UNIVERSITY OF TWENTE.

European Course of Cryogenics 2022

Thursday 25/08

Superconductivity & Cryogenics

Dr. Marc Dhallé, EMS UTwente

Superconductivity & Cryogenics

- 2. Materials & applications
- 3. Cooling requirements & strategies

Physics World

Science Advances

Supraconductivité.fr

CERN.ch

Superconductivity & Cryogenics

Want to know more?

- V.L. Ginzburg and E.A. Andryushin, "*Superconductivity*" (1994) *Excellent layman's primer.*
- V.V. Schmidt "The Physics of Superconductors" (1997)
- M. Cyrot and D. Pavuna, "Introduction to Superconductivity and high-Tc materials" (1992)
- M. Tinkham, "Introduction to Superconductivity" (1975)
- P.G. De Gennes, "Superconductivity of metals and alloys" (1966) ... and many more books of varying level of detail.

Physics World

Science Advances

Supraconductivité.fr

CERN.ch

Disappearance of electrical resistivity

Below a *critical temperature* T_c:

ho = 0

No scattering of charge carriers at lattice imperfections

Lorentz.leidenuniv.nl

Liquid helium 4.2 Kelvin (1908)

https://www.youtube.com/watch?v=9FudzqfpLLs

Disappearance of electrical resistivity

Onnes, 1911

Below a *critical temperature* T_c:

ho = 0

No scattering of charge carriers at lattice imperfections

Disappearance of electrical resistivity

Ginzburg & Andryushin, 1994

Resistance is at least 10¹⁷ times smaller than that of copper

Meissner effect

W. Meissner and R. Ochsenfeld, 1933

Perfect diamagnetism

B = 0

Magnetic fields are screened out by surface currents ^(*)

(*) up to a critical field H_{c1}

Flux Quantization

Only integer multiples

 $\Phi = n\varphi_0$

of the *flux quantum*

are allowed inside a superconducting ring.

Flux Quantization

A.A. Abrikosov, 1957 Essman and Traube, 1967 For "type II" superconducting materials:

 $B = n A \phi_0$

Fields higher than H_{c1} are admitted in the form of mutually repulsive flux tubes ^(*), generated by current <u>vortices</u>

(*) up to a second critical field H_{c2}

Flux Quantization

Vortex- or 'Abrikosov'- state.

Interactions between vortices and current often determine maximal or 'critical' current density J_c

FIG. 1. Current-voltage characteristic for a tintin oxide-lead tunnel structure at ~1.5°K, (a) for a field of 6×10^{-3} gauss and (b) for a field 0.4 gauss.

B.D. Josephson, 1962 P.W. Anderson and J.M.Rowell, 1963 Current can 'leak' through a <u>barrier</u>:

 $J_c = J_0 \sin \delta$ $\delta(t) = \delta(0) + \frac{Vt}{\phi_0}$

The maximum *tunneling current* is modulated by a *"phase difference"* across the barrier that depends on magnetic field.

Superconductivity & Cryogenics

1. Phenomenology & understanding

2. Materials & applications

3. Cooling requirements & strategies

Physics World

Science Advances

Supraconductivité.f

CERN.ch

The London theory

H. London and F. London, 1935

$$\lambda^2 (\nabla \times J_s) + H = 0$$

Equation of motion for "superelectrons"

 \rightarrow <u>penetration depth</u> λ

$$n_s = n_0 \left(1 - \frac{T}{T_c} \right); \quad n_n = n_0 \frac{T}{T_c}$$

<u>"2 fluid"-model</u> \rightarrow kinetic inductance, surface impedance

Ginzburg-Landau theory

V.L. Ginzburg and L.D. Landau, 1950

$$\psi(\vec{r}) = |\psi(\vec{r})| e^{i\varphi(\vec{r})}$$
 with $|\psi|^2 = \frac{n_s}{2}$

complex "order parameter"

$$\Delta F = F_s - F_s = \alpha |\psi|^2 + \beta |\psi|^4 + \frac{1}{2m} |(i\hbar \nabla + 2e\vec{A})\psi|^2 + \frac{\mu_0 H^2}{2}$$

Minimization of free energy $F \rightarrow$

flux quantization; *coherence length §*; penetration depth; vortex state

Bound Electron Pairs in a Degenerate Fermi Gas*

LEON N. COOPER

Consider a pair of electrons which interact above a quiescent Fermi sphere with an interaction of the kind that might be expected due to the phonon and the screened Coulomb fields. If there is a net attraction between the electrons, it turns out that they can form a bound state, though their total energy is larger than

In the presence of an attractive interaction, electrons can 'team up', they form "<u>Cooper pairs</u>".

Cooper pairs are bosons.

To break them up, one needs to overcome an <u>energy gap \triangle </u>.

BCS theory (2)

J. Bardeen, L.N. Cooper, J.R. Schrieffer 1957

0 0 00000000000

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER ‡

We shall call the interaction, H_2 , between electrons resulting from the electron-phonon interaction the "phonon interaction." This interaction is attractive when the energy difference, $\Delta \epsilon$, between the electron states involved is less than $\hbar \omega$. Diagonal or self-energy

The attractive interaction comes about through interactions with lattice vibrations (*"phonons"*).

- $T_{\rm c}$ (**isotope effect**), critical field $H_{\rm c}$
- Gap ⊿
 - Cooper pair density
 - penetration depth λ , coherence length ξ

Superconductivity & Cryogenics

- 2. Materials & applications
- 3. Cooling requirements & strategies

Physics World

Science Advances

Supraconductivité.f

CERN.ch

2. Materials and Applications

The history of superconducting materials (only a selected materials are shown)

: Materials that are developed / commercialized into *practical* superconductors

"Practical " = >1 km long wires ^(*) with stable and uniform properties that can be used on coil windings

(*) see lecture 2

Current

terminal

Voltage

pair

Current

terminal

<u>Intermezzo</u>

Ti sample

holder

SC wire

- Probing the limit of loss-less charge transport: the <u>critical current l_c;</u> the <u>critical current density J_c</u>
- Place the sample holder in a controlled *T*and *H* – environment (often a SC solenoid in liquid or gaseous He)
- At each desired *T* and *H* value, slowly increase the current *I* and record the voltage *V* across the test section (IV-measurement)

Voltage-current relation of a superconductor: "sudden" appearance of voltage

~ power-law relation (curved on lin-lin VI scale, but linear on log-log VI scale)

Measure VI-curves across a range of magnetic fields H and temperatures T, extract I_c (B,T) and from this the <u>critical surface Jc(T,H)</u> of a superconductor

Depairing current:

- 10⁴ 10⁶ A/mm² ;
- Fundamental upper limit;
- Never reached in practical SC

$$I_{c,depairing} = 2n_s e \Delta/p$$

F

after Rose-Innes & Rhoderick, 1974

Scattering of a pair to the state with lowest available E lowers E_{kin} , but costs condensation energy 2Δ

$$E_{scattered} = 2\frac{\left(\mathbf{P}/2 - \mathbf{p}_F\right)^2}{2m} + 2\Delta(T) = E_o - \frac{Pp_F}{m} + 2\Delta(T)$$

slide 25 of 60

Depinning current:

- 10² 10⁴ A/mm² ;
- Sample-dependent;
 - Usual limit in practical SC

Current J + vortices \rightarrow Lorentz force F_{L}

Moving vortex → *Dissipation*

See Maxwell's equations: $\nabla \times \mathbf{B} = \mu \mathbf{J}$, $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ and $P = \mathbf{E} \cdot \mathbf{J}$

High current density can only be maintained loss-less when vortices are adequately <u>pinned</u>

Olsen et al, 2004

slide 26 of 60

UNIVERSITY OF TWENTE.

Cubic alloy, isotropic

NbTi : niobium-titanium alloy

 $T_{\rm c} = 9 K$ $B_{\rm c2} = 11 \text{ T at } 4.2 \text{K and } 14T \text{ at } 0 \text{K}$

well-developed

costs ~1 €/kA.m at 4.2K, 5T (*)

(*) L. Cooley et al., 2005

Pinning in NbTi: very finely distributed Ti-precipitates

Figure 2 Typical Nb-47wt.%Ti high critical current microstructure (in transverse cross-section) showing the densely folded sheets of α -Ti pinning centers dispersed within the superconducting β -Nb-Ti matrix. Superimposed is a schematic illustration of the equilibrium fluxoid spacing and dimensions appropriate to Nb-47wt.%Ti at 5T, 4.2K.

Larbalestier et al, 1995

 $F_p = J_c \times B =$ "maximum pinning force"

Nb₃Sn : niobium three tin $T_{\rm c} = 18 \, {\rm K}$ *B*_{c2} = 23-26 T at 4.2K and **30T** at 0K well developed, still in progress cost ~5-25 €/kA.m at 4.2K, 5T (*) J_{e} (A/mm²) 10 10^{2} 50 40 30 20 10 (K) Temperature (K) 20 25 50

(*) L. Cooley et al., 2005

slide 29 of 60

3

UNIVERSITY OF TWENTE.

Hexagonal inter-metallic, anisotropic

UNIVERSITY OF TWENTE.

"BSCCO": bismuth-strontium-calciumcopper-oxide "Bi-2212" and "Bi-2223" (*) *T*_c = **80 K** (2212) or **110 K** (2223) *B*_{c2} = > **100 T** under development , cost ~ 50 €/kAm (**)

(*) $Bi_2Sr_2CaCu_2O_8$ & Bi₂Sr₂Ca₂Cu₃O₁₀

(**) L. Cooley et al., 2005

Orthorhombic oxide; anisotropic

"ReBCO": ytrium-barium-copper-oxide (*)

 $T_{\rm c} = 90 \ {\rm K}$ $B_{\rm c2} = > 100 \ {\rm T}$

Under development

cost ~100-200 €/kAm (**)

(*) "*Re*" = rare earth, used to be YBa₂Cu₃O₇, now often GdBa₂Cu₃O₇

> (**) at 30K, 2T; N. Bykowsky 2016, J.H. Kim 2016

2. Materials and Applications

Pinning in YBa₂Cu₃O₇: "correlated" disorder (anisotropy!)

FIG. 1. Transmission electron micrographs (TEM) of the cross section of the (Y123+YSZ) sample with the BaZrO₃/Y123 multilayer structure, the bamboo structure: (a) the whole sample, showing the bamboo structure grown up to the surface of the film; (b) the bamboo structure near the buffer layer of CeO₂ started from the substrate. The dark region in the knots of the bamboo suggests the stress fields surrounding Zr-included structures such as BaZrO₃. Y123 layers are epitaxially inserted between them.

Yamada et al Appl. Phys. Lett. 2005

UNIVERSITY OF TWENTE.

"Ba122": barium-iron-arsenic (*)

T_c = **39 K** B_{c2} ≈ **100 T**

Early development

not yet commercialized

(*) Ba $_{0.55}$ K $_{0.45}$ Fe $_{2}$ As $_{2}$

Superconductivity & Cryogenics

2. Materials & *applications*

3. Cooling requirements & - strategies

Physics World

Science Advances

Supraconductivité.f

CERN.ch

UNIVERSITY OF TWENTE.

Large scale (1)

High current density without ohmic heating

 $(J \sim 100 - 1000 \text{ A/mm}^2 \text{ instead of } \sim 1 \text{ A/mm}^2)$

Large scale (2)

<u>High current density</u> without ohmic heating

 $(J \sim 100 - 1000 \text{ A/mm}^2 \text{ instead of } \sim 1 \text{ A/mm}^2)$

⇒ Powerful electro-magnets (MRI, NMR, HEP, fusion,...)

 \Rightarrow Compact electro-technical devices (cables, FCL, generators, motors...)

Large scale (3)

 $(J \sim 100 - 1000 \text{ A/mm}^2 \text{ instead of } \sim 1 \text{ A/mm}^2)$

- \Rightarrow <u>Powerful</u> electro-magnets (MRI, NMR, HEP, fusion,...)
- $\Rightarrow \underline{\text{Compact}} \text{ electro-technical devices} \\ (cables, FCL, generators, motors...)$

Small scale (1)

Quantum interference with EM fields

 $\Rightarrow \underline{S}uperconducting \underline{O}uantum \underline{I}nterference \underline{D}evice ('\underline{SQUID}')$

more precise magnetic field measurements

- ⇒ Measurement standards (SI 'volt' definition)
- $\Rightarrow \text{Faster and compacter electronics} \\\Rightarrow \text{Qubits, quantum computing}$

Small scale (2)

Quantum interference with EM fields

S. Shapiro, 1963

www.PTB.de

- ⇒ <u>Superconducting Quantum Interference Device</u> ('<u>SQUID</u>') more precise magnetic field measurements
- ⇒ Measurement standards (SI 'volt' definition)
- $\Rightarrow Faster and compacter electronics \\\Rightarrow Qubits, quantum computing$

Small scale (3)

Clarke & Wilhelm, Nature 2008

Quantum interference with EM fields

- ⇒ <u>Superconducting Quantum Interference Device</u> ('<u>SQUID</u>') more precise magnetic field measurements
- ⇒ Measurement standards (SI 'volt' definition)
- $\Rightarrow \text{Faster and compacter electronics} \\ \Rightarrow \text{Qubits, quantum computing}$

Bosman et al, Nature 2017

slide 42 of 60

Superconductivity & Cryogenics

- 1. Phenomenology & understanding
- 2. Materials & applications

3. Cooling requirements & - strategies

Physics World

Science Advances

Supraconductivité.f

Heat loads:

in-leak through cryostat enclosure >

ramp- or AC losses
external current leads
'warm-cold' structural elements

'accidental'

- in common with other cryogenic systems
- unavoidable, but strongly application-dependent
- perennial worry
- > application-dependent
- "quench"-detection and protection

In-leak through cryostat enclosure

Ecoswing rotor

www.nexans.com

MDS separator

- Typically vacuum + MLI;
- Challenge: minimize the 'air' gap
- ~ 0.1 1 W/m² between 293 & 4.2 K (chambers);
 - ~ 0.1 1 W/m between 293 & 77 K (flex tubes)

3. Cooling requirements & strategies

after Jooss et al, 2001

- Time-varying magnetic fields or currents lead to hysteretic internal flux profiles
- Motion of vortices \rightarrow dissipation ...
- Hysteresis loss

Hyseresis losses in linear actuator coil

3. Cooling requirements & strategies

Ramp- or AC losses

www.anl.gov

Fig. 8 Stability vs. mass flow rate at constant temperature margin

after P. Bruzzone et al, 2001

- ... in addition, induced currents between strands in cabled structures lead to ohmic loss
- 'Coupling' loss

External current leads between RT power supply and cryogenic SC device

J. Ekin, "Experimental techniques for low-temperature measurements" 2006

- Minimizing heat conduction calls for long length L and small cross-section A;
- Minimizing ohmic heating calls for short length L and large cross-section A

- Optimal geometry L/A
- Unavoidable loss level

External current leads

CERN LHC current feedthroughs

0.5 m

Possible escape (1) :

intercept in-leak a.s.a.p. & continue with HTS SC leads to actual device GM cooler

290 K terminal

Optimal L/A Cu lead

60 K 1st stage

BSCCO SC lead

4.5 K 2nd stage

MDS current feedthroughs

A. Ballarino, 2004

1200 HTS Leads

~8000 Superconducting Magnets

48 Cryostats with Current Leads

A. Ballarino, 2013

~ 1800 electrical circuits

~3 MA of current

S.C.

switch

Possible escape (2) :

retract RT connection after charging of the device

persistent mode

- Open switch
- Ramp up
- Wait ... V=L·dI/dt

- Close switch
- Wait (cool switch)
- Ramp down leads

- Return MPS
- Persistent !

CWS #2

CWS #3

EMS

Warm-cold supports

- Especially in electrical machinery (high torque)
- high E_{γ} low κ material
- reinforced polymers

Tensile / compressive loading test coupons @ TNO Delft

UNIVERSITY OF TWENTE.

slide 51 of 60

- An unexpected local disturbance can initiate a 'thermal avalanche', a *guench*
- Such a disturbance <u>must</u> be detected a.s.a.p. and the stored energy safely extracted

$$C\frac{\partial T}{\partial t} = \frac{\partial}{\partial t} \left(\kappa \frac{\partial T}{\partial x}\right) + \rho J^2 + p_{initial}$$

3. Cooling requirements & strategies

Temperature rise sub-standard coil after quench

- Sub-standard coil had passed (accelerated) acceptance test ...
- ... and failed during power-up ramp;

UNIVERSITY OF TWENTE.

- Inadequate 'quench-detection' (EM interference)
 - Required coil replacement & protection upgrade

THEVA

Repair action at Boessenkool Almelo

slide 53 of 60

JEUMONT

Superconductivity & Cryogenics

- 1. Phenomenology & understanding
- 2. Materials & applications
- 3. Cooling requirements & strategies

Physics World

Science Advances

Supraconductivité.f

Large systems ('Big Science')

- Forced-flow of (possibly superfluid) He
- Extended cryo-plants for re-liquification

www.iter.org

Large systems ('Big Science')

- Forced-flow of (possibly superfluid) He
- Extended cryo-plants for re-liquification

CERNCOURIER, 2013

Medical systems (stand-alone)

www.philips.com

- Liquid He bath cooling
- "Zero boil-off" technology (cryocooler-based re-condenser)
- Trend towards less & less He on-board (e.g. Philips 'BlueSeal' MRI system)

'Industrial' machines (stand-alone) : cryocoolers + conduction cooling

Cryogenic rotor design (Cu cold-bus, distributed coolers)

- Cu 'cold-bus' monted on cold back-iron
- 'On-board' rotating GM coolers
- Static compressors ۲
- **Rotating He gas** coupling! (Sumitomo)

'Industrial' machines (stand-alone) : cryocoolers + conduction cooling

- Thermal gradients need to be kept as low as possible
- High-purity metal flex-links & thermal shunts ...

Cryogenic heat-pipes as thermal links for the most demanding SC applications?

A. Haghighi et al, 2022

slide 60 of 60

