HEPscore Candidates

Tristan Sullivan University of Victoria September 7/22

Background

- Benchmarking working group tasked with finding replacement for HEPSPEC06 (HS06) based on physics workloads
- HS06: seven benchmarks, three runs each. The median of each benchmark is taken, and the final score is the geometric average of the seven individual benchmark scores
- HEPscore: Take the same approach, potentially with weights

$$\mathrm{HS} = \left(\prod_{i=1}^{n} \left(\frac{s_i}{r_i}\right)^{w_i}\right)^{\left(1/\sum_{i=1}^{n} w^i\right)}$$

If sum of weights is one, this simplifies to

$$\mathrm{HS} = \prod_{i=1}^{n} \left(\frac{s_i}{r_i}\right)^{w_i}$$

s_i = workload score w_i = workload weight

 $r_i = score on reference machine$

Reference machine is Intel Xeon E5-2630 v3 @ 2.40 Ghz, hyperthreading (HT) on

Workload score is defined as events processed per second

Tristan Sullivan

Example

	AMD_7551P, HT off	Ref. Machine		AMD_7551P, HT on	Ref. Machine
Physical cores	32	16	Physical cores	32	16
Year	2017	2014	Year	2017	2014
Workload avg.	640.1	361.5	Workload avg.	700.7	361.5
HEPScore	1.77	1	HEPScore	1.94	1
HEPScore _n	0.88	1	HEPScore	0.97	1
HS06_64	603.8	415.5	HS06_64	729.9	415.5
HS06_64/ref	1.45	1	HS06_64/ref	1.76	1
HS06_64 /ref	0.73	1	HS06_64 /ref	0.88	1

HEPScoreⁿ and HS06ⁿ include a further normalization by the number of physical cores of the machine (actually pcores/pcores_{ref}); this is useful for comparing benchmarks (e.g. HEPScore to HS06)

Ratio of ~1.2 between HT on and HT off is typical. Here it is 1.2 for HS06_64, and 1.1 for HEPScore

I haven't defined HEPScore yet; this is just to illustrate the calculation method. Definition will come in the next slides

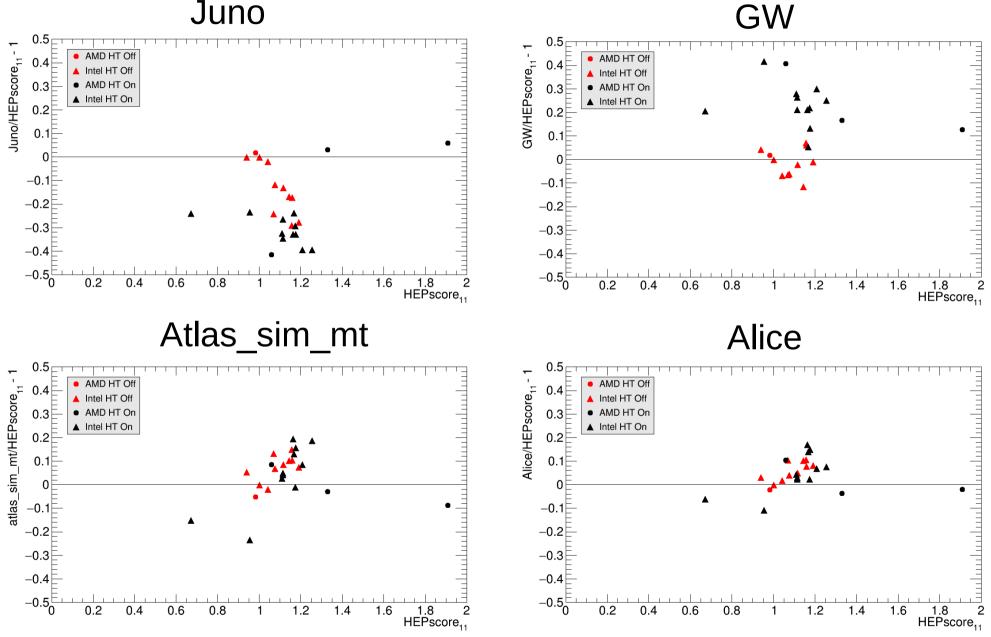
Available Workloads

Workload	Running Time (m)	
Atlas_gen_sherpa	31	
Atlas_reco_mt	69	
Atlas_sim_mt	156	
CMS_gen_sim	42	
CMS_digi	31	
CMS_reco	51	
Belle2_gen_sim_reco	25	
Alice_gen_sim_reco	194	
LHCb_gen_sim	104	
Juno_gen_sim_reco	67	
Gravitational Wave	138	
Total	908 (15+ hours)	

Times for three runs on reference machine

What is in your opinion the optimal time duration to run HEPScore (HS06 takes 3 hours)?		
A. One day : 0 (0.00%)	В	
B. 6 hours : 5 (50.00%)	O E	
C. as HS06 : 4 (40.00%)	C	
D. 1 hour : 0 (0.00%)		
E. Other suggestions: 1 (10.00%)		

Runs in a time similar to HEPSpec06 (3 hours)


Including all workloads would exceed desired running time

Considerations for removal: length, dissimilarity to other workloads. Also different running conditions: GW doesn't saturate node, Juno requires > 2GB/core

For now, define HEPScore₁₁ as average of all eleven workloads, for comparative purposes

Individual WL Deviations

Juno

Tristan Sullivan

Available Workloads

Workload	Running Time	FOM
Atlas_gen_sherpa	31	0.123
Atlas_reco_mt	69	0.083
Atlas_sim_mt	156	0.092
CMS_gen_sim	42	0.077
CMS_digi	31	0.073
CMS_reco	51	0.086
Belle2_gen_sim_reco	25	0.044
Alice_gen_sim_reco	194	0.067
LHCb_gen_sim	104	0.124
Juno_gen_sim_reco	67	0.213
Gravitational Wave	138	0.151
Total	908 (~15 hours)	

FOM is the average distance from the x-axis in the plots of WL vs. $HEPScore_{11}$ (see previous page)

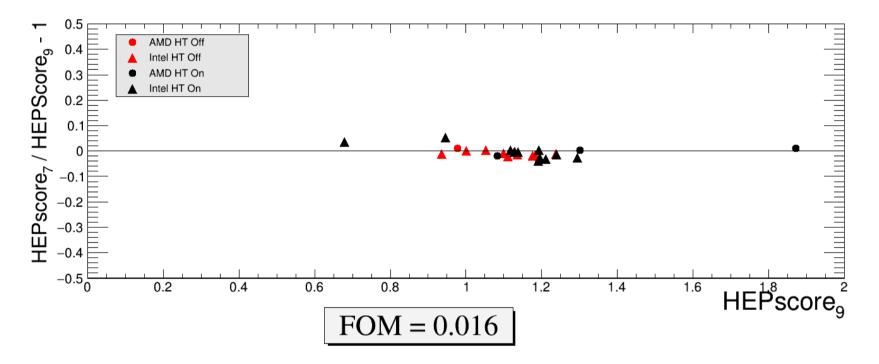
FOM is a measure of how different each workload is from the average of all workloads

Times for three runs on reference machine

Available Workloads

Workload	Running Time	FOM
Atlas_gen_sherpa	31	0.123
Atlas_reco_mt	69	0.083
Atlas_sim_mt	156	0.092
CMS_gen_sim	42	0.077
CMS_digi	31	0.073
CMS_reco	51	0.086
Belle2_gen_sim_reco	25	0.044
Alice_gen_sim_reco	194	0.067
LHCb_gen_sim	104	0.124
Juno_gen_sim_reco	67	0.213
Gravitational Wave	138	0.151
Total	353 (~6 hours)	

FOM is the average distance from the x-axis in the plots of WL vs. HEPScore (see previous page)


FOM is a measure of how different each workload is from the average of all workloads

Proposal: discard Alice and Atlas_sim based on length; GW and Juno for FOM and reasons discussed earlier (see Slide 4) to form nominal HEPScore

Total running time just under six hours

Times for three runs on reference machine

Impact of Removing Alice and Atlas_sim_mt

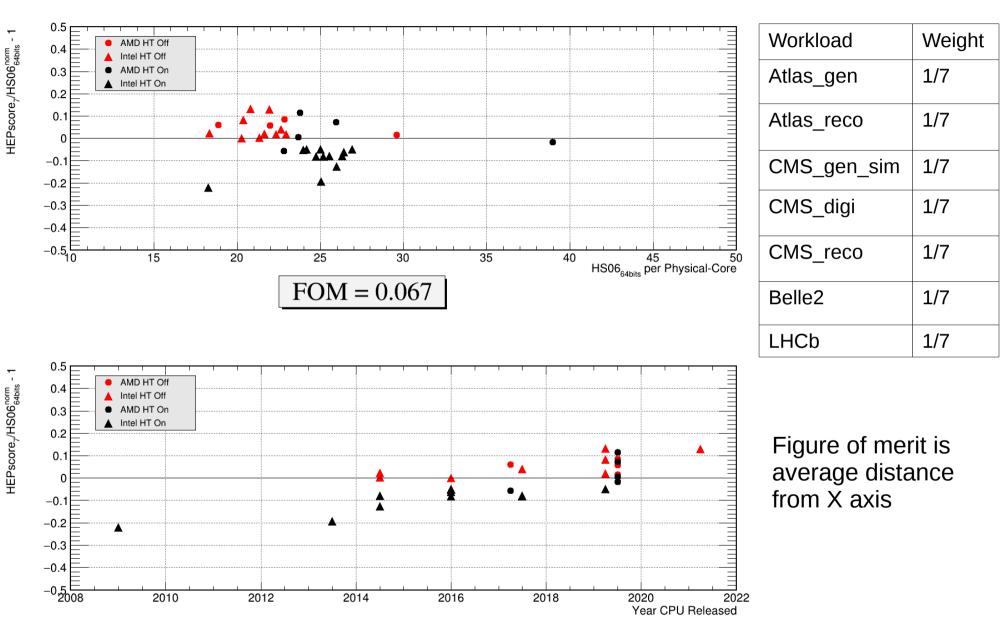
HEPScore, is the average of all workloads besides GW and Juno

HEPScore, additionally removes Alice and Atlas_sim_mt

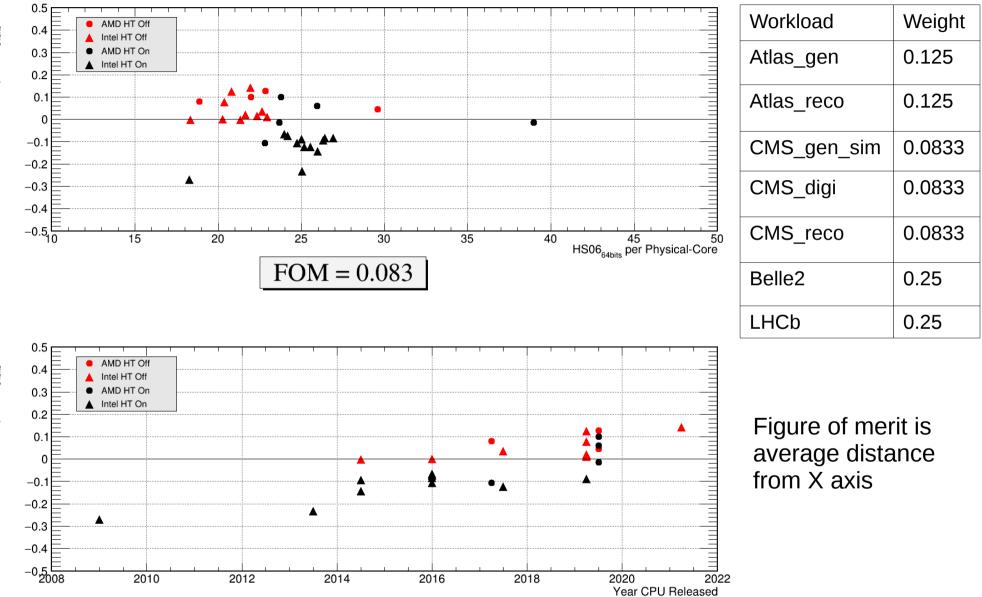
Excluding these two workloads has minimal impact on HEPScore, saves almost six hours of running time

HEPScore Candidates

After removing GW, Juno, Atlas_sim_mt, and Alice

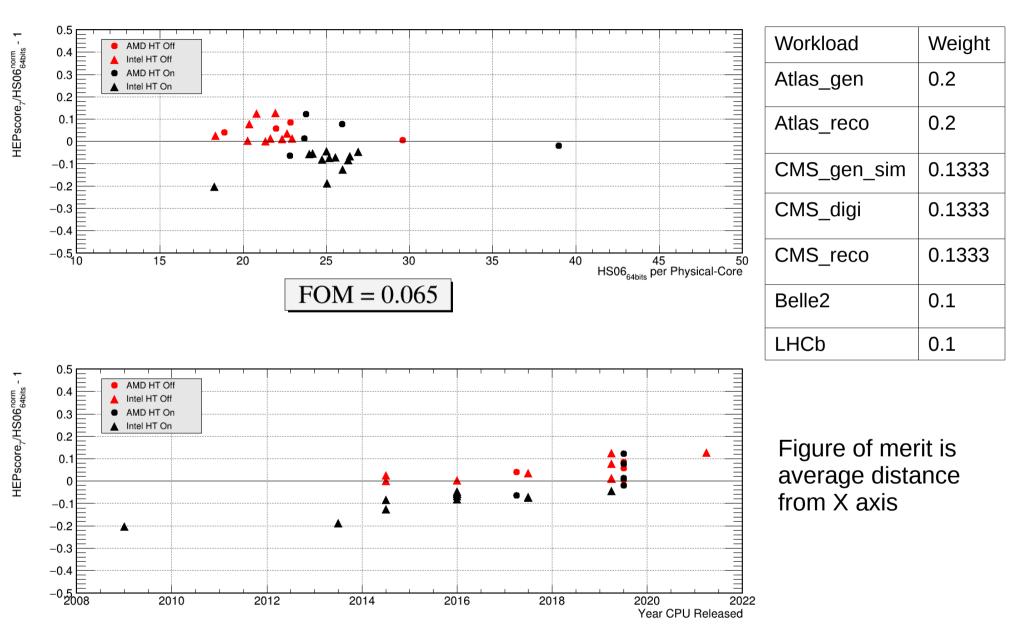

- "Nominal": weight workloads equally
 - All workloads get weight 1/N, where N is the number of workloads (N = 7)
- "Experiment": Weight experiments equally
 - Atlas workloads get 0.5/N, CMS get 0.333/N, LHCb and B2 get 1/N, where N is the number of experiments (N = 4)
- "Grid": Weight by approximate fraction on grid, obtained from CPU usage in WLCG accounting
 - Atlas workloads get 0.4 total, CMS get 0.4 total, LHCb and B2 get 0.1

CPU Models


Architecture	Year of Release
NehalemEP	2009
IvyBridge	2013.5
Haswell	2014.5
Broadwell	2016
Naples	2017.25
Skylake	2017.5
Cascade Lake	2019.25
Rome	2019.5
Milan	2021
Ice Lake	2021.25

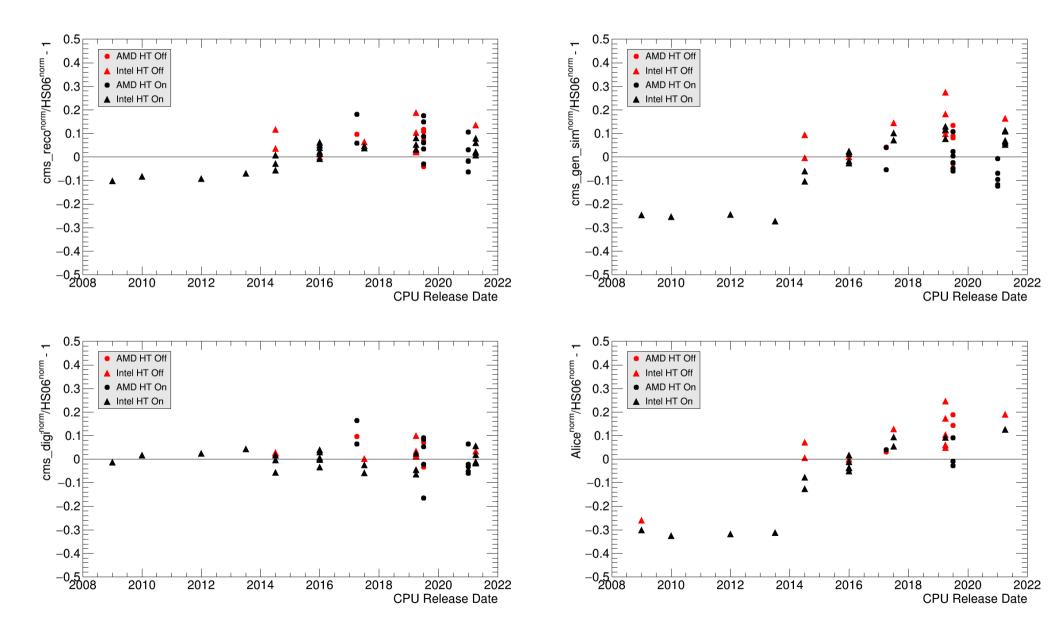
These are the CPU models for which data exist for all workloads

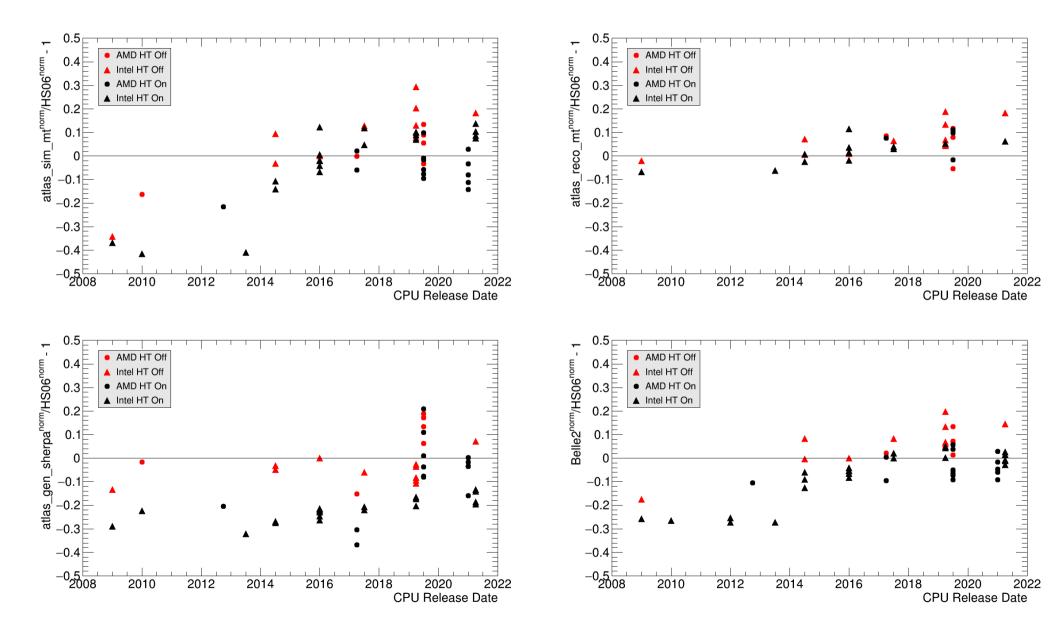
Nominal



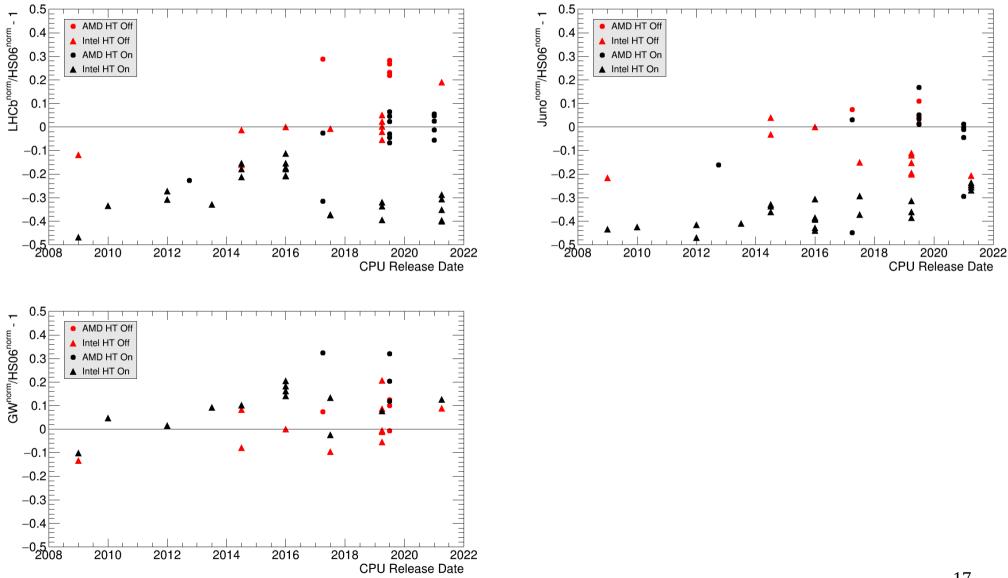
Experiment

HEPscore₇/HS06^{norm} - 1


Grid


Conclusion

- Proposal: exclude Juno and Gravitational Wave workloads by firstprinciples arguments (see slide 4)
- Proposal: exclude Atlas_sim_mt and Alice workloads due to long running time, lack of impact on HEPScore (see slides 4 and 8)
- Workload weighting does not change qualitative behaviour of HEPScore
- Another candidate: weight by job type (sim, reco, etc.). Where to get numbers for fraction of each type on grid?


Appendix: Workloads vs. Year

Appendix: Workloads vs. Year

Appendix: Workloads vs. Year

