578

Example event

https://arxiv.org/abs/2101.08578
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Matrix multiplication on GPU

3

Bottleneck: Large matrix multiplications

→ Accelerators required

→ GPUs: Optimized for parallel computing

Massive parallelism (6912 cores @ Nvidia A100)

➢ divide and conquer mechanism using high 
number of computing cores (more than 
provided by CPUs)

➢ possibly multiple GPUs per node

Figure source: GPU Programming with CUDA @ JSC, 24. - 26. April 2017
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Benchmark definition
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ML workflow: First training, then inference.

Training goal: learn a function from training data, such 
that it generalizes well to unseen data.

Take an ML model (e.g. neural network) and select:

➢ architecture (layers, activation functions)
➢ dataset
➢ optimizer, loss function
➢ number of epochs (passes through the dataset)
➢ batch size (samples per weight update step)

→ We get an execution graph

→ Perform a fixed number of executions

→ Compute benchmark metrics
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Benchmarking goals

5Figure source: https://arxiv.org/abs/1608.07249

Measure how fast and efficiently we can train on the given 
hardware

➢ does it fit? can this HW train the model?
➢ how fast does it train? 
➢ how much does it cost?

Metrics of interest:

➢ training time (on a fixed dataset and num. of epochs)
➢ events per second (throughput)

→ Find the best hardware for training the model

Benchmarking of AlexNet-S on TeslaK80 GPU using 
different ML frameworks.
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MLPF: Machine-Learned Particle-Flow

Graph Neural Network (GNN) for particle-flow 
reconstruction.

➢ Representative AI workflow in HEP
➢ Experience with training and hyperparameter 

tuning within the RAISE project [2]
○ 4 NVIDIA A100 series GPUs per node took 

~75k core-hours, 83 hours on 12 nodes

MLPF-based benchmark shows feasibility of training HEP 
AI applications on HPC hardware.

6Figure source: [2] Wulff et. al. (2022): https://arxiv.org/abs/2203.01112

Previous hypertuning results from ACAT 2021, thanks 
to the CMS collaboration

https://arxiv.org/abs/2203.01112


 

Benchmark integration

Approach ML/AI workloads as repeatable benchmark

➢ Containerized in similar manner to traditional CPU 
benchmarks (Docker, Singularity)

➢ Support (multi) GPU accelerators

➢ Allow configuration (number of GPUs, batch size, etc.)

➢ Report metrics in a HEPscore compatible format

➢ Small dataset portion (~1GB) within the container

➢ Using a subset of a public Delphes dataset (Pata et. al., 
2021 [3], https://zenodo.org/record/4559324)

7HEPscore Workshop 2022 Figure source: https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite

https://zenodo.org/record/4559324
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Benchmark metrics

Inspired by the events/second processed used in 
HEPiX CPU jobs

→ events as training samples in the ML context

→ throughout (training samples/second)

→ = batch_size * batches_per_second

Additionally, report epoch time

→ epoch: one pass through the dataset
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Hardware Mean Epoch 
time

Mean 
Throughput

Intel Xeon Gold 6148 
40-Core

365.3 s 3.01 eps

2 x AMD EPYC 7742 
64-Core

780.7 s 1.41 eps

Intel Xeon Platinum 8358 + 
4 x NVIDIA A100 40GB

13.48 s 128.5 eps
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Reproducibility
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Same computational graph on each platform

➢ results are platform independent (in model accuracy)
○ as long as the hyper-parameters are the same (batch size, lr, 

optimizer…)

➢ network training uses randomness
○ fix the random seeds for weight initialization and 

optimizer
○ same workflow executed ~> same results

➢ minor differences in FP representations
○ potentially different order of operations (math kernel, massive 

parallelism)
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Reproducibility results
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Metric Nvidia V100 Nvidia A100 Intel Skylake 40-core AMD Rome 128-core

Validation Accuracy 0.9576
0.9576

0.9579
0.9578

0.9576
0.9576

0.9576
0.9576

Mean throughput
[e/s]

16.70
16.70

45.68
45.60

3.02
3.01

2.00
1.90

Mean epoch time
[s]

65.87
65.88

24.08
24.12

364.47
365.65

549.32
579.43

~ 0.01% difference in validation accuracy on GPUs

Tests performed on native (AMD), Intel and Nvidia tensorflow backends.

Validation accuracy (1100 events, batch size 16, 5 epochs), 2 runs:
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Scalability studies

Benchmarking is focused on single nodes

➢ possibly with multiple GPUs

Benchmarking of multi-node jobs is not 
supported

We explored scalability effects in training to 
large numbers of nodes in actual training

➢ scaling is near linear for smaller number 
of nodes 
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Data-parallel training of MLPF using Horovod
on JUWELS Booster, 4xGPU per node
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Discussion

Now: Applicable on single nodes (with multiple GPUs)

Open questions:

➢ Adjusting configuration for data-parallelism 
○ batch size for multiple GPUs
○ batch size for large or small memory GPUs
○ leads to different model results?
○ dataset needs to be large enough
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Conclusions

First ML/AI workloads for HEPiX benchmark working group introduced

➢ train the same AI model (e.g. MLPF) in a fixed setting on different platforms
➢ test feasibility of training / tuning HEP-driven AI applications on HPC hardware
➢ growing support for heterogeneous workloads in the benchmarking suite

We can investigate questions like:

➢ how fast and efficiently can we train this AI models on this platform
➢ what is the required compute time
➢ what is the impact of HW settings on the performance (e.g. clock speed)

13HEPscore Workshop 2022
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