European Course of Cryogenics 2022

Cryogenic Multiphase Heat & Mass Transfer

Srini Vanapalli

Applied Thermal Sciences lab

Heat and mass transfer at low

<u>temperature</u>

- a. Seeking solutions for velocity, pressure and temperature fields in liquid and vapor phases, temperature field in the solid
- b. Scaling to real applications in life sciences and energy

Cryogenic environment

- a. Low temperatures from 200 K to 20 K
- b. Thermo-physical properties change strongly with temperature
- c. Heat fluxes always present

UNIVERSITY OF TWENTE.

How to participate?

31 📇

.....

wooclap

#1 CO2 production

24

UNIVERSITY OF TWENTE.

You cannot vote anymore

Carbon dioxide snow is produced by expanding liquid CO2 through an orifice.

wooclap

Estimate the amount of snow produced in kg, when one kg of saturated liquid CO2 at 290 K is expan click on the projected screen to start the question

25 %

CO2 molecule

#2 CO2 properties

UNIVERSITY OF TWENTE.

www.wooclap.com/ALUT2022

Figure A (below) shows a situation with dry ice in a vessel. The species above the dry ice is CO2 at 1 bar. A temperature sensor is placed in the dry ice. What would be the temperature sensor is placed in the dry ice.

wooclap

What is the dry ice temperature? -78.5 °C?

#3 CO2 properties

UNIVERSITY OF TWENTE.

www.wooclap.com/ALUT2022

Figure B (below) shows a situation with dry ice in a vessel. The species above the dryice is Nitrogen at 1 bar. A temperature sensor is placed in the dry ice. What would be the projected screen to start the question recording?

 \sim

.....

3 ::::

wooclap

Temperature measurement of dry ice

Thermodynamic phase diagram

Temperature \rightarrow

Research question

temperature of dry ice?

Model – geometry and assumptions

Based on kinetics:

heat transfer input and mass transfer output.

- Lumped capacitance model
- Stationary ambient
- Heat transfer $q \rightarrow conductive$
- Mass transfer dm/dt: \rightarrow diffusive

UNIVERSITY

Physical relations – energy balance

• Heat conduction:

$$q = A \cdot k(T) \cdot \frac{\mathrm{d}T}{\mathrm{d}r} \Big|_{r=rs}$$

• Mass diffusion:

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -A \cdot D(T, p) \cdot \frac{\mathrm{d}\rho}{\mathrm{d}r}\Big|_{r=rs}$$

$$q = \Delta H_{\rm L} \cdot \frac{{\rm d}m}{{\rm d}t}$$

UNIVERSITY

OF TWENTE.

• Combines to:

Methodology

What is needed to characterise this 'wet-bulb' temperature?

- Controlled ambient
- Thermocouple inside a dry ice sample

Flow conditioning

- Gas mixture:
 CO₂ + N₂
- Pressure regulation
 - Balancing flow

Making dry ice spheres

- Snow via Joule-Thompson expansion
- Compress into a **sphere**
- Radii of $r_{\rm s}$ = 10 mm & $r_{\rm s}$ = 5 mm

Ts

Methodology – Experimental

- Constant pressure exp
 - Starting at 100 %vol
 - Vary concentration in s
- Repeat for pressures
 - 0.6 to 1.3 bar
 - 100 mbar increments

Experimental results

• What does such an experiment look like?

Extended phase diagram – results

UNIVERSITY OF TWENTE.

Schlieren imaging

UNIVERSITY OF TWENTE.

Quantifying Leidenfrost vapor layer

Leidenfrost dynamics

"Leidenfrost Effect – Hot pan + Water", Youtube, uploaded by LaserFloyd, 30-05-2014

ÁS

Observation

#4 Heat transfer

Vapor layer thickness – model prediction

UNIVERSI

Optical Coherence Tomography (OCT)

Medical imaging technique based on low-coherence interferometry which produces highresolution images of scattering media such as tissue.

Measuring vapor layer thickness with OCT

Experimental setup

Test section assembly

Test section in setup

Retaining ring + dry ice

Scanning

Line scan

Pellet height

Height variation of dry ice pellet (h_i = 5 mm ; d_{ci} = 10 mm) placed on a hot sapphire substrate

Liquid nitrogen droplets

Leidenfrost dynamics

Liquid nitrogen jet/drop dispenser

<u>Common case for a needle tube</u> <u>supplied from a pressurized</u> <u>dewar with liquid nitrogen</u>:

Multiphase flow at nozzle exit due to evaporation in hose

Many opportunities for doing research with cryogenic liquid jets or single droplets

Droplet impact on a plate

Results

U=1.3 m/s T=89 K

Slowed down 500x

UNIVERSITY OF TWENTE.

t = 0 ms

 $0.4 \mathrm{ms}$

 $0.8 \mathrm{ms}$

 $1.2 \mathrm{~ms}$

 $2.4~\mathrm{ms}$

Results: Increasing prism temperature

U=1.3 m/s T=92 K

Slowed down 500x

UNIVERSITY

UNIVERSITY OF TWENTE.

Results: Transition boiling

Results: Increasing plate temperature

U=1.3 m/s T=102 K

Slowed down 500x

UNIVERSITY OF TWENTE.

Phase diagram

Investigate both theoretically and experimentally the dynamics of a Leidenfrost droplet (liquid nitrogen) on a liquid pool (water)

UNIVERSITY

Leidenfrost droplet on a liquid pool

UNIVERSITY

Leidenfrost droplet on a liquid pool

Top view

UNIVERSITY

Theoretical model

Outer part droplet

• Laplace pressure equals hydrostatic pressure

 $\gamma_d \kappa = -\rho_d g z$

• Let κ_{top} be the input variable to determine the size

$$\tilde{\kappa}_{top} + \tilde{z}_{top} = \tilde{\kappa} + \tilde{z}$$

- Write in terms of arclength s $\frac{\partial \theta}{\partial s} = -\frac{\sin(\theta)}{r} - h + \kappa_{top}$ $\frac{\partial h}{\partial s} = \sin(\theta), \qquad \frac{\partial r}{\partial s} = \cos(\theta)$
- Integrate from s = 0 to $s = s_t$ with $\theta(0) = 0$, $h(0) = z_{top}$, r(0) = 0, $\theta(s_t) = -\pi$

ÂS

Theoretical model

Inner part droplet

• Excess pressure in vapour film p_v can be found by balancing all forces normal to the drop surface

$$\tilde{p}_{v} + \tilde{\kappa} = \tilde{\kappa}_{top} + (\tilde{z}_{top} - \tilde{h})$$

• This pressure drives a lubrication flow with no-slip conditions on both sides

$$\vec{q}_v = -\frac{\nabla p_v}{12\mu_v}(h-e)^3$$

• The local evaporation flux is equal to

$$J = \frac{q}{L} = \frac{1}{L} \frac{\lambda_v (T_p - T_d)}{(h - e)}$$

• Finally, mass conservation gives us

$$\vec{\nabla} \cdot q_{\nu} = \frac{J}{\rho_{\nu}}$$

UNIVERSITY OF TWENTE.

Numerical model shape

Experimental results R(t) ($T_(p,0)=273.15$ K)

UNIVERSITY

Experimental results V_ice ($T_(p,0)=273.15$ K) $\frac{\text{UNIVERSITY}}{\text{OF TWENTE}}$.

MISSION & APPROACH

to identify specific phenomena and mechanisms that are key in understanding the cryogenic cooling processes and propose engineering models.

time

