
Power Efficiency: x86 vs ARM
(recap and outlook)

Dr. Emanuele Simili HEPiX WorkShop 20 September 2022

• Power comparison x86_64 & arm64

- Available hardware (Glasgow + Leichester)

- Power reading & exporter tools

- Benchmarks & results (ATLAS)

- Limitations

• Outlook

- New hardware at Glasgow

- Looking forward to HEP-Score

Outline
(transitional talk)

Original slides:

https://indico.cern.ch/event/1128343/contributions/4787174/attachments/2412950/4129612/PowA_GridPP47.pdf

https://indico.cern.ch/event/1128343/contributions/4787174/attachments/2412950/4129612/PowA_GridPP47.pdf

Leveraging the hardware available at Glasgow and Leicester, we have compared the
power efficiency and execution speed of different architectures under similar loads.
The study was limited in scope, it only involved two remote arm64 machines and two
local x86_64 machines of different generations.

Various benchmarks have been executed and several job profiles were collected
(memory, CPU, power). The benchmarks included a BASH script, compiled C code and
two different types of ATLAS full Geant4 MT simulations (where possible).

No substantial differences in power consumption were found among the architectures
under exam, despite these being expected from different generations of processors.

Results are far from conclusive. Moreover, the whole study suffered from some obvious
limitations (#), which must be addressed in the future ...

Abstract (old)

ScotGrid Glasgow:
Emanuele Simili, Gordon Stewart, Samuel Skipsey, David Britton

Special Thanks:
Davide Costanzo (Sheffield), Oana Boeriu (CERN), Johannes Elmsheuser (CERN),

Jon Wakelin (Leicester) and the Excalibur Project

DELL Epyc (Glasgow)
DELL PowerEdge C6525
2 * 32cores Epyc x86_64 CPUs & 512GB RAM (128 threads)

HP Xeon (Glasgow)
HP ProLiant DL60 Gen9
2 * 10cores Xeon x86_64 CPUs and 156GB RAM (40 threads)

ARM+GPU (Leicester)
Ampere Q80
Neoverse-N1 arm64 CPU & 512GB RAM (80 threads)
+ 2 * Nvidia A100 (40GB) GPUs

ARM (Leicester)
HPE CN99XX
2 * 112cores arm64 Cavium ThunderX2 CPUs & 256GB RAM (224 threads)

Available Hardware (old)

Power readings were achieved by two custom scripts, to collect and export metrics
such as CPU, RAM and IPMI Power Usage:

1) Every 30 seconds, a cron job (root) exports IPMI power reading with timestamp to
/tmp/ipmidump.txt (… because IPMItool requires root privileges).
The Cavium ARM machine has a custom Kernel module (tx2mon *) in place of IPMI.

2) Before starting the job, I (user) run a background script that grabs these IPMI
readings, attaches more info (CPU, RAM) and appends them to a CSV file.
On the ARM+GPU machine I use also nvidia-smi to grab the GPUs’ power usage.

When the job is done, the CSV file is exported to Excel for analysis and visualization.
So … most of the analysis was painfully done in MS Excel

The exact same apparatus has been installed on both remote and local machines, in
order to get the same type of data for an easier comparison.

Power Readings

https://github.com/Marvell-SPBU/tx2mon(*)

Next time will use ROOT !

Various benchmarks were attempted, where possible.
All benchmarks used some sort of multithreading (OMP, G4MT):

- Prime number sieve (BASH script): prime numbers up to 1 M (78’498 primes)

- Prime number sieve (C with OMP): prime numbers up to 100 M (5’761’455 primes)

- Large Matrix Multiplication (C with OMP): 20k * 20k random matrix (int & double)

- Full G4MT ATLAS Simulation (TTbar & Charginos): 1k and 10k events

Benchmarks & Results (old)

x86 arm64

DELL PowerEdge C6525 HP ProLiant DL60 Gen9 HPE CN99XX Ampere Q80

bash Prime Number Sieve (bash) 4.45 kW*h , 18 h 3.14 kW*h , 23 h 4.55 kW*h , 31 h 0.68 kW*h , 2 h

compiled Prime Number Sieve (C + OMP) 1.2 kW*h , 5 h 2.3 kW*h , 13 h 1.5 kW*h , 9 h 0.8 kW*h , 2 h

Large Matrix Multiplication (int) 0.14 kW*h , 30 min 0.37 kW*h , 2 h 0.33 kW*h , 2 h 0.45 kW*h , 1 h

Large Matrix Multiplication (float) 0.12 kW*h , 30 min 0.2 kW*h , 1 h 0.3 kW*h , 2 h 0.27 kW*h , 45 min

AthSimulation ATLAS TTbar (1k events) 0.2 kW*h , 35 min skipped not possible 0.23 kW*h , 35 min

ATLAS TTbar (10k events) 0.86 kW*h , 2 h 30 min skipped not possible 0.95 kW*h , 2 h 30 min

ATLAS Decaying Charginos (10k events) 0.55 kW*h , 1 h 30 min skipped not possible 0.68 kW*h , 1 h 45 min

I will not present all sets of results here. Please refer to the original slides presented at GridPP47.

https://indico.cern.ch/event/1128343/contributions/4787174/attachments/2412950/4129612/PowA_GridPP47.pdf

We tried full ATLAS simulation as our HEP benchmark. It has been challenging:

- Athena is a colossal piece of software, and we had very limited experience with it (*)

- It was not easy to run it standalone by a non root user …
- It relies on CVMFS and picks up packages from several repos
- It uses Singularity (we found it easier to run in a container)

- As a non-initiated ATLAS user, it has been hard to find a stable version …
- Stable releases are not compiled for ARM (https://bigpanda.cern.ch/globalview/)
- I had to rely on nightly builds, which eventually disappear after a month (#)

- Also, not sure we used the best workload …
- Full G4 TTbar and Decaying Charginos test jobs (see .sh)
- Hand-crafted combination of flags o achieve multithreading
- There was no validation of the produced data (ROOT file readable)

(*) Luckily, a new colleague has just joined ScotGrid Glasgow, he used to work in ATLAS.
He will help to define an ATLAS workload that works on both architectures.

(#) Unless you bother the right people

About ATLAS

ATHENA_CORE_NUMBER=128

Sim_tf.py \ …
--simulator 'FullG4MT’
--multithreaded True

Simulation Inputs
#!/bin/sh

export ATHENA_CORE_NUMBER=128
export TRF_ECHO=1
export MAXEVENTS=10000

Sim_tf.py \
--conditionsTag 'default:OFLCOND-MC16-SDR-14' \
--physicsList 'FTFP_BERT_ATL' \
--truthStrategy 'MC15aPlus' \
--simulator 'FullG4MT' \
--postInclude 'default:PyJobTransforms/UseFrontier.py' \
--preInclude
'EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,SimulationJobOptions/preInclude.FrozenS
howersFCalOnly.py' \
--preExec 'EVNTtoHITS:simFlags.TightMuonStepping=True' \
--DataRunNumber '284500' \
--geometryVersion 'default:ATLAS-R2-2016-01-00-01' \
--inputEVNTFile "/cvmfs/atlas-nightlies.cern.ch/repo/data/data-
art/SimCoreTests/valid1.410000.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_nonallhad.evgen.EVNT.e4993
.EVNT.08166201._000012.pool.root.1" \
--outputHITSFile "TTbar2022.HITS.pool.root" \
--imf False \
--maxEvents $MAXEVENTS \
--multithreaded True

TTbar_10k.sh

#!/bin/sh

export ATHENA_CORE_NUMBER=128
export TRF_ECHO=1
export MAXEVENTS=10000

Sim_tf.py \
--conditionsTag 'default:OFLCOND-MC16-SDR-14' \
--physicsList 'FTFP_BERT_ATL' \
--truthStrategy 'MC15aPlusLLP' \
--simulator 'FullG4MT' \
--postInclude 'default:PyJobTransforms/UseFrontier.py' \
--preInclude
'EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,SimulationJobOptions/preInclude.FrozenS
howersFCalOnly.py' \
--DataRunNumber '284500' \
--geometryVersion 'default:ATLAS-R2-2016-01-00-01' \
--inputEVNTFile "/cvmfs/atlas-nightlies.cern.ch/repo/data/data-
art/SimCoreTests/mc15_13TeV.448307.MGPy8EG_A14N23LO_mAMSB_C1C1_5000_208000_LL4p0_MET60.evgen.EVNT.e
6962.EVNT.15631425._000001.pool.root.1" \
--outputHITSFile "DeCh_HITS.pool.root" \
--maxEvents $MAXEVENTS \
--imf False \
--multithreaded True

DeCh _10k.sh

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_x86_64-centos7-
gcc11-opt/2022-01-29T2101/AthSimulation/22.0.53/InstallArea/x86_64-centos7-
gcc11-opt/bin/test_RUN3_FullG4_ttbar_2evts.sh

The chosen version of the software: AthSimulation/22.0.53

(nightly builds were available for both x86_64 and aarch64)

ATLAS Simulations

$ export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase

$ alias setupATLAS='source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh’

$ setupATLAS -c centos7

Singularity> asetup AthSimulation,master,r2022-01-29T2101

Singularity> ./TTbar_10k.sh

...

Using AthSimulation/22.0.53 [cmake] with platform aarch64-centos7-gcc8-opt at

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_aarch64-centos7-gcc8-opt/2022-01-29T2101

Using AthSimulation/22.0.53 [cmake] with platform x86_64-centos7-gcc11-opt at

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_x86_64-centos7-gcc11-opt/2022-01-29T2101

Setting up the ATLAS framework with Singularity and CVMFS:

ARM+GPU

DELL Epyc

First Results (ATLAS 1k)

First look into an ATLAS simulation (TTbar, 1k events),
comparing DELL Epyc with ARM+GPU
TTbar 1k

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 0.63 0.197 366 152 0.1007

ARM+GPU 80 0.69 0.278 468 275 67 0.0879

GPU subtracted 0.69 0.232 401 208 67 0.0000

DELL Epyx ARM+GPU

TTbar 1,000 1,000events

Total time: 00 00:38:00 00 00:41:31min

2,280 2,491sec

Per event: 2.2800 2.4910sec/event

0.44 0.40event/sec

Total energy: 709,200.00 1,001,640.00Joules

0.20 0.28kW*h

Energy/Event: 709.20 1,001.64J/event

0.1970 0.2782W*h/event

Average Power 307.01 402.27W

Max Power 366.00 468.00W

Min Power 151.00 268.00W

Idle (estimate) 152.00 275.00W

GPUs (average) 67.27W

Idle subtracted: 152.00 275.00W

Total energy: 362,640.00 316,615.00Joules

0.10 0.09kW*h

Energy/Event: 362.64 316.61J/event

0.101 0.09W*h/event

Average Power 155.01 127.27W

GPU subtracted: 67.27W

GPU Total: 167,499.30Joules

0.05kW*h

Total energy: 834,140.70Joules

0.23kW*h

Energy/Event: 834.14J/event

0.23W*h/event

Average Power 335.00W

(*) The energy/event tends to decrease with a larger simulation.
E.g., total energy of the 10k simulation is about 4 times the 1k …

(*)

What a large idle !

Job Profiles (ATLAS 10k)

ARM+GPU

DELL Epyc

What a large idle !

Results (ATLAS 10k)
In both cases, the execution times are very similar, especially after subtracting the GPU.

The DELL Epyc looks slightly more energy efficient.
TTbar

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 2.45 0.858 371 150 0.4908

ARM+GPU 80 2.48 1.114 474 274 67 0.4338

GPU subtracted 2.48 0.949 407 207 0 0.0000

Charginos

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 1.60 0.555 370 148 0.3182

ARM+GPU 80 1.86 0.811 465 263 69 0.3223

GPU subtracted 1.86 0.683 396 194 0 0.0000

Results (ATLAS 10k)
Or … to account for the different idle consumption, we can subtract it from the total and
compare the energy in excess of idle:

…

TTbar

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 2.45 0.858 371 150 0.4908

ARM+GPU 80 2.48 1.114 474 274 67 0.4338

GPU subtracted 2.48 0.949 407 207 0

Charginos

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 1.60 0.555 370 148 0.3182

ARM+GPU 80 1.86 0.811 465 263 69 0.3223

GPU subtracted 1.86 0.683 396 194 0

When we subtract the idle, the ARM+GPU machine looks slightly more power
efficient.

However, this procedure might be questionable …

(#) There were obvious limitations to this approach, which relied on resources at two different
geographical locations: local x86 machines (Glasgow) & remote ARM machines at Leicester.

- In Glasgow I have full sys-admin control, at Leicester I was just a normal user with limited
privileges. Therefore, I had limited control over the activity of these remote machines, and
indeed we could see different levels of usage depending on the day/time.

- Machines have very different hardware, in particular the ARM+GPU node at Leicester that
can run ATLAS had 2 powerful Nvidia Ampere GPUs just sitting and increasing the idle.

- Power measurements were mainly read by IPMI tools interacting with different hardware,
and in one case with a custom tool (tx2mon on Cavium). So, readings might not be directly
comparable, and there was no validation of power data (e.g., an external power-meter).

- The ARM+GPU machine was accessed through Slurm (which adds an extra layer).
I could send my job requests with the flag --exclusive, which gave me some sort of priority.

- Cooling was totally neglected: more watts go in, more heat comes out. This might be an
important factor for the overall power required by the data center (including coolers).

Limitations (old)

To address the limitation of our previous study on efficiency and power consumption
(ref. GridPP47), we have purchased two new servers with almost identical hardware
specs but different CPU architectures: arm64 and x86_64.

This will allow us to re-run the various benchmarks while comparing power
consumption in a very controlled environment, where all variables can be accounted
for (e.g., raw PDU power output, cooling, …), and where we have access to the full
range of machine metrics (node_exporter).

As we have done before, we will run different benchmarks including BASH scripts,
compiled C programs, ATLAS simulations (*) and possibly HEP-Score (**).

Results will hopefully make more sense than previous ones (***), and they will be
presented at ACAT 2022 next month (****).

(*) This time we have ATLAS people to provide an actual workload

(**) ARM builds of some benchmarks are already available (CMS, ATLAS)

(***) E.g., we already see a huge difference in idle (AMD almost twice than ARM)

(****) Both servers arrived (with huge delay), and work is in progress

Outlook

x86_64: Single AMD EPYC 7003 series processor family
Server: AMD EPYC 7003 UP Server System (SuperMicro)
CPU: AMD EPYC 7643 48 core 96 Thread 2.3GHz processor
RAM: 256GB (16 x 16 GB) DDR4 3200MHz ECC Registered memory
Storage: 3.84TB Samsung PM9A3 M.2 (2280)

arm64: Single socket Ampere Altra MAX Processor
Server: ARM 1U Rackmount Server system
CPU: ARM Q80-30 80 core 210W TDP processor
RAM: 256GB (16 x 16 GB) DDR4 3200MHz ECC Registered memory
Storage: 3.84TB Samsung PM9A3 M.2 (2280)

Purchased Hardware

DELL Epyc (Glasgow)
DELL PowerEdge C6525
2 * 32cores Epyc x86_64 CPUs & 512GB RAM (128 threads)

HP Xeon (Glasgow)
HP ProLiant DL60 Gen9
2 * 10cores Xeon x86_64 CPUs and 156GB RAM (40 threads)

Already available @ Glasgow:

… old and cranky

Available benchmarks (already implemented/tested):

- Prime number sieve (BASH script)

- Prime number sieve (C with OMP)

- Large Matrix Multiplication (C with OMP) and/or other compiled operations

- Full G4MT ATLAS Simulation (~ in progress)

Other benchmarks (to implement/test):

- HEP-Score / HEP Benchmark suite (~ if available)

- I/O bound jobs (e.g., run ATLAS analysis on a remote data set)

- CPU intensive Python tasks (e.g., PyTorch on CPU)

- Other experiments …

I am still open to any suggestions and criticism on what / how I should run !

Benchmarks (new)

I started talking with the HEP-Score Working Group before the summer, because of
mutual interest and partial overlap with my current research on power efficiency:

- I wish to use HEP-Score as a standard HEP workload to rate different architectures
on power consumption and execution efficiency

- I can help testing the HEP-Score on different architectures (x86, ARM, and
hopefully GPU - we already have one waiting :)

- It would be good to include the power readings in the standard output of HEP-Score
(peak / idle power and integrated energy consumption for a given load) *

* This is becoming increasingly important for future hardware procurement !

HEP-Score & me

So far, I have been able to successfully run the HEP-score on all types of hardware at
Glasgow (except ARM). Results submitted to the global Kibana dashboard at CERN.

Local HEP-score results (UKI-SCOTGRID-GLASGOW):

d20 (DELL PowerEdge C6525, 2020) score: 2060.4333

d21 (DELL PowerEdge C6525, 2021) score: 1983.4387

d22 (DELL PowerEdge C6525, 2022) score: 2141.87

h17 (HP ProLiant DL60 Gen9, 2017) score: 451.9846

h16 (HP ProLiant DL60 Gen9, 2016) score: 368.671

s15 (SuperMicro SYS-6028TR-HTR, 2015) score: 389.7718

GPU (DELL PowerEdge R7525 + 2x Nvidia A100, 2022) score: 1906.9971 (CPU only)

I did not calculate the total score of our site just yet …

HEP-Scores @ Glasgow

Thanks.

Dr. Emanuele Simili HEPiX WorkShop 20 September 2022

Local power readings and resource usage is extracted by node_exporter
(which can be customized with any metric).

Visualization (local)

WorkerNode View

Data is colourfully visualised in

a custom Grafana dashboard,

and can be exported to CSV

format via the Prometheus API

and analysed in ROOT

Eratostene’s prime number sieve in C compiled with OMP to find primes up to 100 M

- Code from the web (*)

- Compiled on each machine with gcc and the OMP library

- It is executed while collecting metrics

C Sieve

$./get2IPMI.sh > ipminfo.csv

$ gcc -fopenmp mtprime.c

$./a.out

#include <omp.h>
...

#pragma omp parallel for schedule(dynamic) reduction(+ : primes)
for (num = 1; num <= limit; num++)
{

...

https://stackoverflow.com/questions/9244481/
how-to-get-100-cpu-usage-from-a-c-program

(*)

Job Profiles (C sieve)

ARM

ARM+GPU

HP Xeon

DELL Epyc

(*)

Results (C sieve)
Also with compiled code, it looks like the ARM+GPU
machine is the best at finding primes …

Prime Numbers C

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 5.32 1.209 234 146

HP Xeon 40 13.29 2.316 177 62

ARM 224 9.17 1.468 168 126

ARM+GPU 80 2.30 0.838 397 277 68

GPU subtracted 2.30 0.710 329 209 0

1st run (bad)

Large Matrix Multiplication in C with OMP using two 20k x 20k random matrices

- Code is a modified version of a GitHub example (*)

- Compiled with the OMP library and -mcmodel=large flag

- Tried 2 types of matrices: integers and floating point (double)

Large Matrix Multiplication

$./get2IPMI.sh > ipminfo.csv

$ gcc -fopenmp -mcmodel=large matmul.c

$./a.out

#include <omp.h>
...
#define N 20000
...

#pragma omp parallel for private(i,j,k) shared(A,B,C)
for (i = 0; i < N; ++i)
{

for (j = 0; j < N; ++j)
{

for (k = 0; k < N; ++k)
{

C[i][j] += A[i][k] * B[k][j];
https://gist.github.com/metallurgix/
0dfafc03215ce89fc595

(*)

Job Profiles (mat. mult.)

ARM

ARM+GPU

HP Xeon

DELL Epyc

Results (mat. mult.)
When memory usage is involved, the DELL Epyc machine outperforms the
ARM+GPU in speed and energy efficiency …
double Matrix

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 0.40 0.140 395 152

HP Xeon 40 2.02 0.369 188 65

ARM 224 2.14 0.327 173 128

ARM+GPU 80 1.01 0.455 475 278 68

GPU subtracted 1.01 0.387 354 197 0

int Matrix

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 0.38 0.118 368 149

HP Xeon 40 1.10 0.199 184 62

ARM 224 2.05 0.299 166 128

ARM+GPU 80 0.72 0.272 393 272 68

GPU subtracted 0.72 0.223 325 204 0

TimeStamp: date +"%F , %T"
CPU: top -bn1 | grep "Cpu(s)" | sed "s/.*, *\([0-9.]*\)%* id.*/\1/" | awk '{print 100 - $1}'
RAM: free -t | awk 'FNR == 2 {printf("%.2f"), $3/$2*100}'
GPU: nvidia-smi --query-gpu=power.draw --format=csv,noheader,nounits | awk '{s+=$1} END {print s}’
Power (IPMI): ipmitool dcmi power reading | grep "Instantaneous power reading:"
Power (tx2mon): tx2mon -T -d 10 -f $READFILE ; tail -2 ${READFILE} | head -1 | cut -d',' -f71

Power Readings, etc.

