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I Content of this presentation

| Types of cryogenic coolers

| How do they work

» Compressors
> Cold fingers (Stirling / Pulse-tube)

| Optimization of performance
| Application examples (focus on space projects)

| Future requirements / studies
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Types of coolers (linked to Heat exchangers)

RECUPERATIVE] REGENERATIVE|
Separate channels with solid walls A_single flo_vv cha_nnel fiI_Ie_d
separating the continuous flow of with a matrix of finely d|V|_ded
hot and cold fluids. Fluids usually material subject to alternating
in counter flow. flows of hot and cold fluids.

Hot
| + Heat exchanger H|Ot A Regenerator
%Q_, § Transfer of_ energy to Storage of_energy in
Counter flow Medium regenerator matrix
¥ | - e -
Cold DC-flow *Ccl)ld AC-flow

Pictures courtesy of Ray Radebaugh
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Types of cryogenic coolers woldwide

Types of coolers @Thales

» Stirling cooler
» GM / Pulse tube cooler
» JT cryocooler

Operating frequency (@)

2 JT
- Open system (high pressure)
- Closed cycle (gas mixtures)

» Stirling and Pulse Tube
- High frequency
- Low frequency
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Focus on used technologies

6
Compact systems s L] M NG
Liquid
. Ha
‘ Tr

2 Input power < 500 W s Lo U
o Bcuum  _|
» Temperature range 30 ... 150K = ansformers
o
Used cooling principles ol §
<
» Stirling Cycle i
] N -
warm piston X, regenerator X, cold piston g:‘
» Pulse Tube B |
cycle — e ) i
— e . TEMPERATURE (K) e

Pictures courtesy of Ray Radebaugh

PRODUCT DESIGN REQUIREMENTS: Compact, Closed REGENERATIVE Cycle, No Maintenance, High Availability, Efficiency

5 THALES
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Achieved efficiencies (study 2002 - 2009)
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T i [ A Stiling Cryocooler
L[ - e = L. O Pulse Tube (Stirling-type) ® Efficiency
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(b) CAPACITY, WATTS 10 10 10 10 10

COMPRESSOR INPUT POWER (W) o 3ot
Low-power cryocooler survey, Cryogenics 42 (2002) 705-718

H.J.M. ter Brake *, G.F.M. Wiegerinck R. Radebaugh J. Phys.: Condens. Matter21(2009)

] Conclusions:
» Producing extreme cold is consuming a lot of energy !l

> Stirling and Pulse Tube have the highest efficiency at low cooling capacities |
» How is this efficiency achievede What is the efficiency achieved today?

THALES
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Pictures applications

AIR TREATMENT LIQUEFACTION STORAGE

Small iquefacidh plant. Image: Cryofec Principle of Air Liquefaction Image: Sfiring Cryogenics (NL)

One of the eight 4.2K units @ CERN. Image CERN

-
3 ;_—v";/"-},‘:';:,;d-,, i

ECOSTRESS IR ;g#fber Spectral analyzer:
image : NASR

0
BN

3T MRIsysterns. Image Philips
e TEMPERATURE (K)

Sophie Utima, Hand held cooled IR/Visual camera. Image : Thales

4K Squid Brain imaging. Image: Elekta

FOCUS OF THIS PRESENTATION WILL BE ON SMALL REGENERATIVE CRYOGENIC COOLERS
THALES
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Types of compressors




I Types of compressors

| Compressors are used to created a
pressure wave which will enable
enthalpy flow from cold > warm side

| Valve less compressor:

» Higher frequencies (> 20 Hz)

Picture courtesy of Ray Radebaugh

» Dedicated designs
» Limited input power (< 500 W)

| Valved compressor:

» Lower frequencies (< 6 Hz)
» Significant pressure losses at valves

» Use of existing (lubricated compressors
of air conditioning applications)

» Highinput power 1 .. 6 kW
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IDosc I:)OSC
(a) Valveless (b) Valved
compressor compressor

(Stirling type) (Giffo rd-McMahon type)

Pictures courtesy of Ray Radebaugh
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I Used medium in compact regenerative crycoolers

| QUESTION 1:

Which type of working gas do you expect to be used inside Stirling
cryocoolers ?

A: Nifrogen
B: Neon ?

C: Helium

] O Open I I I A L E 5
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I Type of gas (ANSWER SLIDE)

| Which type of gas is used inside the coolers ?
2 Helium

| Advantages

Cp

> Single atom gas : Highest Cp/Cv value > Highest temp increase at adiabatic compression [T. Pt = (]
2 No condensation / freezing down to 4.2K

2 Low viscosity > low flow losses

» High thermal conduction

» Safe to use

| Disadvantages:

> Very small molecules > difficult to contain (no plastics, metal seals, welding)
» Becoming more and more expensive

THALES

I_ © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page



I Compressor types for High Frequency Coolers 20 .. 150 Hz

| Crank shaft compressors | Linear compressor:

RI1, RMZ, RM3, R4

Question 2: Which concept is most efficient A: Crank shaft B: Linear 7

Question 3: Which concept has highest reliability A: Crank shaft B: Linear @

12 I H IO\ L E S
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I Compressor types for (ANSWER SLIDE)

| Crank shaft compressors | Linear compressor:

| Fixed volume variation | Variable volume variation
| Varying frequency | Fixed operation frequency
| Drive by (DC brushless) motor | Drive in resonance by linear motors
+ High motor efficient / power density + Limited side forces on pistons
+ Compact design (high power density) + Balancing possible due to dual piston
- Lubrication required for ball bearings - Lower motor efficiency
- High side forces on pistons - Lower power density
I‘l_3 © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page Open T H A L E S



I Compressor types for (ANSWER SLIDE)

| Crank shaft compressors | Linear compressor:
e
J e — oo
s Bt ic | e s
3 9 gen©® 6082~ 5o iy
o NO\C° =
| Fixed volume variation | Variable volume variation
| Varying frequency | Fixed operation frequency
| Drive by (DC brushless) motor | Drive in resonance by linear motors
+ High motor efficient / power density + Limited side forces on pistons
+ Compact design (high power density) + Balancing possible due to dual piston
- Lubrication required for ball bearings - Lower motor efficiency
- High side forces on pistons - Lower power density
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Cold fingers

THE STIRLING CYCLE
THE PULSE TUBE CYCLE




I Cold production in regenerative cycles

| Lets focus on gas volume movement and temperature during one cycle in
the system depicted below.

Compressor
@ hot side 300K

Regenerator with high specific

heat
low axial conduction

Gas displacer
@ cold side 77K

Heat Exchanger
@ hot side
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Heat Exchanger
@ cold side

Open
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I Cold production in regenerative cycles

Hot Cold
Compressor Displacer
piston

N
N
N

‘ piston

1
|
- A

Thus, correct synchronization between movement of pistons on hot and
cold side is required to produce cold.

*  Volume between pistons defines the pressure.

« Position of the pistons relative to regenerator defines amount of gas in
compression and expansion space and the flow through the regenerator.

17 I H A L E S
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I Cold production in regenerative cycles

20% Compress volume of gas

Add extra gas from regenerator

20% Expansion the gas volume

Push cold extra gas back in cold HEX

Cold production during one cycle.
m.C,.Af

THALES
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I Cryocoolers

| Cooler families defined by
mechanical solutions for
‘displacement’ at cold end

] Stirling cooler: Moving displacer

» Main failure mode is displacer seal wear

] Pulse-tube coolers: no moving
parts in cold side of the cooler

» Higher reliability
» Lower induced vibrations

THALES
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I Stirling representation in PV and TS diagram

ictiv

Qh

2 Te 1
2" ;
Iso’rhermgl F T =
compression -
i T %
3 ﬁ
dislélogsgr:i;nt Qe s
H>C ]
W L]
Counesy. G, Waler, Cryocookvs, Plenum (1581) [ e——
Qe
IsoThermoI
expansion
Ideal Stirling:
bostotc 2 isothermal, 2 isochoric phases
C>H
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I Stirling representation in PV and TS diagram (1 > 2)
PO

e s
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3 | |
— |
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|:‘> | | : | Isothermal o
compression
(2) : l = : [ 1 Te ; é /
— ' |\ O =
Gnun:ﬁy G, Walier, Cryocookers, Plorum (1983} ) ——

Ideal Stirling:
2 isothermal, 2 isochoric phases

Ball park figures for ideal 1W cooler @ 77K :
- Qh=4W

THALES
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I Stirling representation in PV and TS diagram (2 > 3)

Te z
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I |
| 2 | I 1 TI é
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I | |
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Ideal Stirling:
2 isothermal, 2 isochoric phases

Ball park figures for ideal 1TW cooler @ 77K :
- Qh=4W
- Qreg =200 W

|23 - R —— . Open I I IALE S
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I Stirling representation in PV and TS diagram (3 > 4)

o 41 1}
— -
o« 41 1k
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Qe X %
Courirsy. . Wallcer, Cryocoolers, Plenum (1583) Qe‘""""‘““"
IsoThermoI
expansion
Ideal Stirling:
2 isothermal, 2 isochoric phases
Ball park figures for ideal 1TW cooler @ 77K :
c Qh=4W
- Qreg =200 W
c Qe=1W
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I Stirling representation in PV and TS diagram (4 > 1)
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’ \ r _ :
i Te ﬁ
’// %
\J* % %
Ideal Stirling:
2 isothermal, 2 isochoric phases
Isochoric
R Ball park figures for ideal 1W cooler @ 77K :
- Qh=4W
- Qreg=200W
- Qe=1W
+ Qreg=200W THALES



I Stirling representation in PV and TS diagram (Full cycle)
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I Stirling Cycle is an ideal thermodynamic cycle
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STIRLING
Te &

Isothermal -
compression

Isochoric
displacement
H>C

DN

Coatety O Wallsw | Cryocookss Plerm | 1081) p——

Isothermal
expansion

Ideal Stirling cycle:
2 isothermal, 2 isochoric phases

o Ideal processes >> No entropy generation
e Efficiency ideal Stirling = Ideal Carnot

Ideal Carnot cycle:
2 isothermal, 2 isentropic phases
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I Stirling coolers — how to drive the cold side displacement?

W Two Moving Parts

Piston Piston ::7:;5':’

L
Stroke and phase difference

between compressor and
displacer of importance

QT Ty
Displacer
Regen erator
Regen erator
Q.
Qe.Te

I External Regenerator

Internal Regenerator

77K “Larger’” systems
> 100 W @ 77K cooling

Displacer and Regenerator
different components

“Smaller “ systems
<100 W @ 77K cooling

Displacer and Regenerator
combined components

28 Open
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for cold pioduc’rion.

Instead of a cold-side piston, a
so-called displacer is used
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Creating the correct phase difference in Rotary coolers

Piston Piston and

displacer
connectfed to same
drive shaft with fixed
phase difference.

‘Displacer

Regen erator

Internal Regenerator ) ) )
Mechanical driven displacer/regenerator

ensures correct phase difference between
pressure and volume variations

THALES
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Creating the correct phase difference with free displacer coolers

Piston

L
Piston and displacer NOT
connected to same

drive shaft phase difference and

Q 7, (DP displ | Resonance Fre displ)
(28 order damped mass-spring system)
L J

Displacer

Regen erator

Pyp ]

Internal Regenerator
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amplitude defined by dynamics.

Frequency [Hz]

I TION AT CONTACT
BREA DISPLACER / CYLINDER

Free displacer/regenerator are driven by the
pressure drop over the displacer.
The correct phase difference is obtained by
funing of the resonance frequencies
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Comparison Stirling >> Pulse Tube cooler

COMPRESSION SPLIT PIPE
CHAMBER /
HOT HEAT
HOT HEAT EXCHANGER
EXCHANGER

I

RV,

SPRING
PISTON REGENERATOR PISTON
COMPRESSION SPLIT PIPE
CHAMBER /
HOT HEAT
EXCHANGER HOT HEAT
\ COLOHEAT EXCHANGER
\ \ / EXCH \
\ | \
\ 1 1 \ \
PISTON REGENERATOR 1 GAS PLUG 1 1 INERTANCE BUFFER
1

Displacer replaced by gas plug and
phase shifter (inertance/buffer)



I Operating cycle in a pulse-tube cooler

| Mass flow in pulse-tube coolers

LTI T

T
(

I

|

—
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v

Open

Trajectory of particle at cold and
warm side within the pulse tube

Cold production during one cycle.
m.C,.At
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Synergies between S$tirling and Pulse tube cycle PT, orifice and buffer

replace displacer piston

Compression Regenerator Ezxpansion
space T, /I space
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Schematic Stirling Schematic Pulse-tube

24 representation representation T H /0\ L E S
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I Cross section of typical Pulse Tube cold finger
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Today most PT-coolers are co-
axial due to ease of integration.
Although this definition is more
restrictive in design
optimizations
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THALES

Optimisation of coolers

WHICH PARAMETERS ARE CRITICAL FOR
THE EFFICIENT TRANSFER OF ELECTRICAL
POWER TO COOLING POWER

www.thalesgroup.com
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Transfer of Electrical power > Cooling power

37

ROM values for standard Stirling cooler
6W@77K /293K

Order of magnitude figures (Stirling cooler) Watt
===f)Input power 150

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject fo restri

Pneumatic power 100
Flow losses split pipe 5
Transition to cooling power (77-293) 17

) _Impact heat transfer warm side (20K) -0.84
l Regenarator losses —7.@

»  Thermal conduction along CF -0.81
' Impact heat transfer cold side (10K) -1.60
ett cooling power 6.69

Overall Efficiency = 13% of Carnot

Regenerator losses are typically the highest losses
in recuperative cooling cycles

THALES

ctive legend on fitle page



| The regenerator losses are quantitively the highest
losses in a recuperative coolers (70% of the losses)

?

| Question:

2 What are the required properties for the material used inside the regenerator

A. Specific heat per mass [J/(kg.K)]

B. Specific heat per volume [J / (m3.kg)]

C. Thermal conduction of the material [W/(m .K)]
D. Surface area for heat exchange [m2/m3]

THALES



I Regenerator material

| Regenerator material needs to have:

> High heat capacity per unit volume unit

» High thermal conduction into the material (to

use the full heat capacity of the material) g
» Low thermal conduction over the temperature %
gradient to avoid conduction from hot to cold £
side O
» High surface area for optimal heat transfer o3
between gas and regenerator matrix 2
» Low pressure drop over the regenerator o limit =
dissipation /losses S

I_ © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page Open

THERMAL CONDUCTIVITY, W/m-K

SPECIFIC HEAT, J/kg-K

TEMPERATURE, K
Figure 1. Thermal conductivity of various materials.

1000 —

100 —

TEMPERATURE, K

Figure 2. Specific heat of various materials.
Data presented by NIST, ICC 11 2000
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Cooler optimization 1/3

« Regenerator material: Stainless steel

40

l woven wire gauzes

§ gﬁ « Best compromise between heat

2 capacity and thermal conductivity

Sw (and cost...)

é “g * Find best geometry (conflicting

N ‘é requirements): wired diameter and

fill factor

— s « Stack evenly to ensure smooth flows
|
§ « Use low-thermal conductivity materials
= where needed

= - Stainless steel or Titanium for tubing

 Surface area
 Increase heat transfer on cold and

warm side

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject fo restrictive legend on title page

Wire thickness (25um)= 1/4 human hair
10 wires per mm

~  Not well confrolled
% stacking of regenerator
.. gauze at 11 displacers

-

==

Correctly stacked
regenerators

1000 gauzes over 50 mm



Cooler optimization 2/3 -> finding the best regenerator design?

warm end

cold end

performance @ 25 Wyqy| calculated calculated measured measured
regenerator pressure drop pressure drop lowest tip
loss over over temperature
warm part / cold part regenerator regenerator
LOW / MED filling factor| 2472 mW 0.85 bar 0.60 bar 80 K
MED / MED filling factor| 2114 mW 1.10 bar 0.95 bar 75 K
LOW / HIGH filling factor| 1896 mW 0.97 bar 0.82 bar 72 K

* Low filling factor : not enough heat capacity to reach low temperature
« Medium filling factor : pressure drop (mainly over warm part) too high
* Mixed regenerator : high filling factor only where it is needed

Design of regenerator is balancing act between the different losses

4]
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I Cooler optimization 3/3 - Sometimes a frade-off is needed

Optimization of regenerator matrix for PT coolers @ 60K required for use in
JPL-NASA ECOSTRESS mission

@

+ Use of different StSt wire mesh geometries in the regenerator
Higher filling factor @ cold side
* Use of Ti6Al4V tubing to reduce conduction losses

/ Heat lift at 60K and 40°C rejection temperature
armtewisselaar 25

"koude”-warmtewisselaar

sl

Pulse tube

............,....,....,.
L e

T T T T
T e H

‘warme”-warmtewisselaar

[
n

—=High Power LPT9310
-e-Standard LPT9310

Inertance - S

Heat lift [W]

-

2

05

Buffer-ruimte o

4] 50 100 150 200
AC Power [W]

 HALES
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I Cryocoolers technologies

BICTION AT CONTACT

| Cooler families defined by F
mechanical solutions
| Stirling cooler: Moving displacer

» Main failure mode is displacer seal wear

] Pulse-tube coolers: no moving
parts in cold side of the cooler
» Higher reliability
» Lower induced vibrations

| Linear compressors with contact
seal bearings or flexure bearings

THALES
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I Positioning of the different cooler technologies

| The different compact cooler technologies could be positioned based on
Reliability / Efficiency

z
3 &
3 I
w
E
g
=
w
o
‘a
2 5
2 S
g 5
o 2
> o
Fan a
= ~
= s
E
=
3. w
=
=
Tll-l
3 : -
v | 1 Lol = . ool |
0.1 1 10 0.1 1 10
Cooling power @ 77K Cooling power @ 77K

Question 4: Where do we position the different technologies:
Rotary Stirling (..]|..) / Linear Stirling (..|..) / Linear Pulse-tube cooler (.. |..
y g (.1.)/ gpen( |..)/ gl'HlelJ-_‘é
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I Answer on question 4:

Z
3 @
E x
[0
£
L
2
w
=
@
2 T
2 °
9 2
= o
= o
= ~
= z
] 3
S
=
= w
=
©
T
k: =
[=]
© 1 1 Ll l 1 1 1 1 L Ll | 3 L L L L 1 111 I 1 1 1 1 1 L1l |
0.1 1 10 0.1 1 10
Cooling power @ 77K Cooling power @ 77K

Answer:
Rotary Stirling (3| A) / Linear Stirling (2| B) / Linear Pulse-tube cooler (1| C)

THALES
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Overview of Thales Cryogenics Product Line Perimeter

Type of coolers Market requirements Typical applications

Defense Markets (Stirling coolers)

: i v & Efficient
Contact seal coolers

Commercial Markets (Stirling & Pulse tube)

“Flexure” coolers Space Markets (Pulse tube coolers)

Extreme &
solutions

l |

i }l !I'IQ-, )

Pulse Tube coolers

THALES

I_ © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page



Our markets and examples of applications

New technologies requiring cooling 30 .. 150K }

Medical systems [ -

SQUID/5QIF's

— | Superconductive systems
Superconductive bearings /7| —
—_  — /| (nonRF)

Low Noise Amplifiers (RF domain)

Superconductive filters (RF domain) e

RF devices

I_ © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on fitle page

IR today still the biggest identified market
for compact Cryocoolers

Military

O SRR

e applications

Markets

— Germanium sensors (&

Superconductive devices }»

T Zero boil-off

Open




| Question:

» What is the most important requirement for space coolers

A. Reliability / Robustness
Efficiency ,

B.
C. Induced vibrations O
D. Costs

»What are the costs of a typical space cooler for a 5 year mission:

A. <50 kEur

B. 50< ... < 250 kEur 7
C. 250< ... < 500 kEur

D. > 500 kEur ®

|49 ~ _ . Open I I I A L E S
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Space cooler examples

3 showcases with different TRL, complexity and price level

» Ecostress mission (JPL-NASA) g vl

Status - TRL 9

System/Subsystem
Development

Technology
Demonstration

» 30..50K development (TRP ESA)

Status — TRL 6 boveipren |

Research to Prove
Feasibility

> Athena cooler development R

Status — TRL 4

50 en
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Technology Readiness Levels'

Actual system “flight proven” through successful mission
operations

Actual system completed and “flight qualified” through test
and demonstration (Ground or Flight)

System prototype demonstration in a space environment

System/subsystem model or prototype demonstration in a
relevant environment (Ground or Space)

Component and/or breadboard validation in relevant
environment

S| O (N e

Component and/or breadboard validation in laboratory
environment

w

Analytical and experimental critical function and/or
characteristic proof-of-concept

N

Technology concept and/or application formulated

Basic principles observed and reported

THALES




I ECOSTRESS MISUION

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station

Measurements of EVOTRANSPIRATION ransoliation & veporation

/\\

7~ ~N

transpiration

groundwater '
recharge

THALES
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I ECOSTRESS instrument design and project

] Cooling requirement:
» 1 cooler needed for cold shield cooling (115K)

Flight Releasable
Grapple Fixture
(FRGF)

2 2 coolers to keep the sensors (< 65 K)
] Pressure on costs and energy budget
| Mission lifetime 1 year (“Class D”)
| Choice for upgraded Civil PT coolers

Cold shield

THALES



ECOSTRESS mission

Go to Stats

Areas analyzed on 2019-05-20

{ *=— Monterey

California

Los Angeles |l

Evaporative Stress Index

High Water Stress - D Low Water Stress

Although originally T year mission system is already operational for 3 years.
No degradation at cooler level witnessed ©

53 THALES
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I 30..50K ESA Techical Research Program (2015 .. 2018)

| Goadl

» Develop a thermal structure able to cool 2 IR detectors to temperatures below
50K with 2 redundant coolers suitable for space missions

» Coolers should be able to provide cold at two temperature levels:

- 350 mW at 30 K and 1200 mW atf 100 — 120 K
OR
- 800 MW at 35-40 Kand 1500 mW at 100 - 130 K

| Consortium:

2 Thales Cryogenics : Compressor + Program management
» CEA-SBT (Fr) : 2 stage PT development
» Absolut System (Fr) : Mechanical strucuture and thermal connections

| 54 - e EnE . Open I I I A L E S
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The used cooler definition

THALES g
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Environmental testing 30 .. 50K

56
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I The complexity of the cold box

r -
Cold box x e
g - ‘3 ] Cryocooler system

Cold box assy and / & [@@ L ]
support structure " =
(T g [ )

Optical bench @o o -
assembly > _v -
Cryostat (i
assembly W

Y

Equipped Cryostat
assembly

S—

S

Courtesy of Absolut System

157 i .. System at TRLS level, awaiting.actual flight programs of SA T HALE S



I Athena mission (LARGE mission of ESA) TRP with potential launch 2031

" Description of spacecraft and XIFU instrument . ¢

Main dimensions of spacecraft
“x15m

“ ~ 7tons —
% L2 orbit
~ Launch planned = 2031 by ARIANE64

1453

Main dimensions of XIFU

~15m

< =~ 1.5 m high (Dewar) 01490

< ~ 1.5 m in diameter (Dewar)
* = 800 kg (instrument)

«» Electrical consumption = 3000/

+X

sC

| 58 5 o - . Open I I I A L E S
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Exireme low temp / Complex Cryochain

Focus on Focal Plan Array

Subsystem under SRON responsibility

Insure magnetic, mechanic, electric and thermal
environment for detector

«+ Thermal needs
r <22mW@1.7K (pink part) for
Cold electronics dissipation (SQUID)

Dissipation of Impedance adaptation of signal
harness

» < 5PW@300mK (grey part) due to

Conductive loads of mechanical support on
Kevlar between 2K and 50mK structure

» < 0,50W@50mK (blue part) due to

Dissipation in detector
Dissipation cold electronics (SQUID)
Conductive loads from 300mK

<+ Composed by 2 faraday cage (@2K and @50mK)

- - cnes - - -

Complex Cryochain using different
cooling technologies from different

suppliers/countries
(NL (Thales) / Fr (ALaT,CEA) / Japan (JAXA) / UK (RAL))

Cryochain

I_ © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Cryogenic chain
Outer vessel cold by dedicated radiative panel
< Quter vessel close to 200K (TBC)
Active cooling for lower temperature
<+ 5x15KPulse Tube coolers (ESA/ALAT)

~ All 5 PTs used for OCS cooling and JTs pre-cooling on 1st
precooling stage (~80 K)

~ 2 PTs for ICS cooling

~ 3 PTs for JT-precooling on 2nd precooling stage
<+ 2x4KJT coolers (JAXA)
<+ 2x2KJT coolers (JAXA or RAL)
< 1 sub-K cooler (CEA hybrid cooler)

100€/150K/200K (TBC)

“No single point failure "philosophy* has a strong impact in
sizing of cryochain




I Contribution of Thales Cryogenics

| Thales Cryogenics:
Supply of flexure bearing compressors.

| Connected to 2 stage PT cold finger
(ALaT)

| Use of the compressors:

> 1t compressor used as pressure wave generator
(500 W input power)

» 2nd compressor used as phase shift controller for
the 2"d stage PT to achieve better efficiencies
compared to passive inertance / buffer.

| 5 coolers required for Athena mission

60 Open
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Hi-PTC Cryocooler Architecture

; Integrated
Inertance/Buffer
Active

Phase Shifter

ll 10K CF I 'F;ange‘

The cooler delivers @ 300W input:
5000mW @ 100K (15 stage)
400mW @ 15K (2"d stage)

Weight of the cooler = 18 kg
THALES



Future developments

Requirement:
Continuous focus on more cooling power in same volume

Optimization of
regenerator definition

Increase _ . _ _ y
P D g /BT = Operation at higher frequencies »> i.e. > 100 hz [ optimization of
e GNSIW A / ".\ motor definition for 100Hz operation

Displacer/Regenerator dynamics to improve stroke and phase of displacer

||ﬂ Use of materials with lower thermal conduction

I'-. Use of Additive manufacturing of parts

Requirement:
New sensors / Quantum technologies need cooling < 60 K

" "
New prOblemS Tuning for < 40K operation
Reach lower temperatures /
with single stage coolers fl Development of 2 stage Stirling coolers ?

Research areas { Dewar design to facilitate integration of new devices
| and limit heat load to be cooled

'..‘ Further reduce faillure modes (24/7 - operation)

to be solved

Requirement:
There are new markets which require vibration free cooling

Reduction of Induced vibration Stirling cold finger

4[ Vibration free coaling ]
Thermal straps

Research areas - Iw".
e Decoupling of cooler / object to be cooled. -
| (flexible thermal links) | Heat pipes at cryogenic temperatures

| DC Gas flow for cold transport

THALES
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