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THE HIGGS MECHANISM
A charged scalar field can be represented by a value with dimensions of mass, and a phase

Gauge symmetry: physical results do not depend on phase

Consider a potential with a minimum at a non-zero value of the scalar field

GAUGED SCALAR FIELD 31

There are two types of oscillations, one along the radial direction and the other along the
azimuthal direction. Since there is no quadratic term for the field in the azimuthal direction,
the corresponding particle is massless. This massless particle arising from an invariance of
the Lagrangian with respect to the ground state is known as a Goldstone boson.

4.2 Gauged scalar field

Perhaps the most interesting phenomena occur when a scalar field possesses a gauge
group charge and has a non-zero vacuum expectation value. This value specifies a di-
rection, or phase, in group space, and gives non-zero masses to the corresponding gauge
bosons. To explore the possibilities, we consider charged scalar fields under an abelian
U(1) gauge group and a non-abelian SU(2) gauge group.

4.2.1 U(1)-charged scalar field

The simplest gauge group is U(1), which can be represented by a phase or a location
on a circle. A single gauge boson, or connection, Aµ, describes the parallel transport of
the momentum vector of a field with a U(1) fiber degree of freedom and charge �e:

D� = (@µ + ieAµ)�dx
µ
. (4.6)

There are no group indices, since it is a one-dimensional space. The scalar field has no
direction in spacetime, but it has a position in group space; it is a vector in the group space
with location determined by its phase.

The Lagrangian is simply the interacting scalar-field Lagrangian with derivatives given
by equation 4.6, plus a curvature term �Fµ⌫F
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/4:
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The minimum of V (�) has not changed, so again we expand around the ground state of
the vacuum and obtain the terms in equation 4.5 [L�(�, ✏)] plus terms with Aµ from the
covariant derivative:
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There are a number of remarkable phenomena in this Lagrangian. First, consider the term
e
2
µ
2

2� AµA
µ
= e

2
h�0i

2
AµA

µ. The non-zero expectation value h�0i is at a particular loca-
tion in group space, i.e. it has a specific phase. The e

2
h�0i

2
AµA

µ term transports fields
with group positions along this specific phase, over a characteristic distance |h�0i|

�1. One
can imagine a source with a particular U(1) phase is parallel-transported via Aµ. Since Aµ

has a potential well in the direction h�0i, the phase “falls” in this direction over a space-
time distance |h�0i|

�1. Oscillations in the phase are thus damped out over distances of this
scale.

The field has a non-zero value throughout space:
the vacuum expectation value 

(246 GeV for the Higgs field)

Oscillations in the magnitude cost energy 
Correspond to the massive Higgs boson

Oscillations in the phase do not cost energy

Coupling between Higgs and gauge (and fermion) fields causes potential wells in these fields 
Oscillations cost energy → non-zero masses
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Higgs field potential

mH = v 2λ = 125 GeV

λ ≈ 0.1
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Higgs quantum corrections

Naively integrating to a cutoff scale :





If there is no new physics up to scale  
then we need ‘fine-tuning’ to cancel the 
quantum corrections


1% fine tuning:   TeV 

Motivates TeV-scale new physics
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measured electroweak parameters, this result further constrains the properties of new unobserved
particles coupling to W and Z bosons.

PACS numbers: 13.38.Be, 14.70.Fm, 13.85.Qk, 12.15.Ji

I. INTRODUCTION

The discovery of the W and Z bosons in 1983 [1]
confirmed a central prediction of the unified model
of electromagnetic and weak interactions [2]. Ini-
tial W and Z boson mass measurements verified the
tree-level predictions of the theory, with subsequent
measurements probing the predicted O(3 GeV/c2)
[3, 4] radiative corrections to the masses. The current
knowledge of these masses and other electroweak pa-
rameters constrains additional radiative corrections
from unobserved particles such as the Higgs boson
or supersymmetric particles. These constraints are
however limited by the precision of the W boson mass
mW , making improved measurements of mW a high
priority in probing the masses and electroweak cou-
plings of new hypothetical particles. We describe in
this article the single most precise mW measurement
[5] to date.
The W boson mass can be written in terms of

other precisely measured parameters in the “on-shell”
scheme as [4]:

m2
W =

!3

c

παEM√
2GF (1−m2

W /m2
Z)(1−∆r)

, (1)

where αEM is the electromagnetic coupling at the
renormalization energy scale Q = mZc2, GF is the
Fermi weak coupling extracted from the muon life-
time, mZ is the Z boson mass, and ∆r includes all
radiative corrections. Fermionic loop corrections in-
crease the W boson mass by terms proportional to
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ln(mZ/mf) for mf # mZ [4], while the loop con-
taining top and bottom quarks (Fig. 1) increases mW

according to [6]:

∆rtb =
c

!3

−3GFm2
W

8
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t +m2
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2
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]
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where the second and third terms can be neglected
since mt % mb. Higgs loops (Fig. 2) decrease mW

with a contribution proportional to the logarithm of
the Higgs mass (mH). Contributions from possible
supersymmetric particles are dominated by squark
loops (Fig. 3) and tend to increase mW . Gener-
ally, the lighter the squark masses and the larger the
squark weak doublet mass splitting, the larger the
contribution to mW . The total radiative correction
from supersymmetric particles can be as large as sev-
eral hundred MeV/c2 [7].
Table I [8] shows the change in mW for +1σ

changes in the measured standard model input pa-
rameters and the effect of doubling mH from 100
GeV/c2 to 200 GeV/c2. In addition to the listed
parameters, a variation of ±1.7 MeV/c2 on the pre-
dicted mW arises from two-loop sensitivity to αs, e.g.
via gluon exchange in the quark loop in Fig. 1. The-
oretical corrections beyond second order, which have
yet to be calculated, are estimated to affect the mW

prediction by ±4 MeV/c2 [8].

+W +W

t

b

FIG. 1: The one-loop contribution to the W boson mass
from top and bottom quarks.

The uncertainties on the mW prediction can be
compared to the 29 MeV/c2 uncertainty on the world
average from direct mW measurements (Table II),
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SM calculation of W boson mass yields 
 MeV81358 ± 4

Erler & Freitas 
PDG (2022)
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The W boson mass is the most sensitive observable to sources of ‘naturalness’

Classic example: Supersymmetry

2.4 The ρ parameter

We start our discussion with the quantity ∆ρ, see eq. (2.57), which parametrizes in particular
the leading contributions from loops of scalar quarks and leptons to the W -boson mass and
the Z-boson observables.

2.4.1 One-loop results

In the SM the dominant contribution to ∆ρ at the one-loop level arises from the t/b doublet
due to its large mass splitting. With both fermion masses non-zero it reads

∆ρSM0 =
3Gµ

8
√
2 π2

F0(m
2
t , m

2
b), (2.61)

with

F0(x, y) = x+ y −
2 x y

x− y
log

x

y
. (2.62)

F0 has the properties F0(m2
a, m

2
b) = F0(m2

b , m
2
a), F0(m2, m2) = 0, F0(m2, 0) = m2. Therefore

for mt # mb eq. (2.61) reduces to the well known quadratic correction

∆ρSM0 =
3Gµ

8
√
2π2

m2
t . (2.63)

Within the MSSM the dominant SUSY correction at the one-loop level arises from the
scalar top and bottom contribution to eq. (2.57), see Fig. 2.1.

V V

qi

qj

V V

qi

Figure 2.1: Feynman diagrams for the contribution of scalar quark loops to the gauge boson
self-energies at one-loop order.

For mb $= 0 it is given by

∆ρSUSY
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3Gµ

8
√
2 π2

[
− sin2 θt̃ cos

2 θt̃F0(m
2
t̃1
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t̃2
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2
b̃1
, m2

b̃2
)

+ cos2 θt̃ cos
2 θb̃F0(m

2
t̃1
, m2

b̃1
) + cos2 θt̃ sin

2 θb̃F0(m
2
t̃1
, m2

b̃2
)

+ sin2 θt̃ cos
2 θb̃F0(m

2
t̃2
, m2

b̃1
) + sin2 θt̃ sin

2 θb̃F0(m
2
t̃2
, m2

b̃2
)
]
. (2.64)

The size of the SUSY one-loop contributions are shown for an exemplary case in Fig. 2.2 as
a function of MSUSY. The parameter MSUSY is defined by setting the soft SUSY-breaking

37

Mass splittings in supersymmetric isospin doublets: different mass shifts for W & Z bosons
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Difference in corrections to W and Z propagators encapsulated by  parameterρ

• Another important group of EWPO are the Z boson observables, among which we
mostly concentrate on the effective leptonic weak mixing angle at the Z boson reso-
nance, sin2 θeff . It can be defined through the form factors at the Z boson pole of the
vertx coupling of the Z to leptons (l). If this vertex is written as il̄γµ(gV − gAγ5)lZµ

then

sin2 θeff =
1

4

(
1− Re

gV
gA

)
. (2.56)

At the tree level this amounts to the sine of the weak mixing angle, sin2 θW = 1 −
M2

W/M2
Z , in the on-shell scheme. Loop corrections enter through the form factors gV

and gA. The theoretical evaluation is reviewed in Sect. 2.6.

• The quantity ∆ρ,

∆ρ =
ΣZ(0)

M2
Z

−
ΣW (0)

M2
W

, (2.57)

parameterizes the leading universal corrections to the electroweak precision observables
induced by the mass splitting between fields in an isospin doublet [102]. ΣZ,W (0)
denote the transverse parts of the unrenormalized Z and W boson self-energies at
zero momentum transfer, respectively. The induced shifts in the two above described
observables are given in leading order by

δMW ≈
MW

2

c2W
c2W − s2W

∆ρ, δ sin2 θeff ≈ −
c2Ws2W

c2W − s2W
∆ρ. (2.58)

The theoretical evaluation of ∆ρ is discussed in Sect. 2.4.

• Another very powerful observable for constraining the parameter space of the MSSM
is the mass of the lightest CP-even Higgs boson, mh. If the Higgs boson will be found
at the next generation of colliders, its mass will be measured with high precision. We
therefore refer to mh also as an EWPO. While mh is bounded from above at tree-level
by mh ≤ MZ , it receives large radiative corrections. The leading one-loop contribution,
arising from the t/t̃ sector, reads [101]

∆m2
h =

3Gµ√
2π2 sin2 β

m4
t log

(
mt̃1mt̃2

m2
t

)
. (2.59)

The loop corrections, entering via Higgs-boson propagator corrections, can shift mh by
50–100%. The theoretical status is reviewed in Sect. 2.7.

• As a further precision observable that we investigate in detail in this report we consider
the anomalous magnetic moment of the muon, aµ ≡ (g − 2)µ. It is related to the
photon–muon vertex function Γµµ̄Aρ as follows:

ū(p′)Γµµ̄Aρ(p,−p′, q)u(p) = ū(p′)
[
γρFV (q

2) + (p+ p′)ρFM(q2) + . . .
]
u(p) ,

aµ = −2mµFM(0) , (2.60)

where FM(q2) = 0 at tree-level. Non-zero values are induced via loop corrections. The
theoretical evaluation is discussed in Sect. 2.8.
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8
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2
t̃2
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b̃2
)
]
. (2.64)

The size of the SUSY one-loop contributions are shown for an exemplary case in Fig. 2.2 as
a function of MSUSY. The parameter MSUSY is defined by setting the soft SUSY-breaking
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Figure 2. Prediction for MW as a function of the lightest stop mass mt̃1 . In all plots the cuts
mt̃2/mt̃1 < 2.5 and mb̃2

/mb̃1
< 2.5 are applied. In the upper left plot all HiggsBounds allowed

points are shown, in the upper right plot only the points are shown for which additionally the
squarks of the first two generations and the gluino are heavier than 1200 GeV, in the lower left plot
only the points are shown for which additionally the sbottoms are heavier than 1000 GeV, and in
the lower right plot only the points are shown for which additionally also the sleptons and charginos
are heavier than 500 GeV. The red line indicates the SM prediction for MW .

M1 and M2, the mass of χ̃0
1 is ∼ 50 GeV. Our analysis of the contributions in the slepton

and the chargino / neutralino sector shows that even if all squarks were so heavy that their

contribution to the MW prediction were negligible, contributions from the slepton sector

or the chargino / neutralino sector could nevertheless be sufficient to bring the MSSM

prediction in perfect agreement with the data. This could be the case for slepton masses

of about 150–200 GeV or for a chargino mass of about 100–150 GeV. If the squark sector

gives rise to a non-zero contribution to MW the same predicted value for MW could be

reached with heavier sleptons and charginos / neutralinos.

In figure 2 and figure 3 we analyze in detail the dependence of MW on the scalar

quark masses, in particular on mt̃1 and mb̃1
, with mt fixed to 173.2 GeV. The upper left

plot of figure 2 shows the prediction for MW (green dots) as a function of mt̃1 . All points

are allowed by the constraints discussed in section 5.2 and fulfill the additional constraint

mt̃2,b̃2
/mt̃1,b̃1

< 2.5. The SM prediction is shown as a red strip for MSM
H = 125.6±0.7 GeV,

and the 1σ experimental result is indicated as a gray dashed band. We checked that without

– 14 –

MSSM scan
mg̃ > 1200 GeV

mb̃ < 1000 GeV

ml̃ < 500 GeV

Heinemeyer, Hollik, Weiglein, Zeune 
JHEP 12 (2013) 084
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More generally the SM effective field theory parameterizes high-scale effects

26 I. Brivio and M. Trott / Physics Reports 793 (2019) 1–98

and the gauge field EOM are given as
⇥
D↵,G↵�

⇤A
= g3jA� ,

⇥
D↵,W↵�

⇤I
= g2jI� , D↵B↵� = g1j� . (5.12)

Note that
⇥
D↵, F↵�

⇤
is the covariant derivative in the adjoint representation in the notation above. Hermitian derivative

notation is introduced as

H† i
 !
D �H = iH†(D�H)� i(D�H)†H , H† i

 !
D I

�H = iH†⌧ I (D�H)� i(D�H)†⌧ IH. (5.13)

Using this notation, the gauge currents are

j� =

X

 =u,d,q,e,l

 yi�� +
1
2
H† i
 !
D �H, jI� =

1
2
q ⌧ I��q +

1
2
l ⌧ I�� l +

1
2
H† i
 !
D I

�H ,

jA� =

X

 0=u,d,q

 TA�� . (5.14)

We use the notation  = {u, d, q, e, l} to sum over all SM fermions, and V = {B,W ,G} to sum over the SM gauge fields.
Note that these EOM have corrections due to L

(5) +L
(6) + · · · in the SMEFT, that must be included for a consistent matching

to higher orders in the non-perturbative expansion. Such corrections are also L
(n) basis dependent.

5.2. The standard model effective field theory

The SMEFT is a consistent EFT generalization of the SM constructed out of a series of SUc(3) ⇥ SUL(2) ⇥ UY(1) invariant
higher dimensional operators, built out of SM fields and including an H field as defined in Eq. (5.7). The idea of the SMEFT
is that extensions to the SM are assumed to involve massive particles heavier than the measured vev, which sets the scale
(up to coupling suppression) of the SM states. In addition, it is assumed that any non-perturbative matching effects are
characterized by a scale parametrically separated from the EW scale and the observed Higgs-like boson is embedded in the
SUL(2) Higgs doublet.

The SMEFT follows from these assumptions and is defined as

LSMEFT = LSM + L
(5)

+ L
(6)

+ L
(7)

+ · · · , L
(d)

=

ndX

i=1

C (d)
i

⇤d�4Q
(d)
i for d > 4. (5.15)

The operators Q (d)
i are suppressed by d�4 powers of the cutoff scale⇤, and the C (d)

i are theWilson coefficients. The number
of non-redundant operators in L

(5), L(6), L(7) and L
(8) is known [94,155,156,222–226]. Furthermore, the general algorithm

to determine operator bases at higher orders developed in Refs. [225–228] makes the SMEFT defined to all orders in the
expansion in local operators. Note that when transitioning to the SMEFT, symmetry arguments leading to a neglect of dual
field strength terms in LSM should be reformulated, as such terms multiplied by (H†H) appear in L6. The dual field strength
terms should not be casually neglected.

In the SMEFT SUL(2)⇥ UY(1)! U(1)em is Higgsed as in the SM. The minimum of the Higgs potential is now determined
including the effect of the operator QH ⌘

�
H†H

�3, which modifies the scalar doublet potential to the form [95]

V (H†H) = �

✓
H†H �

1
2
v2

◆2

� CH
�
H†H

�3
, (5.16)

yielding the new minimum

hH†Hi =
v2

2

✓
1 +

3CHv2

4�

◆
⌘

1
2
v2
T , (5.17)

on expanding the exact solution (� �
p
�2 � 3CH�v2)/(3CH ) to first order in CH . This expansion assumes a mass gap to the

scale(s) of new physics (referred to schematically as ⇤) which leads to the expansion parameter ⇠ CH v̄2
T/⇤

2 < 1. The
dependence on ⇤ was suppressed in the previous equations. We absorb the cut off scale into the Wilson coefficients as a
notational choice unless otherwise noted.

The SMEFT is an enormously powerful consistent field theory to use to characterize the lowenergy limit of physics beyond
the SM. Even if a full model extension of the SM becomes experimentally supported in the future, the SMEFT can still be a
useful and appropriate tool to use to interface with large swaths of experimental data below the characteristic scale(s)⇤ of a
new physics sector. It cannot be emphasized too strongly that the systematic development of this framework is expected to
have an important return on investment of the time expended on it. The payoff in terms of improved scientific conclusions
being enabled from the ever growing data set of measurements of SM states below the scale ⇤ is clear. This payoff can be
starkly contrasted to the return on time invested when developing the predictions of a particular model, or even a set of
models, if the many assumptions of the model are not experimentally validated. Considering the current global data set of
particle physics, adopting the IR assumptions that define the SMEFT seems to be a very reasonable compromise between
utility and generality of the theoretical framework assumed to accommodate the certain fact that the SM is an incomplete

δmW

mW
= (0.34cHD + 0.72cHWB + 0.37cHl3 − 0.19cll1) v2

Λ2

For  and cHD=1,  TeV

e.g. Z’ boson

δmW /mW = 0.1 % Λ = 4.5

For  and cHWB=1,  TeV

e.g. compositeness

δmW /mW = 0.1 % Λ = 6.6

I. Brivio and M. Trott, 
Phys. Rep. 793 (2019) 1

Smaller ci  smaller → Λ
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 TeV proton-antiproton 

collisions from the Fermilab Tevatron

s = 1.96

CDF II detector consists of


 silicon vertex detector 


 large drift chamber 


 coarse calorimeter towers 


 outer muon chambers
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CDF II measurement of the W boson mass

previous measurement

current measurement
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W boson mass @ the Tevatron
Measurement strategy: 

Measure momenta of charged lepton and neutrino in transverse plane 
Construct the transverse mass in this plane and fit three distributions for mW 

Experimental and theoretical requirements: 
Precise calibration of lepton momentum 
Accurate calibration of detector response to initial-state radiation and underlying event 
Accurate model of longitudinal and transverse momentum of the W boson 

Tevatron instantaneous luminosities produce <10 overlapping collisions on average 
A large majority of W bosons are produced by valence quarks

normalizations in the MW template fits. The uncertainties
on the background estimates result in uncertainties of 4, 3,
and 4 MeV on MW from the mT , pe

T , and pν
T fits,

respectively (Table VIII).

XI. W-BOSON-MASS FITS

The W-boston mass is extracted by performing fits to a
sum of background and simulated signal templates of the
mT , pl

T , and pν
T distributions. The fits minimize − lnL,

where the likelihood L is given by

L ¼
YN

i¼1

e−mimni
i

ni!
; (36)

where the product is over N bins in the fit region with ni
entries (from data) and mi expected entries (from the
template) in the ith bin. The template is normalized to
the data in the fit region. The likelihood is a function of
MW , where MW is defined by the relativistic Breit-Wigner
mass distribution,

dσ
dm

∝
m2

ðm2 −M2
WÞ2 þm4Γ2

W=M
2
W
; (37)

wherem is the invariant mass of the propagator. We assume
the standard model W boson width ΓW ¼ 2094% 2 MeV.
The uncertainty on MW resulting from δΓW ¼ 2 MeV is
negligible.

A. Fit results

The mT fit is performed in the range 65<mT <90GeV.
Figure 36 shows the results of the mT fit for the W → μν
and W → eν channels while a summary of the 68%
confidence uncertainty associated with the fit is shown
in Table IX. The pl

T and pν
T fits are performed in the ranges

32 < pl
T < 48 and 32 < pν

T < 48 GeV, respectively, and
are shown in Figs. 37 and 38, respectively. The uncertain-
ties for the pl

T and pν
T fits are shown in Tables X and XI,

respectively. The differences between data and simulation
for the three fits, divided by the statistical uncertainties on
the predictions, are shown in Figs. 39–41 and the fit results
are summarized in Table XII.

We utilize the best linear unbiased estimator (BLUE)
[61] algorithm to combine individual fits. Each source of
systematic uncertainty is assumed to be independent from
all other sources of uncertainty within a given fit. We

TABLE VIII. Background fractions from various sources in the
W → eν data set, and the corresponding uncertainties on the mT ,
pμ
T , and pν

T fits for MW.

Fraction of δMW (MeV)
Source W → eν data (%) mT fit pe

T fit pν
T fit

Z=γ& → ee 0.139% 0.014 1.0 2.0 0.5
W → τν 0.93% 0.01 0.6 0.6 0.6
Hadronic jets 0.39% 0.14 3.9 1.9 4.3
Total 1.46% 0.14 4.0 2.8 4.4
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FIG. 36. Distributions ofmT forW boson decays to μν (top) and
eν (bottom) final states in simulated (histogram) and experimental
(points) data. The simulation corresponds to the maximum-
likelihood value of MW and includes backgrounds (shaded).
The likelihood is computed using events between the two arrows.

TABLE IX. Uncertainties on MW (in MeV) as resulting from
transverse-mass fits in the W → μν and W → eν samples. The
last column reports the portion of the uncertainty that is common
in the μν and eν results.

mT fit uncertainties
Source W → μν W → eν Common

Lepton energy scale 7 10 5
Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0
Lepton tower removal 2 3 2
Recoil scale 5 5 5
Recoil resolution 7 7 7
Backgrounds 3 4 0
PDFs 10 10 10
W boson pT 3 3 3
Photon radiation 4 4 4
Statistical 16 19 0
Total 23 26 15

PRECISE MEASUREMENT OF THE W-BOSON MASS … PHYSICAL REVIEW D 89, 072003 (2014)
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radiation, that results in measurable hadronic-recoil energy.
The W-boson mass is measured using low-background
samples of W ! ‘!‘ decays (‘ ¼ e, " at CDF and ‘ ¼
e at D0) that are reconstructed using the CDF [22] and D0
[23] detectors. The mass is determined using three kine-
matic variables measured in the plane perpendicular to the
beam direction: the transverse momentum of the charged
lepton (p‘

T), the transverse momentum of the neutrino (p!
T),

and the transverse mass m‘
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p‘

Tp
!
Tð1# cos!#Þ

q
,

where !# is the opening angle between the lepton and
neutrino momenta in the plane transverse to the beam. The
magnitude and direction of p!

T is inferred from the vector
of the missing transverse energy 6E‘

T [24]. The W-boson
mass is extracted from maximum-likelihood fits to the
binned distributions of the observed p‘

T , 6E‘
T , andm

‘
T values

using a parametrized simulation of these distributions as a
function of MW . These simulations depend on the kine-
matic distributions of theW-boson decay products and also
on detector effects that are constrained using theoretical
calculations and control samples. The kinematic distribu-
tions are determined by several effects including the
W-boson transverse momentum pTðWÞ and the parton
distribution functions (PDFs) of the interacting protons
and antiprotons. Major detector effects include energy
response to leptons, hadronic recoil, the response to QED
radiation, and multiple-interaction pileup, together with
calorimeter acceptance effects and lepton-identification
efficiencies. The detailed simulations developed at CDF
and D0 enable the study of these effects to better than 1 part
in 104 precision on the observed value of MW .

In the CDF (2012) and D0 (2012) measurements, the
kinematic properties ofW-boson production and decay are
simulated using RESBOS [25], which is a next-to-leading
order generator that includes next-to-next-to-leading loga-
rithm resummation of soft gluons at low boson pT [26].
The momenta of interacting partons in RESBOS are calcu-
lated as fractions of the colliding (anti)proton momenta
using the CTEQ6.6 [27] PDFs. The radiation of photons
from final-state leptons is simulated using PHOTOS [28].

III. CDF (2012) AND D0 (2012) MEASUREMENTS

A. CDF measurement

The CDF (2012) measurement uses data corresponding
to an integrated luminosity of 2:2 fb#1, collected between
2002 and 2007. Both the muon (W ! "!") and electron
(W ! e!e) channels are considered. Decays of J=c and"
mesons into muon pairs are reconstructed in a central
tracking system to establish the absolute momentum scale.
A measurement of the Z-boson mass (MZ) in Z ! ""
decays is performed as a consistency check. This measure-
ment, which uses the tracking detector, yields MZ¼
91180%12ðstatÞ%10ðsystÞMeV, consistent with the world
average mass of 91188% 2 MeV [29], and is therefore
also used as an additional constraint on the momentum
scale. The electromagnetic calorimeter energy scale and

nonlinearity are determined by fitting the peak of the E=p
distribution of electrons fromW ! e! and Z ! ee decays,
where E is the energy measured in the calorimeter and p is
the momentum of the associated charged particle. The
lower tail of the E=p distribution is used to determine the
amount of material in the tracking detector. The Z-boson
mass measured in Z ! ee decays is used as a consistency
check and to constrain the energy scale. The value ofMZ ¼
91230% 30ðstatÞ % 14ðsystÞ MeV from the calorimetric
measurement is also consistent with the world average.
The CDF (2012) measurement of MW is obtained from

the combination of six observables: p"
T , 6E"

T , m
"
T , p

e
T , 6Ee

T

andme
T . The combined result isMW ¼ 80387% 12ðstatÞ %

15ðsystÞ MeV. Table I summarizes the sources of
uncertainty in the CDF measurement.

B. D0 measurement

The D0 (2012) measurement uses data corresponding to
4:3 fb#1 of integrated luminosity recorded between 2006
and 2009. D0 calibrates the calorimeter energy scale using
Z ! ee decays. Corrections for energy lost in uninstru-
mented regions are based on a comparison between the
shower-development profiles from data and from a detailed
GEANT-based simulation [30] of the D0 detector. The world
average value forMZ [29] is used to determine the absolute
energy scale of the calorimeter, which is thereafter used to
correct the measurement of the electron energy from the
W-boson decay. This MW measurement is therefore
equivalent to a measurement of the ratio of W- and
Z-boson masses. This calibration method eliminates
many systematic uncertainties common to the W- and
Z-boson mass measurements, but its precision is limited
by the size of the available Z-boson data set.
The results obtained with the two most sensitive

observables me
T and pe

T are combined to determine the
W-boson mass of MW¼80367%13ðstatÞ%22ðsystÞMeV.
A summary of the uncertainties is presented in Table II.

TABLE I. Uncertainties of the CDF (2012) MW measurement
determined from the combination of the six measurements.

Source Uncertainty (MeV)

Lepton energy scale and resolution 7
Recoil energy scale and resolution 6
Lepton removal from recoil 2
Backgrounds 3
Experimental subtotal 10
Parton distribution functions 10
QED radiation 4
pTðWÞ model 5
Production subtotal 12
Total systematic uncertainty 15
W-boson event yield 12
Total uncertainty 19

COMBINATION OF CDF AND D0 W-BOSON MASS . . . PHYSICAL REVIEW D 88, 052018 (2013)
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This D0 (2012) measurement is combined with a previous
D0 measurement [16] corresponding to an integrated
luminosity of 1:0 fb!1, which uses data recorded between
2002 and 2006, to yield MW ¼ 80375# 11ðstatÞ #
20ðsystÞ MeV.

IV. COMBINATION WITH PREVIOUS
TEVATRON MEASUREMENTS

The CDF measurements from Ref. [8] (1988–1989) and
Ref. [9] (1992–1993) were made using superseded PDF
sets and have been corrected [19] using recent PDF sets.
The previous results are also adjusted to use the same
combination technique (the BLUE method) as in later

combinations. The templates for fitting MW assume
the Breit-Wigner running-width scheme propagator,
1=ðŝ!M2

W þ iŝ!W=MWÞ, which makes the value of MW

determined by the fit dependent on !W . Here, ŝ is the
square of the center-of-mass energy in the parton reference
frame and !W is the total width of the W boson. Different
measurements have used different values of !W , yielding a
shift in measured values of the W-boson mass [19],
"MW ¼ !ð0:15# 0:05Þ"!W , where "!W is the differ-
ence between the value of !W predicted by the SM, !W ¼
2092:2# 1:5 MeV [31], and that used in a particular
analysis. The prediction of !W assumes MW ¼ 80385#
15 MeV, which is a preliminary world-average combina-
tion result [32] of this article. The impact of the corrections
on the final MW combination reported in this article is
found to be less than 0.2 MeV. Table III summarizes all
inputs to the combination and the corrections made to
ensure consistency across measurements.

V. CORRELATIONS IN THE CDF AND
D0 MW MEASUREMENTS

The increased statistical power of CDF (2012) and D0
(2012) MW measurements necessitates a more detailed
treatment of the systematic uncertainties due to the
W-boson production and decay model that are independent
of the data-sample size. We assume that for each uncer-
tainty category, the smallest uncertainty across measure-
ments is fully correlated while excesses above that level are
generally assumed to be due to uncorrelated differences
between measurements. One exception corresponds to the
two D0 measurements that use very similar models and are
treated as fully correlated [16,18].
The experimental systematic uncertainties of the D0

measurement are dominated by the uncertainty in the

TABLE III. The input data used in the MW combination. All entries are in units of MeV.

CDF [8] CDF [9] CDF [10] D0 [12–15] D0 [16] CDF [17] D0 [18]

(1988–1989) (1992–1993) (1994–1995) (1992–1995) (2002–2006) (2002–2007) (2006–2009)

4:4 pb!1 18:2 pb!1 84 pb!1 95 pb!1 1:0 fb!1 2:2 fb!1 4:3 fb!1

Mass and width
MW 79 910 80 410 80 470 80 483 80 400 80 387 80 367
!W 2 100 2 064 2 096 2 062 2 099 2 094 2 100
MW uncertainties
PDF 60 50 15 8 10 10 11
Radiative corrections 10 20 5 12 7 4 7
!W 0.5 1.4 0.3 1.5 0.4 0.2 0.5
Total 390 181 89 84 43 19 26
MW corrections
"!W þ1:2 !4:2 þ0:6 !4:5 þ1:1 þ0:3 þ1:2
PDF þ20 !25 0 0 0 0 0
Fit method !3:5 !3:5 !0:1 0 0 0 0
Total þ17:7 !32:7 þ0:5 !4:5 þ1:1 þ0:3 þ1:2
MW corrected 79 927.7 80 377.3 80 470.5 80 478.5 80 401.8 80 387.3 80 368.6

TABLE II. Uncertainties of the D0 (2012) MW measurement
determined from the combination of the two most sensitive
observables me

T and pe
T .

Source Uncertainty (MeV)

Electron energy calibration 16
Electron resolution model 2
Electron shower modeling 4
Electron energy loss model 4
Recoil energy scale and resolution 5
Electron efficiencies 2
Backgrounds 2
Experimental subtotal 18
Parton distribution functions 11
QED radiation 7
pTðWÞ model 2
Production subtotal 13
Total systematic uncertainty 22
W-boson event yield 13
Total uncertainty 26
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W bosons identified in their decays to  and eν μν
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dimensional “transverse mass” mT is used in the mW

fit:

mT =
√

2p l
T p/T (1 − cos∆φ), (3)

where∆φ is the angle in the transverse plane between
the leptons, whose masses are negligible. The fit to
the mT distribution provides the statistically most
precise measurement of mW .
The charged lepton, which can be measured pre-

cisely, carries most of the observable mass informa-
tion in the event. We calibrate the muon momen-
tum using high statistics samples of the meson de-
cays J/ψ → µµ and Υ → µµ, which are fully re-
constructable and have well known masses. This re-
sults in a precise track momentum calibration, which
we transfer to the calorimeter with a fit to the ra-
tio of calorimeter energy to track momentum (E/p)
of electrons from W boson decays. The accuracy of
these calibrations is demonstrated by applying them
to measurements of the Z boson mass in the muon
and electron decay channels. We then incorporate
the known Z boson mass as an additional calibration
constraint.
The other directly measurable quantity needed for

the calculation of mT is the recoil transverse momen-
tum #uT . Since the W and Z bosons are produced at a
similar Q2, they have similar recoil distributions. We
use the leptons from the Z boson decay to measure
the pT of the Z boson. We then calibrate our model
of #uT by measuring the balance between the recoil
and Z boson #pT . The Z boson statistics are suffi-
cient to perform a recoil calibration to 1% accuracy,
which leads to a systematic uncertainty commensu-
rate with other uncertainties on mW .
To accurately model the shape of the mT distri-

bution, we use a fast Monte Carlo simulation of the
pp̄ → W → lν process including the recoil and the
detector response. The custom fast simulation allows
flexibility in parametrizing the detector response and
in separating the effects of the detector model com-
ponents. We use a binned likelihood to fit the mea-
sured mT distributions to templates (Section II D)
generated from the fast simulation, with mW as the
free parameter. All mW and lepton energy scale fits
are performed with this procedure.
Though less statistically precise, the plT and

p/T distributions provide additional information on
the W boson mass and are used as important tests
of consistency. We separately fit these distributions
for mW and combine all fits in our final result.
During the measurement process, all W boson

mass fits were offset by a single unknown random
number chosen from a flat distribution in the range
[-100,100] MeV. The fit result was thus blinded to

the authors until the analysis was complete [27]. The
final measured mW and its uncertainty have not
changed since the random offset was removed from
the fit results.
We give a brief overview of the template likelihood

fitting procedure in Section IID. Section III describes
the detector and the fast detector simulation used in
the analysis. The W boson measurement samples
are defined in Section IV. We describe the precision
measurements of muons and electrons in Sections V
and VI, respectively. These sections include event se-
lection, calibration, and resolution studies from the
dilepton and W boson data samples. Measurement of
the recoil response and resolution is presented in Sec-
tion VII. The backgrounds to the W boson sample
are discussed in Section VIII. Theoretical aspects of
W and Z boson production and decay, including con-
straints from the current data sample, are described
in Section IX. We present the W boson mass fits and
cross-checks in Section X. Finally, in Section XI we
show the result of combining our measurement with
previous measurements, and the corresponding impli-
cations on the predicted standard model Higgs boson
mass.

D. Template Likelihood Fits

All the fits involving mass measurements and the
energy scale (Sections V, VI, and X) are performed
with a template binned likelihood fitting procedure.
A given distribution to be fit is generated as a discrete
function of the fit parameter, using the fast simula-
tion. These simulated distributions are referred to
as “templates.” For each value of the fit parameter,
the simulated distribution is compared to the data
distribution and the logarithm of a binned likelihood
is calculated. The binned likelihood is the Poisson
probability for each bin to contain the ni observed
data events givenmi expected events, multiplied over
the N bins in the fit range:

L =
N
∏

i=1

e−minmi

i

ni!
. (4)

We calculate the logarithm of the likelihood using the
approximation lnn! ≈ (n+ 1/2) ln(n+ 1)− n:

lnL ≈
N
∑

i=1

[ni lnmi −mi − (ni +1/2) ln(ni +1)+ni].

(5)
The best-fit value of the parameter maximizes the
likelihood (or equivalently minimizes − lnL), and the
±1σ values are those that increase− lnL by 1/2. The
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6 Effective Majorana mass

The existing atmospheric, solar, and long-baseline reactor and accelerator neutrino oscillation
data are perfectly described by the three neutrino mixing paradigm (see Section 2), with

νlL =
3∑

i=1

Uliνi (l = e, µ, τ). (6.1)

Using the standard parameterization in Eq. (2.2) of the three-neutrino mixing matrix, the
effective Majorana mass in ββ0ν decay can be written as

|mββ| = |c213c212e2iα1m1 + c213s
2
12e

2iα2m2 + s213m3|, (6.2)

where αi = λi + δ.
Since the values of the mixing angles and of the squared-mass differences are known from

oscillation data (see Table 1), the value of |mββ| can be plotted as a function of the lightest
neutrino mass mmin = m1 in the normal spectrum and mmin = m3 in the inverted spectrum,
as shown in Fig. 7, where we used the relations (2.11) and (2.12). The largeness of the
allowed bands are mainly due to our complete ignorance of the values of the two phases
α1 and α2, which can cause significant cancellations between the contributions to |mββ| in
Eq. (6.2) (see Refs. 186–189). Figure (7) shows that a complete cancellation is not possible
in the case of an inverted spectrum, for which |mββ| is bounded to be larger than about
2× 10−2 eV. In the case of a normal spectrum a complete cancellation is not possible in the
quasi-degenerate region, but it is possible in the normal hierarchy region for mmin = m1 in
the approximate interval (2− 7)× 10−3 eV.

The lower bound on |mββ| of about 2 × 10−2 eV in the case of an inverted spectrum
provides a strong encouragement for the experimental searches of ββ0ν decay in the near
future, with the aim of measuring ββ0ν decay if the neutrino masses have an inverted spec-
trum or excluding the inverted spectrum if no signal is found. Let us stress, however, that
if ββ0ν decay is discovered in these experiments the problem of the determination of the
type of neutrino mass spectrum will remain unsolved. In fact, from Fig. 7 one can see that
the case of an inverted hierarchy can be established only if it is known independently that
mmin ! 10−2 eV. Otherwise, the neutrino mass spectrum can be either normal or inverted,
with nearly quasi-degenerate masses.

Since it is difficult to measure directly the value of mmin and the current and near-future
measurements of the absolute values of neutrino masses are done through the measure-
ments of the effective electron neutrino mass mβ in β-decay experiments and through the
measurements of the sum

∑
k mk of the neutrino masses in cosmological experiments (see

Section 2.6), it is useful to plot the allowed interval of |mββ| as a function of these two
quantities [190–193], as done15 in Figs. 8 and 9. One can see that the allowed regions in the

15 Note that, contrary to some similar figures published in the literature, Figs. 8 and 9 take into account
the uncertainties of mβ and of

∑
k mk induced by the uncertainties of the neutrino oscillation parameters

(given in Tab. 1).
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Measurement requires precise calibrations 
and momentum scale and resoution

Charged lepton scale

 Run 57515 Event11191   ana.run1b]topfnd_wele_new.pad   6JUN94  1:10:35 25-FEB-95

PHI:

ETA:

  198.

  0.49

 40.7

 DAIS E transverse Eta-Phi LEGO Plot                
 Max tower E=  40.7 Min tower E=  0.50  N clusters= 

 METS: Etotal = 314.4 GeV,   Et(scalar)=  78.6 Ge
       Et(miss)=  40.9 at Phi=  11.9 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  198.

  0.49

 Run 58778 Event92886   .RUN1B]RUN1B_WELE2JET_TAG.DST   1MAY94 23:43:46 25-FEB-95

PHI:

ETA:

   71.

  0.80

 23.5

Eta - Phi LEGO: Raw Data,Transverse  Energy.                
Tower energy threshold 0.5 GeV.                             
 EM                                                         (  +HA)  Maximum energy  23.5 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   71.

  0.80

 Run 60428 Event 3848   [ANA.RUN1B]RUN1B_WELE3JEt.DST  29JUN94  4:12:20 25-FEB-95

PHI:

ETA:

  340.

  0.78

 24.9

Eta - Phi LEGO: Raw Data,Transverse  Energy.                
Tower energy threshold 0.5 GeV.                             
 EM                                                         (  +HA)  Maximum energy  24.9 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  340.

  0.78

 Run 58322 Event31627   ANA.RUN1B]TOPFND_WELE_NEW.PAD  ??? LRID AFU ??? 26-FEB-95

PHI:

ETA:

   69.

  0.41

 28.9

 DAIS E transverse Eta-Phi LEGO Plot                
 Max tower E=  28.9 Min tower E=  0.50  N clusters= 

 METS: Etotal = 330.5 GeV,   Et(scalar)=  72.4 Ge
       Et(miss)=  31.5 at Phi= 223.7 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   69.

  0.41

e e

e e

ET � 41 GeV ET � 32 GeV

W + 0,1,2,3 jet(s) Events

ET � 35 GeV ET � 33 GeV

CDF

32 34 36 38 40 42 44 46 48

1000

2000

3000

4000

5000

6000

310×

Reconstructed Transverse momentum of the lepton with Cuts

 (GeV)l
TP

A
rb

itr
ar

y 
nu

m
be

r o
f e

ve
nt

s

simplified simulation
32 34 36 38 40 42 44 46 480.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

 (GeV)l
TP

R
at

io

simplified simulation

ΔpT /pT = − 0.1 % ΔpT /pT = − 0.1 %



Calibrations

12

Measurement requires precise calibrations 
and momentum scale and resoution

Recoil scale

6

ton’s (antiproton’s) total momentum, producing a W
or Z boson at center of mass energy

√
ŝ ≡ Q equal

to its mass times c2. The rate of production can be
predicted from two components: (1) the momentum
fraction distributions of the quarks, fq(x,Q2), which
are determined from fits to world data [23, 24]; and
(2) a perturbative calculation of the qq̄′ → W or Z
boson process [25].

d (u)
u
u (d)

p Epx

u
u
d

p Epx

)0 (Z+W
Q

+l

)- (lν

FIG. 4: Leading-order annihilation of a quark and an-
tiquark inside the proton and antiproton, respectively,
producing a W+ or Z0 boson. The quark (antiquark)
has energy xpEp (xp̄Ep̄), where Ep (Ep̄) represents the
total proton (antiproton) energy. The production occurs
at a partonic center-of-mass energy Q. The uū → Z0 and
dū → W− processes are similar.

W and Z bosons can decay to lepton or quark
pairs. Decays to quark pairs are not observable
given the large direct qq̄′ background, and decays to
τ → ντ+hadrons are not as precisely measured as
boson decays to electrons or muons. For these rea-
sons we restrict ourselves to the direct electronic and
muonic decays (W → eν, W → µν, Z → ee, and
Z → µµ), with the corresponding decays to τ → lep-
tons considered as backgrounds to these processes
(Section VIII). The branching ratio for each lep-
tonic decay W → lν (Z → ll) is ≈11% (3.3%), and
the measured cross section times branching ratio is
(2749± 174) pb [(254.9± 16.2) pb] [26].

B. Conventions

We use both Cartesian and cylindrical coordinate
systems, in which +z points in the direction of the
proton beam (east) and the origin is at the center
of the detector. In the right-handed Cartesian coor-
dinate system, +x points north (outward from the
ring) and +y points upwards; in the cylindrical sys-
tem, φ is the azimuthal angle and r is the radius from
the center of the detector in the x − y plane. The
rapidity y = − 1

2 ln[(E − pzc)/(E + pzc)] is additive

l
Tp

ν
Tp

Tu

||u

u

FIG. 5: A W boson event, with the recoil hadron mo-
mentum (!uT ) separated into axes parallel (u||) and per-
pendicular (u⊥) to the charged lepton.

under Lorentz boosts along the z axis. For massless
particles, this quantity is equal to the pseudorapidity
η = − ln[tan(θ/2)], where θ is the polar angle with
respect to the z axis. All angles are quoted in radians
unless otherwise indicated.
Because the interacting quarks’ longitudinal mo-

menta pz are not known for each event, we gener-
ally work with momenta transverse to the beam line.
The interacting protons and antiprotons have no net
transverse momentum. Electron energy (muon mo-
mentum) measured using the calorimeter (tracker) is
denoted as E (&p), and the corresponding transverse
momenta &pT are derived using the measured track
direction and neglecting particle masses. The event
calorimetric &pT , excluding the lepton(s), is calculated
assuming massless particles using calorimeter tower
energies (Section IIIA 2) and the lepton production
vertex, and provides a measurement of the recoil mo-
mentum vector &uT . The component of recoil pro-
jected along the lepton direction is denoted u|| and
the orthogonal component is u⊥ (Fig. 5). The trans-
verse momentum imbalance in a W boson event is
a measure of the neutrino transverse momentum &p ν

T
and is given by &p/T = −(&p l

T + &uT ), where &p l
T is the

measured charged lepton transverse momentum.
When electromagnetic charge is not indicated,

both charges are considered. We use units where
! = c ≡ 1 for the remainder of this paper.

C. Measurement Strategy

The measurement of the final state from W → lν
decays involves a measurement of &p l

T and the total
recoil &uT . The neutrino escapes detection and the
unknown initial partonic pz precludes the use of pz
conservation in the measurement. The boson invari-
ant mass is thus not reconstructable; rather, the 2-
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Detector simulation

Developed custom simulation for analysis

Models ionization energy loss, multiple scattering, bremsstrahlung, photon conversion, Compton scattering


Acceptance map for muon detectors


Parameterized GEANT4 model of electromagnetic calorimeter showers

Includes shower losses due to finite calorimeter thickness 

Hit-level model of central outer tracker

Layer-by-layer resolution functions and efficiencies 

Material map of inner silicon detector 

Includes radiation lengths and Bethe-Bloch terms
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Figure 8: The CDF detector material thickness in radiation lengths as functions of φ and z,
for eight different radial regions ranging from 11.11 cm to 22.57 cm.
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Muon momentum calibration

First step is to align the drift chamber (the “central outer tracker” or COT)


Two degrees of freedom (shift & rotation) for each of 2520 cells made up of twelve sense wires 
constrained using hit residuals from cosmic-ray tracks

CMM measurements. After applying the alignment corrections iteratively, the
residuals converge to zero within a statistical precision of ≈ 0.5 µm, as shown
in Fig. 9.
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Fig. 8. Symmetric alignment corrections measured with cosmic-ray residuals, after
the CMM measurements are applied in the track reconstruction. The superlayers
are numbered starting from the innermost (sl0) to the outermost (sl7). The plots
on the left (right) correspond to the stereo (axial) superlayers.

The asymmetric alignment correction constants extracted from the cosmic-ray
data are shown for each cell in all superlayers in Fig. 10. These constants are
defined as half of the difference between the east and west endplate corrections.
The |z0| < 60 cm requirement not only reduces the total cosmic-ray sample
size by a factor of 2.5, but also reduces the lever-arm for measuring the z-
dependence of the residuals, particularly for the superlayers at small radius. As
a result, the asymmetric constants have a statistical precision of ≈ 2 µm. After
applying these corrections iteratively, the mean residuals shown in Fig. 11 are
obtained. The convergence to zero is very good, except for a few cells that
are close to the horizontal plane 3 in the upper half of the stereo superlayers
(labelled sl0, sl2, sl4 and sl6 respectively).

The corrections to the cell-tilt angle before applying the cosmic-ray alignment
procedure are shown in Fig. 12; the residual deviations after a few iterations

3 The horizontal plane is defined by φ = 0 where cells numbered zero are located.
Cells numbered half of the maximum are located at φ = π.

9

Before After
Fig. 4. Display of a cosmic-ray event recorded in coincidence with a beam crossing,
in the absence of a pp̄ collision. The reconstructed helical track trajectory shown in
the bottom half of the chamber is found using the standard CDF tracking algorithm.
The top half of the trajectory is found using the dedicated cosmic-ray reconstruction
algorithm [3], which also combines all the hits into a single dicosmic track. The
reconstructed track has pT ≈ 69 GeV and η ≈ 0.2. The COT hits are shown at
z = 0, resulting in a staggering of displayed hits in stereo superlayers.

The distributions of the azimuthal direction of propagation and the momen-
tum are shown in Fig. 6.

The sample contains about 20%more positively charged than negatively charged
muons, with similar momentum distributions between the two. The residuals
with respect to the two-sided helical track fit (referred to as the “dicosmic
track”) are an unbiased measurement of relative misalignments of the sense
wires if and only if the true parameters of the cosmic ray trajectory are the
same on the two sides of the COT. In this case, fitting the hits on both sides
with a single helix represents a valid model of the muon’s trajectory. In prac-
tice, the muon loses on average ≈ 20 MeV of energy while passing through the
silicon tracking detector. As a result, the latter half of the trajectory has lower
momentum and the hit residuals will be biased with respect to the dicosmic
track. Fortunately, this bias is in opposite directions for positive and negative
tracks. We weight the positive and negative muons in inverse proportion to

6

14

next.

Fig. 2. A section of an aluminum endplate of the COT, reproduced from [7]. The
slots cut in the endplates anchor individual drift cells containing 12 sense wires
each.

The radial spacing between sense wires in a cell is 5.8 mm [7]. The wires
are attached at their ends to rigid cards which are precision-mounted on the
COT endplates. In the alignment model, each cell’s profile at the endplates is
described by a straight line (see Fig. 3). Thus, the degrees of freedom to be
constrained in order to precisely locate each sense wire at each endplate are
the following:

(1) the transverse (x, y) coordinates of the center of each cell, at the longi-
tudinal (z) coordinate ±155 cm of the two endplates.

(2) the tilt angle (τ) of each cell relative to the radial vector from the trans-
verse origin to the center of the cell at z = ±155 cm.

We parameterize the former degrees of freedom in terms of symmetrized (i.e.
averaged over the two endplates) and anti-symmetrized (i.e. difference between
the two endplates) cell-center coordinates. The advantage of these definitions is
that the symmetrized and anti-symmetrized cell-coordinate residuals are, to a
large extent, uncorrelated because of the approximately uniform and symmet-
ric distribution of the cosmic rays in the z-coordinate. The symmetrized cell-
coordinate residuals are averaged over z, while the anti-symmetrized correc-
tions are sensitive to the dependence of the hit residuals on the z-coordinate.

The cell-tilt angle (τ) is designed to account for the Lorentz angle of the drift
direction given the magnitude of the electric field, the spectrometer magnetic
field and the drift speed. The alignment corrects for small deviations in the cell
tilt. The corrections are found to be almost the same for the two endplates.
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Fig. 23. Track parameter pulls as functions of z0 after applying the cosmic-ray
corrections.
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(open circles) the cosmic-ray alignment.
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Fig. 17. The mean ∆D as a function of local track coordinate Ytrack in the cell for
the eight superlayers.
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Fig. 18. Track parameter pulls after the CMM measurements are applied in the
track reconstruction, shown with the mean (µ) and standard deviation (σ).
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Fig. 19. Track parameter pulls after applying the cosmic-ray corrections, shown with
the mean (µ) and standard deviation (σ).
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First step is to align the drift chamber (the “central outer tracker” or COT)


Two parameters for the electrostatic deflection of the wire within the chamber constrained 
using difference between fit parameters of incoming and outgoing cosmic-ray tracks

the remaining biases, with the resulting values shown in Table 1. A small
correction to the sinusoidal amplitude a(R) is also introduced to reduce pull
biases as a function of φ0:

a(R) = a

[

1 + 0.03
δo(R)

o

]

, (6)

resulting in a(R) varying between 45 µm and 49 µm for the different super-
layers. The values of o(R) and a(R) that we use are shown in Table 2. The
values of o(R) are modified substantially compared to the nominal value of
−31 µm, justifying the inclusion of the additional degrees of freedom in Eqn. 5.
The radial dependence of the wire shapes deduced from the cosmic-ray data
is illustrated in Fig. 15.
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m
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° = -35φaxial, 

° = -35φstereo, 

Fig. 15. The radius-dependent electrostatic deflection at z = 0, for axial and stereo
superlayers. The sinusoidal dependence on azimuth is bounded by the curves shown
for φ = −35◦ and φ = 145◦ respectively, where cosφwp = ±1 in Eqn. 4.

The replacement of m(φ) by m(R,φ) substantially reduces the dependence of
the pulls on cot θ, z0, and φ0, as shown in Sec. 7.

6 Drift model

The wire positions are transferred to hit positions by the drift model, which
converts the drift-time measurement to a hit distance from the wire. The local

15

b0 b1 b2

axial superlayers -250 777 -696

stereo superlayers 68 -558 473

Table 1
Parameters in the wire-shape functions described in Eqn. 5, in units of µm.

superlayer a(R) (µm) o(R) (µm)

sl0 46 -96

sl1 45 -78

sl2 47 -124

sl3 45 -65

sl4 47 -124

sl5 46 -91

sl6 46 -98

sl7 49 -157

Table 2
Parameters describing the electrostatic deflection varying with azimuth as given by
Eqn. 4.
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Fig. 16. The gravitational sag of the wires (Eqn. 1) as a function of z. The same
z-dependence, normalized by the magnitude modulation function m(R,φ) (Eqns. 2
and 4) also describes the electrostatic deflection perpendicular to the sense wire
plane.
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FIG. S9: Representative dimuon mass fits (histogram) to data (circles), in the ranges 〈1/pµT 〉 = (0.15, 0.1625) GeV−1

(left) and 〈1/pµT 〉 = (0.1875, 0.2) GeV−1 (right) of the J/ψ → µµ data. The arrows enclose the fit range. Each fitting
template includes a linear background shape which is separately constrained by including wider sidebands in the fit
region.

The muon pT threshold is increased by 200 MeV to check the sensitivity to unmodeled effects such as trigger
efficiencies; the resulting mismodeling visibly distorts the simulation-to-data agreement in the pT (J/ψ) distribution
compared to Fig. S7. The change in ∆p/p of 18 ppm is taken as the associated uncertainty. Increasing the muon
pT threshold by more than 200 MeV does not change the systematic variation, because the latter is induced by the
displacement of the third bin from the right in Fig. 2 (left) of the main paper, relative to the fitted straight line. This
point is eliminated when the muon pT threshold is increased by 200 MeV.

The fit range is changed by ±20% to check the sensitivity to the modeling of resolution tails. The 2 ppm change
in ∆p/p is taken as the uncertainty. Since templates are simulated in 4 ppm steps of ∆p/p, we take half the step size
as a systematic uncertainty due to the finite step size. Finally, the uncertainty on the known value of the J/ψ mass
contributes 4 ppm to the uncertainty on ∆p/p.

B. Υ → µµ calibration

The Υ(1S) → µµ sample provides a valuable additional source of calibration. The Υ(1S) meson mass of MΥ =
9460.30 ± 0.26 MeV [10] lies between the J/ψ meson mass and the W and Z boson masses, providing an important
intermediate point to the calibration. Additionally, since all Υ mesons are produced promptly, the transverse beam
position can be added as a constraint (beam constraint) in the reconstruction of their decay products, reproducing the
reconstruction procedure for tracks from W and Z bosons and allowing a consistency check of the beam-constraint
procedure [107]. The selection of the Υ(1S) → µµ candidates is described in Ref. [43].

We use pythia [101, 102] to generate a sample of Υ(1S) → µµ decays. As with the J/ψ → µµ decays, we simulate
QED radiation in Υ(1S) → µµ decays using the NLO Kuraev-Fadin form factor of Eq. (S5), which again represents
an update compared to [43] where the LO Kuraev-Fadin form factor of Eq. (S6) was used. The generator is tuned
to improve the modeling of the meson momentum and polarization, as described in Ref. [43]. After this tuning, the
kinematic properties of the Υ and the final-state muons are well described, as shown in Fig. S10.

The Υ data are corrected for the magnetic field nonuniformity measured in J/ψ data (see Sec. VI A). By fitting for
∆p/p as a function of 〈1/pT 〉, we find that the ionizing material scale factor determined with J/ψ data also makes
the fitted Υ mass values independent of 〈1/pT 〉, demonstrating consistency between the two calibration samples, as
shown in Fig. S11.

Allowing for differences in the phase space populated by the muons in the various samples, we measure the COT
longitudinal scale and twist parameters of Eq. (S8) in Υ → µµ data, finding sz = (−230 ± 100stat) ppm and t =
(7.0 ± 1.2stat) × 10−6 m−1 for muon tracks with the beam constraint. The measurements of ∆p/p versus ∆ cot θ

Second step is to calibrate the momentum scale using  decays to muons


Simulation: 
Adjust kinematics to match the data

Model resonance shape using hit-level simulation and NLO form factor for QED radiation
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FIG. S7: Distribution of dimuon pT (left) and Σ(q/pµT ) (right) in the data (circles) and the simulation of J/ψ → µµ
decays (histogram). The data distributions are background-subtracted using events in the mass range 3.17–3.31 GeV.

A. J/ψ → µµ calibration

The J/ψ → µµ candidate selection [43] yields a sample of 18 million J/ψ → µµ decays. The precisely known mass of
the J/ψ meson, MJ/ψ = 3096.916± 0.011 MeV, its narrow width, ΓJ/ψ = 92.9± 2.8 keV [10], and its large production
rate makes this sample useful for the precise calibration of the track momenta. In addition to the extraction of a global
momentum scale factor, the J/ψ → µµ sample is used to measure the spatial variation of the magnetic field, biases
in the track parameters due to COT deformations, and a correction to the amount of ionizing material upstream of
the COT. These corrections are measured by fitting the dimuon mass distribution for the J/ψ mass as a function of
the appropriate geometrical or kinematic quantity.

We use the sample of J/ψ → µµ decays generated with pythia [101, 102] described in Ref. [43]. The kinematic
distributions of the generated sample are tuned to match the data, as shown in Fig. S7. The generator does not
model QED final-state radiation, so we simulate it using the following next-to-leading order (NLO) expression for the
Kuraev-Fadin form factor [105, 106]:

fµ,NLO
µ (x) = fµ,LO

µ (x)

[

1 +
3

8
β −

β2

48

(

L

3
+ π2 −

47

8

)]

−
1

4
β (1 + x) +

β2

32

[

−4 (1 + x) ln (1− x)−
1 + 3x2

1− x
lnx− 5− x

]

, (S5)

where πβ = 2αEM(L− 1) and L = 2 ln Q
mµ

. The function fµ
µ (x) denotes the µ → µ fragmentation probability where x

is the energy fraction retained by the muon, Q = mJ/ψ,Υ is the factorization scale set to the mass of the resonance,
and at leading order (LO) in QED, the following relation holds

fµ,LO
µ (x) =

1

2
β(1− x)β/2−1 . (S6)

The curvature of the simulated muon track is increased according to the energy fraction taken by the radiation.
The reconstruction of charged-particle trajectories includes a spatial map of the magnetic field. The variation of

the measured momentum scale as a function of the mean cot θ, for muons with small longitudinal opening angle
|∆ cot θ| < 0.1, reflects the effect of residual, uncorrected nonuniformities in the magnetic field [39, 43]. The observed
dependence is used to derive the following correction to the measured track pT in data,

pcorT = (1− 0.00031 cot θ + 0.00069 cot2 θ) pT . (S7)

After applying this correction, the relative momentum correction to each muon, ∆p/p, shows no significant dependence
on cot θ (Fig. S8).

A small inaccuracy of the stereo angle of the COT sense wires would induce a longitudinal scale factor on cot θ,
and lead to a quadratic variation of ∆p/p with ∆ cot θ. A linear dependence of ∆p/p on ∆ cot θ would be induced by
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Second step is to calibrate the momentum scale using  decays to muons


Simulation corrections: 
Correct the length scale of the tracker with mass measurement as a function of  

Correct the amount of upstream material with mass measurement as a function of 

J/ψ

Δ cot θ
p−1

T

>θ<cot 
-1 -0.5 0 0.5 1

)
o
o

/o
 p

/p
 (

Δ

-1.6

-1.4

-1.2

θcot Δ
-1 0 1

)
o
o

/o
 p

/p
 (

Δ

-1.6

-1.4

-1.2

FIG. S8: (left) Measured ∆p/p (per mille) as a function of the mean cot θ of the muon pair from J/ψ decay, after
requiring |∆ cot θ| < 0.1 and including corrections. (right) Measured ∆p/p as a function of ∆ cot θ of the muon pair
from J/ψ decay, after including corrections.

a relative rotation of the east and west endplates (twist) of the COT. The following corrections to the track cot θ and
curvature (c) are made:

cot θ → (1 + sz) cot θ , c → c− t cot θ, (S8)

with the COT longitudinal-scale parameter sz = (45 ± 9stat) parts per million (ppm) and the COT twist correction
t = (3.6± 0.6stat)× 10−6 m−1. Figure S8 shows that these corrections eliminate the dependence of ∆p/p on ∆ cot θ
originally present due to these global COT deformations [39, 43].

An inaccuracy in the modeling of the ionizing material in the tracking detectors induces a linear dependence of ∆p/p
on 〈1/pµT 〉, the mean unsigned curvature of the two muons [39, 43]. A scale factor of 0.974 applied to the simulated
amount of ionizing material eliminates such dependence, as shown in Fig. 2 (left) of the main text. The 2.6% relative
correction to the passive material removes a linear slope with an end-to-end variation of 80 ppm. Using the post-
correction linear fit to extrapolate to zero mean curvature, we find ∆p/p = (−1401 ± 2stat ± 11slope/material) ppm.
Examples of J/ψ → µµ mass fits are shown in Fig. S9.

Systematic uncertainties on the momentum-scale correction extracted from J/ψ → µµ decays are listed in Table S2.
A major reduction in the systematic uncertainty with respect to Ref. [43] is due to the use of the NLO QED Kuraev-
Fadin form factor of Eq. (S5) rather than the leading-order (LO) expression of Eq. (S6). The QED systematic
uncertainty from missing higher orders is estimated by evaluating the effect of the β2 terms in Eq. (S5), and is found
to be 1 ppm.

The correction for magnetic-field nonuniformity to J/ψ,Υ → µµ and W (Z) → $ν($$) data shifts the respective mass
determinations in the same direction, resulting in a partial cancellation of the corresponding uncertainty. Propagating
the uncertainty on the magnetic field correction results in a residual uncertainty of 13 ppm on ∆p/p, reflecting the
difference in the polar-angle distributions of the charged leptons in the two samples.

The purely statistical uncertainty of 2 ppm on the ∆p/p correction at zero curvature is found by fixing the slope in
the fit to ∆p/p as a function of 〈1/pµT 〉. The uncertainty in the ionizing material correction dominates the uncertainty
of 11 ppm in the extrapolation.

The scale factor on the COT hit-resolution (see Sec. III) is determined using the Σχ2 of the five highest momentum
bins in the 〈1/pµT 〉-binned J/ψ mass fits, which are most sensitive to the hit resolution. The rms of the bin-to-bin
variation in this scale factor is 0.9%, which translates into an uncertainty on ∆p/p of 10 ppm.

A linear background model is included in the J/ψ → µµ mass-fitting templates. The shape of the background is
separately constrained by widening the fitting region to include sidebands. The background parameters are tuned by
χ2 minimization while repeating the template fit including the wider sidebands. This procedure allows the sidebands
to constrain the background normalization and slope under the peak, independently from the momentum scale. The
background parameters are found to be statistically uncorrelated. With the background thus determined, it is fixed
in the final template fit for the momentum scale using the default fitting region. The uncertainty in ∆p/p due to
background modeling is 7 ppm, dominated by the uncertainty in the slope of the background.

The uncertainty in the COT longitudinal scale correction sz in Eq. (S8) propagates to an uncertainty on ∆p/p of
4 ppm. The systematic uncertainty due to the twist (t) correction is negligible.
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FIG. 2: (Left) Fractional deviation of momentum ∆p/p (per mille) extracted from fits to the J/ψ → µµ resonance
peak as a function of the mean muon unsigned curvature 〈1/pµT 〉 (blue circles). A linear fit to the points, shown in
black, has a slope consistent with zero (17± 34 keV). The corresponding values of ∆p/p extracted from fits to the
Υ → µµ and Z → µµ resonance peaks are also shown. The combination of all these ∆p/p measurements yields the
momentum correction labelled “combined” which is applied to the lepton tracks in W -boson data. (Right)
Distribution of E/p for the W → eν data (points) and the best-fit simulation (histogram) including the small
background from hadrons misreconstructed as electrons. The arrows indicate the fitting range used for the electron
energy calibration. The relative energy correction ∆SE , averaged over the calibrated W and Z-boson data (see
Fig. 13 in the supporting online material for this paper), is compatible with zero. In this and other figures, “PKS”
refers to the Kolmogorov-Smirnov probability of agreement between the shapes of the data and simulated
distributions.

The use of proton-antiproton collisions reduces uncertainties on the momenta of the partons and the corresponding
MW uncertainty relative to the LHC, where W bosons are produced from quarks or antiquarks and gluons, the
latter of which have less-precisely known momentum distributions. The moderate collision energy at the Tevatron
further restricts the parton momenta to a range in which their distributions are known more precisely, compared to
the relevant range at the LHC. The LHC detectors partially compensate with larger lepton rapidity coverage. The
improved lepton resolution at the LHC detectors has a minor impact on the MW uncertainty. While the LHC dataset
is much larger, the lower instantaneous luminosity at the Tevatron and in dedicated low-luminosity LHC runs helps
to improve the resolution on certain kinematic quantities, compared to the typical LHC runs.

The data sample corresponds to an integrated luminosity of 8.8 fb−1 of pp̄ collisions collected by the CDF II
detector [43] between 2002 and 2011, and supersedes the earlier result obtained from a quarter of these data [41, 43].
In this cylindrical detector, trajectories of charged particles (tracks) produced in the collisions are measured using a
wire drift chamber (COT) [47] immersed in a 1.4 T axial magnetic field. Energy and position measurements of particles
are also provided by electromagnetic (EM) and hadronic calorimeters surrounding the COT. The calorimeter elements
have a projective tower geometry, with each tower pointing back to the average beam collision point at the center of
the detector. Additional drift chambers [48] surrounding the calorimeters identify muon candidates as penetrating
particles. The momentum perpendicular to the beam axis (cylindrical z-axis) is denoted as pT (if measured in the
COT) or ET (if measured in the calorimeters). The measurement uses high-purity samples of electron and muon
(together referred to as lepton) decays of the W boson, W → eν and W → µν, respectively.

Events with a candidate muon with pT > 18 GeV or electron with ET > 18 GeV [49] are selected online by the
trigger system for offline analysis. The following offline criteria select fairly pure samples of W → µν and W → eν
decays. Muon candidates must have pT > 30 GeV, with requirements on COT-track quality, calorimeter-energy
deposition, and muon-chamber signals. Cosmic-ray muons are rejected with a targeted tracking algorithm [50].
Electron candidates must have a COT track with pT > 18 GeV and an EM calorimeter-energy deposition with
ET > 30 GeV, and pass requirements on COT track quality, matching of position and energy measured in the COT
and in the calorimeter (ET /pT < 1.6), and spatial distributions of energy depositions in the calorimeters [43]. Leptons
are required to be central in pseudorapidity (|η| < 1) [49] and within the fiducial region where the relevant detector
systems have high efficiency and uniform response. When selecting the W -boson candidate sample, we suppress the
Z-boson background by rejecting events with a second lepton of the same flavor. Events containing two oppositely-
charged leptons of the same flavor with invariant mass in the range 66–116 GeV and with dilepton pT less than 30 GeV

z
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FIG. 12: Distribution of dimuon mass for the best-fit templates (histograms) and the data (circles) in the Υ → µµ
sample used to calibrate the muon momentum scale. The muon tracks are reconstructed with (left) or without
(right) a constraint to the beam position in the transverse plane. The arrows enclose the fit range. Each fitting
template includes a background shape which is separately constrained by including wider sidebands in the fit region.

with a combination χ2-probability of 51% taking the correlations listed in Table II into account. The J/ψ → µµ and
BC Υ → µµ measurements contribute weights of 62% and 38%, respectively.

In our previous analysis [19], an additional systematic uncertainty was quoted to cover an inconsistency between
the NBC and BC Υ → µµ mass fits. In this analysis we resolve the inconsistency caused by the beam-constraining
procedure, eliminating the additional systematic uncertainty and increasing the measured MW value by ≈ 10 MeV.
The beam-constraining procedure in the CDF track reconstruction software extrapolates the tracks found in the COT
inward to the transverse position of the beamline. This extrapolation can and should take into account the energy
loss in the material inside the inner radius of the COT (i.e., the beampipe, the silicon vertex detector and its services)
to infer and update the track parameters at the beam position before applying the beam constraint. However, this
update had been deactivated in the reconstruction software used for the previous analysis. By activating this updating
extrapolator, the flaw in the BC Υ → µµ mass is corrected, which changes the momentum scale derived from it.

D. Z → µµ mass measurement and calibration

The Z → µµ sample of 238 537 events is selected following Ref. [19] and a blinded mass fit is performed (see
Sec. I) using the momentum calibration given in Eq. (10). The Z → µµ invariant mass templates are produced from
the custom simulation using the resbos event generator. The photos program is used to generate FSR photons
and the mass shift is calibrated to the horace generator (Sec. IV). A binned maximum likelihood fit in the range
83 190 < mµµ < 99 190 MeV (Fig. 3 of the main text) yields the mass measurement in the muon decay channel

MZ = 91 192.0± 6.4stat ± 4.0syst MeV . (11)

This result is the most precise determination of MZ at a hadron collider and is in good agreement with the world-
average value of MZ = 91 187.6± 2.1 MeV [22], providing a sensitive consistency check of the momentum calibration.
Systematic uncertainties on MZ are due to uncertainties on the momentum calibration from Eq. (10) (2.3 MeV), the
COT global longitudinal scale parameter sz from Eq. (8) as determined using BC Υ → µµ data (1.0 MeV), and QED
radiative corrections (3.1 MeV).

Combining this measurement with the calibration of Eq. (10) from J/ψ and Υ data, and taking the COT global
longitudinal scale and QED uncertainties to be fully correlated, we obtain

[∆p/p]J/ψ+Υ+Z = (−1389± 25) ppm . (12)

This momentum calibration is applied to the W -boson data for the MW measurement.

Third step is to calibrate the scale using  decays to muons


Compare fit results with and without constraining the track to the collision point

Υ

with constraint without constraint
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Final step is to measure the Z boson mass 

 MeV


Result blinded with [-50,50] MeV offset until previous steps were complete

Combine all measurements into a final charged-track momentum scale

MZ = 91 192.0 ± 6.4stat ± 4.0sys

6

provide Z-boson control samples (Z → ee and Z → µµ) to measure the detector response, resolution and efficiency
as well as the boson pT distributions. The details of the event selection criteria are described in Ref. [43].

The W -boson mass is inferred from the kinematic distributions of the decay leptons. Since the neutrino from the
W -boson decay is not directly detectable, its transverse momentum pνT is deduced by imposing transverse momentum
conservation. Longitudinal momentum balance cannot be imposed because most of the beam momenta are carried
away by collision products that remain close to the beam axis, outside the instrumented regions of the detector. By
design of the detector, such products have small transverse momentum. The transverse momentum vector sum of all
detectable collision products accompanying the W or Z boson is defined as the hadronic recoil !u = ΣiEi sin(θi)n̂i,
where the sum is performed over calorimeter towers [51] with energy Ei, polar angle θi, and transverse directions
specified by unit vectors n̂i. Calorimeter towers containing energy deposition from the charged lepton(s) are excluded
from this sum. The transverse momentum vector of the neutrino !p ν

T is inferred as !p ν
T ≡ −!p "

T −!u from !pT conservation,
where !p "

T is the vector pT (ET ) of the muon (electron). In analogy with a two-body mass, the W -boson transverse

mass is defined using only the transverse momentum vectors as mT =
√

2 ( p"T pνT − !p "
T · !p ν

T ) [52]. High-purity

samples of W bosons are obtained with the requirements 30 < p"T < 55 GeV, 30 < pνT < 55 GeV, |!u| < 15 GeV, and
60 < mT < 100 GeV. This selection retains samples containing precise MW information and low backgrounds. The
final samples of W and Z bosons consist of 1 811 649 (66 170) W → eν (Z → ee) candidates and 2 424 294 (238 537)
W → µν (Z → µµ) candidates.
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FIG. 3: Distribution of (left) dimuon and (right) dielectron mass for candidate Z → µµ and Z → ee decays,
respectively. The data (points) are overlaid with the best-fit simulation template including the photon-mediated
contribution (histogram). The arrows indicate the fitting range.

The data distributions of mT , p"T , and pνT are compared to corresponding simulated line-shapes (“templates”) as
functions of MW from a custom Monte Carlo simulation which has been designed and written for this analysis. A
binned likelihood is maximized to obtain the mass and its statistical uncertainty. The kinematic properties of W
and Z-boson production and decay are simulated using the resbos program [53–55], which calculates the differential
cross section with respect to boson mass, transverse momentum and rapidity, for boson production and decay. The
calculation is performed at next-to-leading order in perturbative quantum chromodynamics (QCD), along with next-
to-next-to leading logarithm resummation of higher-order radiative quantum amplitudes. resbos offers one of the
most accurate theoretical calculations available for these processes. The nonperturbative model parameters in resbos

and the QCD interaction coupling strength αs are external inputs needed to complete the description of the boson
pT spectrum, and are constrained from the high-resolution dilepton p""T spectrum of the Z-boson data and the pWT
data spectrum. Electromagnetic radiation from the leptons is modeled with the photos program [56], which is
calibrated [57] to the more accurate horace program [58]. We use the nnpdf3.1 [59] parton distribution functions
(PDFs) of the (anti)proton, since they incorporate the most complete relevant data sets of the available NNLO
PDFs. Using 25 symmetric eigenvectors of the nnpdf3.1 set, we estimate a PDF uncertainty of 3.9 MeV. We find
that the ct18 [60], mmht2014 [61] and nnpdf3.1 NNLO PDF sets give consistent results for the W -boson mass,
within ± 2.1 MeV of the midpoint of the interval spanning the range of values. The model-dependent nature of the
analysis implies that future improvements or corrections in any relevant theoretical modeling can be used to update
our measurement quantifiably (see Sec. IV of the supporting material).

The custom simulation includes a detailed calculation of the lepton and photon interactions in the detector [39,
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FIG. 2: (Left) Fractional deviation of momentum ∆p/p (per mille) extracted from fits to the J/ψ → µµ resonance
peak as a function of the mean muon unsigned curvature 〈1/pµT 〉 (blue circles). A linear fit to the points, shown in
black, has a slope consistent with zero (17± 34 keV). The corresponding values of ∆p/p extracted from fits to the
Υ → µµ and Z → µµ resonance peaks are also shown. The combination of all these ∆p/p measurements yields the
momentum correction labelled “combined” which is applied to the lepton tracks in W -boson data. (Right)
Distribution of E/p for the W → eν data (points) and the best-fit simulation (histogram) including the small
background from hadrons misreconstructed as electrons. The arrows indicate the fitting range used for the electron
energy calibration. The relative energy correction ∆SE , averaged over the calibrated W and Z-boson data (see
Fig. 13 in the supporting online material for this paper), is compatible with zero. In this and other figures, “PKS”
refers to the Kolmogorov-Smirnov probability of agreement between the shapes of the data and simulated
distributions.

The use of proton-antiproton collisions reduces uncertainties on the momenta of the partons and the corresponding
MW uncertainty relative to the LHC, where W bosons are produced from quarks or antiquarks and gluons, the
latter of which have less-precisely known momentum distributions. The moderate collision energy at the Tevatron
further restricts the parton momenta to a range in which their distributions are known more precisely, compared to
the relevant range at the LHC. The LHC detectors partially compensate with larger lepton rapidity coverage. The
improved lepton resolution at the LHC detectors has a minor impact on the MW uncertainty. While the LHC dataset
is much larger, the lower instantaneous luminosity at the Tevatron and in dedicated low-luminosity LHC runs helps
to improve the resolution on certain kinematic quantities, compared to the typical LHC runs.

The data sample corresponds to an integrated luminosity of 8.8 fb−1 of pp̄ collisions collected by the CDF II
detector [43] between 2002 and 2011, and supersedes the earlier result obtained from a quarter of these data [41, 43].
In this cylindrical detector, trajectories of charged particles (tracks) produced in the collisions are measured using a
wire drift chamber (COT) [47] immersed in a 1.4 T axial magnetic field. Energy and position measurements of particles
are also provided by electromagnetic (EM) and hadronic calorimeters surrounding the COT. The calorimeter elements
have a projective tower geometry, with each tower pointing back to the average beam collision point at the center of
the detector. Additional drift chambers [48] surrounding the calorimeters identify muon candidates as penetrating
particles. The momentum perpendicular to the beam axis (cylindrical z-axis) is denoted as pT (if measured in the
COT) or ET (if measured in the calorimeters). The measurement uses high-purity samples of electron and muon
(together referred to as lepton) decays of the W boson, W → eν and W → µν, respectively.

Events with a candidate muon with pT > 18 GeV or electron with ET > 18 GeV [49] are selected online by the
trigger system for offline analysis. The following offline criteria select fairly pure samples of W → µν and W → eν
decays. Muon candidates must have pT > 30 GeV, with requirements on COT-track quality, calorimeter-energy
deposition, and muon-chamber signals. Cosmic-ray muons are rejected with a targeted tracking algorithm [50].
Electron candidates must have a COT track with pT > 18 GeV and an EM calorimeter-energy deposition with
ET > 30 GeV, and pass requirements on COT track quality, matching of position and energy measured in the COT
and in the calorimeter (ET /pT < 1.6), and spatial distributions of energy depositions in the calorimeters [43]. Leptons
are required to be central in pseudorapidity (|η| < 1) [49] and within the fiducial region where the relevant detector
systems have high efficiency and uniform response. When selecting the W -boson candidate sample, we suppress the
Z-boson background by rejecting events with a second lepton of the same flavor. Events containing two oppositely-
charged leptons of the same flavor with invariant mass in the range 66–116 GeV and with dilepton pT less than 30 GeV
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First step is to transfer the track calibration to the calorimeter (E/p) using W & Z decays 

Data corrections: 
Use mean E/p to remove time dependence & response variations in tower 

Fit ratio of calorimeter energy to track momentum to correct each tower in η
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FIG. 13: (Left) Measured calorimeter energy scale in bins of electron tower in W → eν data after corrections are
applied, with the line SE = 1 overlaid. The towers are numbered in order of increasing |η| and each tower subtends
∆η ≈ 0.11. (Right) Distribution of E/p for Z → ee data (circles) after the full energy-scale calibration; the best-fit
template (histogram) is overlaid. The fit region is enclosed by arrows.

VII. ELECTRON MOMENTUM MEASUREMENT

An electron radiates bremsstrahlung photons as it traverses the approximately 19% of a radiation length in the
tracking volume [12], which degrades its track momentum resolution. Most of these photons are coalesced with the
electron shower in the calorimeter, therefore we use the higher-resolution calorimeter energy measurement for the
MW and MZ fits. The calibration of the track momentum p is transferred to the calorimeter energy E by fitting the
distribution of their ratio, E/p. The mean of the ratio is used to improve the spatial and temporal uniformity of
the calorimeter response, by applying corrections as functions of electron position and experiment running time. The
distribution of the ratio is also used to determine the amount of radiative material upstream and in the calorimeter.
The calorimeter calibration is verified by measuring the mass of the Z boson in Z → ee events. After this validation,
the MZ measurement is used as an additional calibration source for the MW measurement.

A. E/p calibration

Following event reconstruction [31], the mean E/p in the range 0.9–1.1 is used to correct 1–2% response variations
in electron-energy measurement in the data. These variations are mapped as functions of distance from tower edges
in φ and z and corrected following Refs. [12, 19]. The spatial uniformity calibration has improved because of the
increased sample size of the data. Furthermore, a temporal uniformity calibration of the EM calorimeter is introduced
in this analysis; assuming azimuthal symmetry, the calorimeter response in each longitudinal tower is studied as
functions of experiment operational time, and the time-dependence is corrected for. Next, the likelihood fits for the
calorimeter energy scale are performed separately in the eight longitudinal towers. Applying these corrections to the
data eliminates the dependence on electron |η| (Fig. 13).

The amount of radiative material is simulated using a fine-grained three-dimensional lookup table, as described
in Sec. III. The tail of the E/p distribution (E/p > 1.12), which is sensitive to the total number of radiation
lengths traversed, is used to tune the latter in the simulation by performing a maximum likelihood fit. We obtain a
multiplicative factor SW

mat = 1.0493± 0.0016stat ± 0.0012QCD (SZ
mat = 1.0428± 0.0060stat) to the number of radiation

lengths in the simulation, where the QCD systematic uncertainty refers to background contamination due to QCD
jets. The results from W and Z data are statistically consistent within 1σ and are combined to give the correction
SW,Z
mat = 1.0488 ± 0.0020 applied to the simulation. Figure 14 shows the E/p distributions for both W → eν and

Z → ee data after the correction factor is applied. Displayed on each of these distributions in this figure is the
quantity ∆Smat ≡ Smat − 1, which averages to zero over the W → eν and Z → ee samples.

The accurate simulation of electron and photon showers requires knowledge of the amount of CEM material [37].
The relative fraction of electron candidates with low E/p (0.90 < E/p < 0.93) to those in the range 0.90 < E/p < 1.09
is sensitive to longitudinal shower leakage, and hence the CEM thickness in radiation lengths. A maximum likelihood
fit to this fraction is used to tune the radiation-length (X0) thickness of each tower by ≈ 0.1X0. The statistical

solenoid coil and the CEM front plate – is aluminum. The TOF and CPR are
a combination of scintillator and aluminum. Table 1 shows the materials in
the geant4 model with their thicknesses in units of mm (x) and radiation
length (x0 ≡ x/X0).

Fig. 2. The CEM calorimeter, with tower segmentation shown. The z-axis points
along the beam direction towards higher pseudorapidity (η), and the x-axis points
in the azimuthal direction.

We model the material between the tracking volume and the first CEM scin-
tillator as an aluminum plate of 6.51 cm thickness plus an aluminum-clad lead
sheet at the front of the active calorimeter volume. The additional lead sheet
is included for simplicity: with this sheet the CEM volume is modelled as 31
alternating lead-scintillator layers. Combined, the 6.51 cm of aluminum and
the single lead sheet reproduce the total radiation lengths upstream of the
first scintillator layer.

The geometry of other towers is implemented according to Table 2. As |η|
increases, the number of lead sheets in a tower decreases, compensating for the
increasing path length. This approximately maintains the same total number
of radiation lengths traversed by a particle originating from the center of

4
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Fig. 3. Longitudinal energy leakage fraction fl for electrons of different beam energies
(top), and for CEM thicknesses varying by ±1 lead/scintillator layer (bottom).
These distributions have been calculated using our geant4 model.

lution |0.17z|, where z ≡ log10(E/50 GeV). This smearing has a progressively
larger effect on the distribution of log10 fl at smaller values of E. The com-
bination of the Gamma distribution with this ad-hoc smearing models the
geant4 distributions well. Figures 8 to 9 show the complete parameterized
model compared to the geant4 distributions.

3.2 Photon Leakage Model

For high energy photons the dominant interaction mechanism is electron-
positron pair production. We model the photon shower as a photon conversion
followed by the showering of the resulting electron and positron. To implement
this model, we generate a random variable d (in units of radiation lengths)
representing the photon penetration depth before conversion. The distribution
of d is given by the exponential distribution [4],

P (d) ∝ e−9d/7. (2)

7

Material Thickness x (mm) x0

CEM lead sheet 3.175 × 30 0.5658 × 30 = 16.974

CEM aluminum cladding 0.76 × 30 0.0085 × 30 = 0.255

CEM scintillator sheet 5.0× 31 0.0121 × 31 = 0.375

CES aluminum 6.0 0.07

Solenoid coil aluminum 76.5 0.86

CEM front-plate aluminum 14.0 0.157

Tracker+TOF+CPR aluminum 27.0 0.303

Table 1
The materials and their thicknesses in the geant4 implementation of the CEM and
upstream materials [12].

the detector. For each removed lead sheet, acryllic is used in its place and
the subsequent scintillator sheet is blackened so that the sampling fraction
is unaffected. In the geant4 model described here we neglect the additional
radiation lengths contributed by acryllic and blackened scintillator. In the
CDF measurement of the W boson mass [2] a correction is applied to account
for this extra plastic material.

Tower Thickness (x0) Number of lead sheets

0 17.9 30

1 18.2 30

2 18.2 29

3 17.8 27

4 18.0 26

5 17.7 24

6 18.1 23

7 17.7 21

8 18.0 20

Table 2
The thicknesses of the CEM towers [12], in units of radiation length. The aluminum
front-plate is included in this calculation, but the other upstream material is not.

3 Longitudinal Leakage

The entire assembly of the lead-scintillator sandwich plus upstream material
is about 18 radiation lengths thick. A typical 50 GeV incident electron will
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FIG. S15: Measured energy scale as a function of electron ET for W → eν (left) and Z → ee (right) data, with the
line SE = 1 overlaid. The simulation is corrected with the best-fit value of ζ = (7.2± 0.4)× 10−3 in Eq. (S1).

TABLE S3: Summary of momentum scale
determinations using J/ψ-meson data and Υ-meson
data with (BC) and without (NBC) beam-constrained
tracks. The systematic uncertainties for the Υ samples
are obtained using BC Υ data and assumed to be the
same for NBC Υ data, since the sources are completely
correlated.

Sample ∆p/p (ppm)

J/ψ → µµ −1401± 2stat ± 29syst
Υ → µµ (NBC) −1371± 13stat ± 34syst
Υ → µµ (BC) −1380± 10stat ± 34syst

TABLE S4: Summary of MZ measurements (in MeV)
obtained using subsamples of data containing events
with nonradiative electrons (E/p < 1.1), one radiative
electron (E/p > 1.1), or two radiative electrons.
Calorimeter-based and track-based measurements are
shown for each category; uncertainties are statistical
only.

Electrons Calorimeter Track

E/p < 1.1 only 91 190.9± 19.7 91 215.2± 22.4

E/p > 1.1 and E/p < 1.1 91 201.1± 21.5 91 259.9± 39.0

E/p > 1.1 only 91 184.5± 46.4 91 167.7± 109.9

with the E/p-based calibration, consistent with the known value of MZ at the level of 0.4σ. The systematic uncer-
tainties on MZ are due to the E/p calibration (6.5 MeV), the COT momentum-scale calibration (2.3 MeV), alignment
corrections (0.8 MeV), and the QED radiative corrections (3.1 MeV). Following this validation of the E/p-based
calibration, the MZ measurement is combined with it to obtain the final electron energy calibration for the MW

measurement, with a corresponding uncertainty of 5.8 MeV.
We test the detector simulation by measuring MZ using electron track momenta in three configurations: neither

electron radiative (i.e., both with E/p < 1.1), one electron radiative (E/p > 1.1), and both electrons radiative.
The results of the fits are shown in Table S4 and Fig. S16. Combining the measurements of events with at least
one radiative electron gives MZ = 91 226.3 ± 19.4stat MeV, consistent with the known MZ . The calorimeter-based
measurements in the same categories of radiative and nonradiative electrons also provide consistent results (Table S4
and Fig. S16).

We combine the Z → ee mass measurement from Eq. (S13) with the E/p-based calibration, which set SE to unity
with an uncertainty of 76 ppm. Taking the correlations due to COT alignment and calibration, the calorimeter non-
linearity parameter ζ and QED radiative corrections into account, we obtain the final calorimeter-energy scale-factor

[∆SE ]E/p+Z = −14± 72 ppm (S14)

to be applied to the W -boson data for the MW measurement. The Z → ee mass-based calibration carries a weight of
20% in this combination.
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Model bremsstrahlung and pair production upstream of the drift chamber

Tune energy loss due to material upstream of the tracker (high E/p)


Sampling resolution given by  with increasing with tower σE /E =
12.6 %

ET
+ κ2 κ = 0.7 − 1.1 % η

)νe→|] (Wη|9≈Tower number [
0 1 2 3 4 5 6 7

 
E

S

0.999

1

1.001

1.002

ee)→E/p (Z

1 1.2 1.4 1.6

E
ve

n
ts

 /
 0

.0
0

7
  

 

0

5

310×

 ppmstat 173±= -203 ESΔ

/dof = 42 / 402χ

 = 35 %2χP

 = 99 %KSP

FIG. S13: (Left) Measured calorimeter energy scale in bins of electron tower in W → eν data after corrections are
applied, with the line SE = 1 overlaid. The towers are numbered in order of increasing |η| and each tower subtends
∆η ≈ 0.11. (Right) Distribution of E/p for Z → ee data (circles) after the full energy-scale calibration; the best-fit
template (histogram) is overlaid. The fit region is enclosed by arrows.
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FIG. S14: Distributions of E/p in data (circles) and simulation with the best-fit value of SW,Z
mat (histograms) in

W → eν (left) and Z → ee (right) events.

combination has a statistical uncertainty of 42 ppm. After applying the combined SE in the simulation, the simulated
E/p distributions show good agreement with the W → eν (Fig. 2 of the main text) and Z → ee (Fig. S13) data
respectively. Displayed on these figures is the value of ∆SE ≡ SE − 1, which averages to zero over the W → eν and
Z → ee samples.

The E/p-based calibration uncertainties are due to Smat (2.7 MeV), the tracker material model (3.0 MeV), calorime-
ter thickness (0.4 MeV), nonlinearity (2.4 MeV), and resolution (0.9 MeV). Including the statistical uncertainty of
3.4 MeV gives a total E/p-based calibration uncertainty on MW of 6.1 MeV.

B. Z → ee mass measurement and calibration

As with the calibration of track momenta using J/ψ and Υ events, the E/p-based calorimeter-energy calibration is
validated with a measurement of the Z-boson mass, which is initially blinded as described in Sec. I. Using simulated
templates, the maximum likelihood fit in the range 81 000 < mee < 101 000 MeV (Fig. 3 of the main text) yields

MZ = 91 194.3± 13.8stat ± 7.6syst MeV (S13)
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FIG. 2: (Left) Fractional deviation of momentum ∆p/p (per mille) extracted from fits to the J/ψ → µµ resonance
peak as a function of the mean muon unsigned curvature 〈1/pµT 〉 (blue circles). A linear fit to the points, shown in
black, has a slope consistent with zero (17± 34 keV). The corresponding values of ∆p/p extracted from fits to the
Υ → µµ and Z → µµ resonance peaks are also shown. The combination of all these ∆p/p measurements yields the
momentum correction labelled “combined” which is applied to the lepton tracks in W -boson data. (Right)
Distribution of E/p for the W → eν data (points) and the best-fit simulation (histogram) including the small
background from hadrons misreconstructed as electrons. The arrows indicate the fitting range used for the electron
energy calibration. The relative energy correction ∆SE , averaged over the calibrated W and Z-boson data (see
Fig. 13 in the supporting online material for this paper), is compatible with zero. In this and other figures, “PKS”
refers to the Kolmogorov-Smirnov probability of agreement between the shapes of the data and simulated
distributions.

The use of proton-antiproton collisions reduces uncertainties on the momenta of the partons and the corresponding
MW uncertainty relative to the LHC, where W bosons are produced from quarks or antiquarks and gluons, the
latter of which have less-precisely known momentum distributions. The moderate collision energy at the Tevatron
further restricts the parton momenta to a range in which their distributions are known more precisely, compared to
the relevant range at the LHC. The LHC detectors partially compensate with larger lepton rapidity coverage. The
improved lepton resolution at the LHC detectors has a minor impact on the MW uncertainty. While the LHC dataset
is much larger, the lower instantaneous luminosity at the Tevatron and in dedicated low-luminosity LHC runs helps
to improve the resolution on certain kinematic quantities, compared to the typical LHC runs.

The data sample corresponds to an integrated luminosity of 8.8 fb−1 of pp̄ collisions collected by the CDF II
detector [43] between 2002 and 2011, and supersedes the earlier result obtained from a quarter of these data [41, 43].
In this cylindrical detector, trajectories of charged particles (tracks) produced in the collisions are measured using a
wire drift chamber (COT) [47] immersed in a 1.4 T axial magnetic field. Energy and position measurements of particles
are also provided by electromagnetic (EM) and hadronic calorimeters surrounding the COT. The calorimeter elements
have a projective tower geometry, with each tower pointing back to the average beam collision point at the center of
the detector. Additional drift chambers [48] surrounding the calorimeters identify muon candidates as penetrating
particles. The momentum perpendicular to the beam axis (cylindrical z-axis) is denoted as pT (if measured in the
COT) or ET (if measured in the calorimeters). The measurement uses high-purity samples of electron and muon
(together referred to as lepton) decays of the W boson, W → eν and W → µν, respectively.

Events with a candidate muon with pT > 18 GeV or electron with ET > 18 GeV [49] are selected online by the
trigger system for offline analysis. The following offline criteria select fairly pure samples of W → µν and W → eν
decays. Muon candidates must have pT > 30 GeV, with requirements on COT-track quality, calorimeter-energy
deposition, and muon-chamber signals. Cosmic-ray muons are rejected with a targeted tracking algorithm [50].
Electron candidates must have a COT track with pT > 18 GeV and an EM calorimeter-energy deposition with
ET > 30 GeV, and pass requirements on COT track quality, matching of position and energy measured in the COT
and in the calorimeter (ET /pT < 1.6), and spatial distributions of energy depositions in the calorimeters [43]. Leptons
are required to be central in pseudorapidity (|η| < 1) [49] and within the fiducial region where the relevant detector
systems have high efficiency and uniform response. When selecting the W -boson candidate sample, we suppress the
Z-boson background by rejecting events with a second lepton of the same flavor. Events containing two oppositely-
charged leptons of the same flavor with invariant mass in the range 66–116 GeV and with dilepton pT less than 30 GeV



23

Electron momentum calibration
Second step is the measurement of the Z boson mass


 MeV


As a consistency check measure mass using only track information

 e.g.  MeV for non-radiative electrons (E/p<1.1)


Same blinding as for muon channel 

MZ = 91 194.3 ± 13.8stat ± 7.6sys

MZ = 91 215.2 ± 22.4

6

provide Z-boson control samples (Z → ee and Z → µµ) to measure the detector response, resolution and efficiency
as well as the boson pT distributions. The details of the event selection criteria are described in Ref. [43].

The W -boson mass is inferred from the kinematic distributions of the decay leptons. Since the neutrino from the
W -boson decay is not directly detectable, its transverse momentum pνT is deduced by imposing transverse momentum
conservation. Longitudinal momentum balance cannot be imposed because most of the beam momenta are carried
away by collision products that remain close to the beam axis, outside the instrumented regions of the detector. By
design of the detector, such products have small transverse momentum. The transverse momentum vector sum of all
detectable collision products accompanying the W or Z boson is defined as the hadronic recoil !u = ΣiEi sin(θi)n̂i,
where the sum is performed over calorimeter towers [51] with energy Ei, polar angle θi, and transverse directions
specified by unit vectors n̂i. Calorimeter towers containing energy deposition from the charged lepton(s) are excluded
from this sum. The transverse momentum vector of the neutrino !p ν

T is inferred as !p ν
T ≡ −!p "

T −!u from !pT conservation,
where !p "

T is the vector pT (ET ) of the muon (electron). In analogy with a two-body mass, the W -boson transverse

mass is defined using only the transverse momentum vectors as mT =
√

2 ( p"T pνT − !p "
T · !p ν

T ) [52]. High-purity

samples of W bosons are obtained with the requirements 30 < p"T < 55 GeV, 30 < pνT < 55 GeV, |!u| < 15 GeV, and
60 < mT < 100 GeV. This selection retains samples containing precise MW information and low backgrounds. The
final samples of W and Z bosons consist of 1 811 649 (66 170) W → eν (Z → ee) candidates and 2 424 294 (238 537)
W → µν (Z → µµ) candidates.
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FIG. 3: Distribution of (left) dimuon and (right) dielectron mass for candidate Z → µµ and Z → ee decays,
respectively. The data (points) are overlaid with the best-fit simulation template including the photon-mediated
contribution (histogram). The arrows indicate the fitting range.

The data distributions of mT , p"T , and pνT are compared to corresponding simulated line-shapes (“templates”) as
functions of MW from a custom Monte Carlo simulation which has been designed and written for this analysis. A
binned likelihood is maximized to obtain the mass and its statistical uncertainty. The kinematic properties of W
and Z-boson production and decay are simulated using the resbos program [53–55], which calculates the differential
cross section with respect to boson mass, transverse momentum and rapidity, for boson production and decay. The
calculation is performed at next-to-leading order in perturbative quantum chromodynamics (QCD), along with next-
to-next-to leading logarithm resummation of higher-order radiative quantum amplitudes. resbos offers one of the
most accurate theoretical calculations available for these processes. The nonperturbative model parameters in resbos

and the QCD interaction coupling strength αs are external inputs needed to complete the description of the boson
pT spectrum, and are constrained from the high-resolution dilepton p""T spectrum of the Z-boson data and the pWT
data spectrum. Electromagnetic radiation from the leptons is modeled with the photos program [56], which is
calibrated [57] to the more accurate horace program [58]. We use the nnpdf3.1 [59] parton distribution functions
(PDFs) of the (anti)proton, since they incorporate the most complete relevant data sets of the available NNLO
PDFs. Using 25 symmetric eigenvectors of the nnpdf3.1 set, we estimate a PDF uncertainty of 3.9 MeV. We find
that the ct18 [60], mmht2014 [61] and nnpdf3.1 NNLO PDF sets give consistent results for the W -boson mass,
within ± 2.1 MeV of the midpoint of the interval spanning the range of values. The model-dependent nature of the
analysis implies that future improvements or corrections in any relevant theoretical modeling can be used to update
our measurement quantifiably (see Sec. IV of the supporting material).

The custom simulation includes a detailed calculation of the lepton and photon interactions in the detector [39,

19
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FIG. 16: Distributions (circles) of dielectron mass calculated using (left) only track information and (right)
calorimeter ET with best-fit simulation templates overlaid (histogram) for events with nonradiative electrons (top),
one radiative electron (middle), or two radiative electrons (bottom). Fit ranges are enclosed by arrows.

A. Lepton tower removal

The calorimeter towers with lepton energy deposits are excluded from the !uT calculation to avoid double-counting
the lepton energy. The exclusion of these towers also removes hadronic energy from the recoil calculation. The latter
effect is included in the simulation by subtracting from !uT the estimated hadronic energy in these towers.

The average energy in the tower traversed by a muon and surrounding towers is shown in Fig. 17. The muon energy
deposition is localized to the traversed tower and occasionally the neighboring towers in η, hence the three-tower
region shown in Fig. 17 is removed. The energy from electron showers spreads across more towers compared to the
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First step is the alignment of the calorimeters 
Misalignments relative to the beam axis cause a modulation in the recoil direction

Alignment performed separately for each run period using minimum-bias data

ϕu

Second step is the reconstruction of the recoil 
Remove towers traversed by identified leptons 

Remove corresponding recoil energy in simulation using towers rotated by 90o


validate using towers rotated by 180o
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FIG. S18: Average measured energy (in MeV) in the electromagnetic (left) and hadronic (right) calorimeters in the
vicinity of the electron shower in W -boson decays. The differences ∆φ and ∆η are signed such that positive
differences correspond to towers closest to the electron shower position at the CEM. The seven towers inside the box
are removed from the recoil measurement.
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FIG. S19: Fraction of muon-data three-tower (left) and electron-data seven-tower (right) rotated windows
containing zero energy, as a function of u||. The red lines show the simulation, while the blue circles show the data.

compared to the data in Figs. S19-S20. The small differences between data and simulation visible in Fig. S20 are
propagated to the MW fits and included in the systematic uncertainties. Figure S21 shows the precision of the model
for the distribution of the hadronic energy in the removed towers. In order to reduce the dependence of the lepton
removal procedure on instantaneous luminosity, the following procedure is introduced in this analysis: a linear model
is fit to the dependence of the hadronic tower energy on instantaneous luminosity and the result is applied as a
correction in the #uT calculation for both data and simulation.

Further validation is provided by comparing the simulation to measurements in towers rotated 180◦ from the lepton.
The consistency between the two choices of rotation angles is 1 MeV (1 MeV) in the muon (electron) channel, which
is taken as a systematic uncertainty. Another systematic uncertainty of 1 MeV for the muon channel is due to the
choice of parametrizations, and an additional 1 MeV is due to possible muon energy deposition leaking out of the
excluded region. The total systematic uncertainty on MW due to lepton-removal modeling in the muon (electron)
channel is 1.7 MeV (1.0 MeV), 0 MeV (0 MeV), and 3.4 MeV (2.0 MeV) for the mT , p!T , pνT fits, respectively.

B. Model parametrization

The recoil simulation parametrizes the response and resolution of the initial-state radiation accompanying the W or
Z boson, and models the energy flow from the spectator-parton interactions and additional pp̄ collisions in the same
collider bunch crossing. Since there are no high-pT neutrinos in the Z-boson data, the pT -balance between pT (Z → $$)
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FIG. S20: Variation of hadronic ET in the three-tower (left) and seven-tower (right) region rotated by 90◦ in
azimuth from the muon (left) or electron (right) as a function of u|| (top), |u⊥| (middle), and η (bottom) for
W → µν (left) or W → eν (right) data (blue circles) and simulation (red lines).

(which is well measured) and uT is used to fit for the model parameters. The balance is computed by projecting these
transverse vectors on the “η” axis [parallel to #pT (Z → $$)] and the orthogonal “ξ” axis in the transverse plane, as
shown in Fig. S3 [108].
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Third step is the calibration of the recoil response 
Balance recoil against direction of pTZ 


Check calibration using ratio of recoil magnitude to pTZ along direction of pTZ (Rrec)
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FIG. S22: Mean value of Rrec ≡ −!uT · p̂ !!
T /p!!T , which approximates the recoil response R, as a function of dimuon

pT (left) and dielectron pT (right). The distributions motivate the logarithmic parametrization of the response in
Eq. (S15). The simulation (red lines) models the data (blue circles) accurately.
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FIG. S23: Distribution of Rp!!η + uη for Z-boson decays to muons (left) and electrons (right) as a function of
Z-boson pT in simulated (lines) and experimental (circles) data. The detector response parameters a and b
(Eq. S15) are obtained by minimizing the combined χ2 of these distributions.

with the notion that event-to-event variations are prominent for very soft recoil, and are damped as the particle
multiplicity in the recoil increases.

The exponential distribution of fπ0 is parametrized by its values at utrue
T = 4 GeV and utrue

T = 15 GeV, provid-
ing uncorrelated parameters. We fit the one-dimensional distributions of the pη-balance separately for subsamples
restricted to p!!T < 8 GeV and 8 < p!!T < 30 GeV for these parameters, obtaining the values

f4
π0 = (89.1± 1.3stat)% , f15

π0 = (6.43± 0.35stat)% . (S19)

The fits to the pη-balance distributions are shown in Fig. S25. Other functional forms for fπ0 yield similar results
for observable distributions with no difference in fit quality. The procedure of tuning the kurtosis of the recoil energy
resolution on the distributions of pη-balance is a new feature that incorporates additional information from the data
compared to Ref. [43].
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T /p!!T , which approximates the recoil response R, as a function of dimuon

pT (left) and dielectron pT (right). The distributions motivate the logarithmic parametrization of the response in
Eq. (S15). The simulation (red lines) models the data (blue circles) accurately.
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FIG. S23: Distribution of Rp!!η + uη for Z-boson decays to muons (left) and electrons (right) as a function of
Z-boson pT in simulated (lines) and experimental (circles) data. The detector response parameters a and b
(Eq. S15) are obtained by minimizing the combined χ2 of these distributions.

with the notion that event-to-event variations are prominent for very soft recoil, and are damped as the particle
multiplicity in the recoil increases.

The exponential distribution of fπ0 is parametrized by its values at utrue
T = 4 GeV and utrue

T = 15 GeV, provid-
ing uncorrelated parameters. We fit the one-dimensional distributions of the pη-balance separately for subsamples
restricted to p!!T < 8 GeV and 8 < p!!T < 30 GeV for these parameters, obtaining the values

f4
π0 = (89.1± 1.3stat)% , f15

π0 = (6.43± 0.35stat)% . (S19)

The fits to the pη-balance distributions are shown in Fig. S25. Other functional forms for fπ0 yield similar results
for observable distributions with no difference in fit quality. The procedure of tuning the kurtosis of the recoil energy
resolution on the distributions of pη-balance is a new feature that incorporates additional information from the data
compared to Ref. [43].
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FIG. S3: (left) Sketches of typical transverse vectors associated to quantities reconstructed in a W -boson event, with
the recoil hadron momentum (!uT ) separated into axes parallel (u||) and perpendicular (u⊥) to the charged lepton.
(right) Illustration of the η and ξ axes in Z boson events.

FIG. S4: Muon (left) and electron (right) identification efficiency as a function of the recoil component in the
direction of the lepton (u||), as measured in Z → $$ data using the tag-probe technique. The piece-wise linear fits
are used to model the lepton efficiencies in the simulation.

V. W AND Z BOSON EVENT SELECTION

The lepton selection criteria follow Ref. [43]. The criteria can be degraded by the presence of nearby energy
associated with the hadronic recoil. Hence, the lepton identification efficiency depends on the projection of the recoil
along the direction of the lepton, u||, as shown in Fig. S3. The procedure for measuring this efficiency is described
in Ref. [43], wherein Z → $$ events with one identified tag lepton provide the second probe lepton whose efficiency is
measured. The fraction of probe leptons passing the full W -boson candidate criteria (shown in Fig. S4) is fitted with
the parametrization εu = A[1 +m|u|| − d|], where A is an irrelevant normalization, m is the slope parameter versus
u|| and d is the offset parameter. The fits are used to model the lepton efficiencies in the simulation. The reduction
in efficiency for large negative values of u|| is due to an increase in overall hadronic activity in the event, verified by
studying the efficiency with the pythia [101, 102] Monte Carlo that includes hadrons from the breakup of the proton
and the initial-state radiation.

The following parameter values and statistical uncertainties are determined from the data and used in the simulation:
A = 98.6%, m = (0.048 ± 0.006)%/GeV, and d = (−1.8 ± 0.9) GeV for the electron channel, and A = 97.4%,
m = (0.1200 ± 0.0054)%/GeV, and d = (−1.40 ± 0.24) GeV for the muon channel. The parameters m and d have
a correlation coefficient of −0.41(−0.18) for the electron (muon) channel. For a 1σ increase in m, the variations in
the mT , p!T , and pνT fits are −0.4 (−0.4), 0.0 (0.0) and −1.5 (−1.5) MeV respectively in the electron (muon) channel.
For a 1σ increase in d, the variations in the mT , p!T , and pνT fits are −0.5 (−0.3), 1.3 (1.0), and −2.8 (−1.7) MeV
respectively in the electron (muon) channel. These systematic uncertainties are uncorrelated between the electron
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Fourth step is the calibration of the recoil resolution 
Includes jet-like energy and angular resolution, additional dijet fraction term, and pileup 
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FIG. S24: Resolution on Rp!!η + uη in simulated (lines) and experimental (circles) data for Z-boson decays to muons
(left) and electrons (right).

3. Recoil angular resolution

The jet angular resolution depends on the recoil transverse energy, with the jet(s) becoming more collimated at
higher utrue

T resulting in better angular resolution. This trend is illustrated in Fig. S26, which shows distributions
of |φu − φ!! − π| in four p!!T ranges. The resolution of φ!! (determined by tracks) is substantially better than the
resolution of φu, so Fig. S26 demonstrates the variation of the φu resolution.

We parametrize the jet angular smearing σ(φu) by a continuous, piece-wise linear function in the ranges 0 < utrue
T <

15 GeV and 15 < utrue
T < 30 GeV. For utrue

T > 30 GeV we assume a constant σ(φu) where the dependence on utrue
T

does not matter, since we eventually require uT < 15 GeV for the mass-measurement sample. The parameters of this
function are its values at utrue

T = 9.4 GeV, 15 GeV, and 24.5 GeV, respectively, such that the statistical uncertainties
on the parameters are uncorrelated. The parameters α, β, and γ of the piece-wise linear function

σ(φu)− α ∝ 9.4− utrue
T /GeV utrue

T < 15 GeV ,

σ(φu) = β utrue
T = 15 GeV ,

σ(φu)− γ ∝ 24.5− utrue
T /GeV 15 < utrue

T < 30 GeV ,

σ(φu) = constant utrue
T > 30 GeV (S20)

are tuned on the distributions of |φu − φ!! − π| in the four p!!T ranges, shown in Fig. S26. The resulting values are

α = 272.7± 4.1stat mrad ,

β = 185.0± 3.1stat mrad ,

γ = 143.0± 2.4stat mrad . (S21)

The unspecified coefficients in Eq. (S20) are fixed by continuity. The procedure of tuning the recoil angular smearing
model on the distributions of |φu − φ!! − π| is a new feature that incorporates additional information from the data
compared to Ref. [43].

4. Dijet resolution

A small fraction of the W and Z boson events contain multijets recoiling against the boson. In the regime of low
boson pT selected for this analysis, most of the multijet events contain two soft jets. These dijet events contribute a
resolution component perpendicular to the direction of the boson pT . We parametrize the fraction f2 of dijet events
as a linear function of boson pT , with the parameters fa

2 specifying the average dijet fraction and fs
2 specifying the

variation in the fraction with utrue
T . These resolution parameters are tuned on the rms of the pξ-balance as a function

of p!!T , as shown in Fig. S27. The resulting parameter values are

fa
2 = (0.80± 0.04stat)% , fs

2 = (44± 6stat)% . (S22)
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FIG. S26: Distributions of the difference in azimuthal angles of !u and −!p!!T , shown in absolute value in the following
p!!T ranges: (top) p!!T < 8 GeV, (2nd row) 8 < p!!T < 15 GeV, (3rd row) 15 < p!!T < 23 GeV and (bottom)
23 < p!!T < 30 GeV. The distributions from Z → µµ events are shown on the left and those from Z → ee events are
shown on the right. The data (blue circles) are compared to the tuned simulation (red histogram).
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FIG. S29: Distributions of
√
ΣET for the muon (left) and electron (right) channels, comparing data (blue points)

and simulation (red histogram) for Z (top) and W (bottom) boson candidate events.

cumulants (beyond the rms) of the recoil fluctuations is a new feature of this analysis that incorporates additional
information from the data, as compared to Ref. [43].

5. Spectator and additional pp̄ interactions

In addition to the partons that annihilate to produce the W or Z boson, the colliding proton and antiproton
contain other “spectator” partons that experience strong interactions with each other. The fluctuations in the energy
flow from these spectator-parton interactions and additional pp̄ collisions contribute to the recoil resolution [39, 43].
These fluctuations depend on ΣET , the scalar sum of transverse energies in the calorimeter towers. For simulating
multiple interactions we use

√
ΣET because the hadronic resolution from the multiple interactions is proportional to

this quantity, as shown below. We produce a two-dimensional histogram of
√
ΣET as a function of instantaneous

luminosity, as measured in the zero-bias data. In order to model the distribution of
√
ΣET in simulated W and Z

boson events, we randomly sample the distribution of instantaneous luminosity from the Z boson data, and then
randomly sample the distribution of

√
ΣET corresponding to the given value of instantaneous luminosity in this

two-dimensional histogram. This technique ensures that the resulting simulated distribution of
√
ΣET corresponds

to the instantaneous luminosity profile of the W and Z boson data, and is an improvement over the technique used
in Ref. [43]. The luminosity profiles for the electron and muon channels are sampled separately since the data sets
are derived from independently triggered streams. The distributions of

√
ΣET for data and simulation are shown in

Fig. S29.
The ΣET distribution for spectator interactions is obtained from minimum-bias collision data as described in

Ref. [39]. A ΣET value sampled from this distribution is multiplied by a parameter NV to allow for a difference in
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FIG. S31: Distributions of u|| (top) and u⊥ (bottom) from simulation (histogram) and data (circles) for W boson
decays to µν (left) and eν (right) final states. The simulation uses parameters fit from W and Z boson data, and
the uncertainty on the simulation is due to the statistical uncertainty on these parameters. The data mean (µ), rms
spread (σ), skewness (λ), and excess kurtosis (κ) are well modeled by the simulation. The χ2 values and the
Kolmogorov-Smirnov (KS) probabilities are based only upon the statistical uncertainties in the data and do not take
into account the systematic uncertainties in the simulation.

parameters with the Z boson data, including the constraint from the pWT spectrum from data, are shown in Table S5.
For the mT and pνT fits, the pWT spectrum constraint from data reduces the uncertainties due to the calorimeter response
and resolution parameters. For the p"T fit these uncertainties are increased, but there is a more than compensating
reduction in the theoretical uncertainty due to the pWT /pZT spectrum ratio, to which the p"T fit is sensitive. The
constraint from the pWT data spectrum is another new feature that incorporates additional information compared to
Ref. [43].

C. Model tests

We compare the simulated and measured recoil quantities in Z-boson and W -boson events. Comparing the u|| and
u⊥ (Fig. S31) distributions from data and simulation shows no evidence of bias. Since these distributions are not
used as inputs for model tuning, they provide independent validation of the recoil model. The uT distributions are
also well modeled by the tuned simulation (Fig. S32). Z bosons decaying to forward (|η| > 1) electrons confirm the
quality of the relative central-to-plug calorimeter calibration [43, 109].

The uncertainties on the MW fits are obtained by propagating the recoil model parameter uncertainties (Table S5).
The uncertainties due to the hadronic response (resolution) model are 1.8 (1.8) MeV, 3.5 (3.6) MeV, and 0.7 (5.2)
MeV respectively on the mT , p"T and pνT fits. The total uncertainty on MW due to the recoil model is 2.6 MeV, 5.0
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FIG. S31: Distributions of u|| (top) and u⊥ (bottom) from simulation (histogram) and data (circles) for W boson
decays to µν (left) and eν (right) final states. The simulation uses parameters fit from W and Z boson data, and
the uncertainty on the simulation is due to the statistical uncertainty on these parameters. The data mean (µ), rms
spread (σ), skewness (λ), and excess kurtosis (κ) are well modeled by the simulation. The χ2 values and the
Kolmogorov-Smirnov (KS) probabilities are based only upon the statistical uncertainties in the data and do not take
into account the systematic uncertainties in the simulation.

parameters with the Z boson data, including the constraint from the pWT spectrum from data, are shown in Table S5.
For the mT and pνT fits, the pWT spectrum constraint from data reduces the uncertainties due to the calorimeter response
and resolution parameters. For the p"T fit these uncertainties are increased, but there is a more than compensating
reduction in the theoretical uncertainty due to the pWT /pZT spectrum ratio, to which the p"T fit is sensitive. The
constraint from the pWT data spectrum is another new feature that incorporates additional information compared to
Ref. [43].

C. Model tests

We compare the simulated and measured recoil quantities in Z-boson and W -boson events. Comparing the u|| and
u⊥ (Fig. S31) distributions from data and simulation shows no evidence of bias. Since these distributions are not
used as inputs for model tuning, they provide independent validation of the recoil model. The uT distributions are
also well modeled by the tuned simulation (Fig. S32). Z bosons decaying to forward (|η| > 1) electrons confirm the
quality of the relative central-to-plug calorimeter calibration [43, 109].

The uncertainties on the MW fits are obtained by propagating the recoil model parameter uncertainties (Table S5).
The uncertainties due to the hadronic response (resolution) model are 1.8 (1.8) MeV, 3.5 (3.6) MeV, and 0.7 (5.2)
MeV respectively on the mT , p"T and pνT fits. The total uncertainty on MW due to the recoil model is 2.6 MeV, 5.0
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turn affects the measured recoil direction. We model
the recoil angular resolution as a Gaussian distribu-
tion with σφ = 0.14±0.01(stat), determined from fits
to the ∆φ(#uT ,−#p ll

T ) distribution in Z boson events
(Fig. 40). Since the lepton directions are precisely
measured, the width of the peak at ∆φ = 0 is domi-
nated by the recoil angular resolution.
The energy resolution of the quark and gluon radi-

ation is predominantly determined by stochastic fluc-
tuations in the hadronic calorimeter, which motivate
the functional form σuT ∝

√

utrue
T . We measure the

proportionality constant shard using Z boson data.
To tune shard and NW,Z , we project the momen-

tum imbalance #p ll
T + #uT along the η and ξ axes in

Z boson decays (Fig. 41). The width of these pro-
jections as a function of pllT provides information on
NW,Z and shard. At low pZT the resolution is domi-
nantly affected by NW,Z , with the shard contribution
increasing as the boson pT increases. We compare
the widths of the data and simulation projections as
a function of pllT and compute the χ2. Minimizing
this χ2, we obtain NW,Z = 1.167 ± 0.026(stat) and
shard = [0.828± 0.028(stat)] GeV1/2. The tuning is
performed such that the statistical uncertainties on
these parameters are uncorrelated.

D. Recoil Model Cross-Checks

The full recoil model, with parameters tuned from
Z boson events, is applied to the simulated W boson
sample. We compare the data to the predictions of
distributions that can affect the final mass measure-
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FIG. 40: The angle between the measured recoil and
the direction opposite pZT , for simulation (histogram) and
data (circles) events where the Z boson decays to muons
(top) or electrons (bottom). The χ2 from the Z → µµ
sample is minimized in the fit to the recoil angular resolu-
tion. The corresponding uncertainty on mW is negligible.

ment: the projections of the recoil along (u||) and
perpendicular to (u⊥) the charged lepton; and the
total recoil uT .
The u|| distribution is directly affected by the mea-

surements of lepton efficiency as a function of u||

(Figs. 14 and 16) and the modeling of lepton tower
removal (Figs. 33 and 34). The u|| is also sensitive
to the boson pT (Sec. IXB) and decay angular distri-
butions, and to the recoil response and resolutions.
Since uT is much less than the charged lepton pT

for our event selection, p/T ≈ |pT + u|||. Thus, mT

can be written as:

mT ≈ 2pT
√

1 + u||/pT ≈ 2pT + u||. (39)

To a good approximation, any bias in u|| directly en-
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FIG. S3: (left) Sketches of typical transverse vectors associated to quantities reconstructed in a W -boson event, with
the recoil hadron momentum (!uT ) separated into axes parallel (u||) and perpendicular (u⊥) to the charged lepton.
(right) Illustration of the η and ξ axes in Z boson events.

FIG. S4: Muon (left) and electron (right) identification efficiency as a function of the recoil component in the
direction of the lepton (u||), as measured in Z → $$ data using the tag-probe technique. The piece-wise linear fits
are used to model the lepton efficiencies in the simulation.

V. W AND Z BOSON EVENT SELECTION

The lepton selection criteria follow Ref. [43]. The criteria can be degraded by the presence of nearby energy
associated with the hadronic recoil. Hence, the lepton identification efficiency depends on the projection of the recoil
along the direction of the lepton, u||, as shown in Fig. S3. The procedure for measuring this efficiency is described
in Ref. [43], wherein Z → $$ events with one identified tag lepton provide the second probe lepton whose efficiency is
measured. The fraction of probe leptons passing the full W -boson candidate criteria (shown in Fig. S4) is fitted with
the parametrization εu = A[1 +m|u|| − d|], where A is an irrelevant normalization, m is the slope parameter versus
u|| and d is the offset parameter. The fits are used to model the lepton efficiencies in the simulation. The reduction
in efficiency for large negative values of u|| is due to an increase in overall hadronic activity in the event, verified by
studying the efficiency with the pythia [101, 102] Monte Carlo that includes hadrons from the breakup of the proton
and the initial-state radiation.

The following parameter values and statistical uncertainties are determined from the data and used in the simulation:
A = 98.6%, m = (0.048 ± 0.006)%/GeV, and d = (−1.8 ± 0.9) GeV for the electron channel, and A = 97.4%,
m = (0.1200 ± 0.0054)%/GeV, and d = (−1.40 ± 0.24) GeV for the muon channel. The parameters m and d have
a correlation coefficient of −0.41(−0.18) for the electron (muon) channel. For a 1σ increase in m, the variations in
the mT , p!T , and pνT fits are −0.4 (−0.4), 0.0 (0.0) and −1.5 (−1.5) MeV respectively in the electron (muon) channel.
For a 1σ increase in d, the variations in the mT , p!T , and pνT fits are −0.5 (−0.3), 1.3 (1.0), and −2.8 (−1.7) MeV
respectively in the electron (muon) channel. These systematic uncertainties are uncorrelated between the electron
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FIG. S3: (left) Sketches of typical transverse vectors associated to quantities reconstructed in a W -boson event, with
the recoil hadron momentum (!uT ) separated into axes parallel (u||) and perpendicular (u⊥) to the charged lepton.
(right) Illustration of the η and ξ axes in Z boson events.

FIG. S4: Muon (left) and electron (right) identification efficiency as a function of the recoil component in the
direction of the lepton (u||), as measured in Z → $$ data using the tag-probe technique. The piece-wise linear fits
are used to model the lepton efficiencies in the simulation.

V. W AND Z BOSON EVENT SELECTION

The lepton selection criteria follow Ref. [43]. The criteria can be degraded by the presence of nearby energy
associated with the hadronic recoil. Hence, the lepton identification efficiency depends on the projection of the recoil
along the direction of the lepton, u||, as shown in Fig. S3. The procedure for measuring this efficiency is described
in Ref. [43], wherein Z → $$ events with one identified tag lepton provide the second probe lepton whose efficiency is
measured. The fraction of probe leptons passing the full W -boson candidate criteria (shown in Fig. S4) is fitted with
the parametrization εu = A[1 +m|u|| − d|], where A is an irrelevant normalization, m is the slope parameter versus
u|| and d is the offset parameter. The fits are used to model the lepton efficiencies in the simulation. The reduction
in efficiency for large negative values of u|| is due to an increase in overall hadronic activity in the event, verified by
studying the efficiency with the pythia [101, 102] Monte Carlo that includes hadrons from the breakup of the proton
and the initial-state radiation.

The following parameter values and statistical uncertainties are determined from the data and used in the simulation:
A = 98.6%, m = (0.048 ± 0.006)%/GeV, and d = (−1.8 ± 0.9) GeV for the electron channel, and A = 97.4%,
m = (0.1200 ± 0.0054)%/GeV, and d = (−1.40 ± 0.24) GeV for the muon channel. The parameters m and d have
a correlation coefficient of −0.41(−0.18) for the electron (muon) channel. For a 1σ increase in m, the variations in
the mT , p!T , and pνT fits are −0.4 (−0.4), 0.0 (0.0) and −1.5 (−1.5) MeV respectively in the electron (muon) channel.
For a 1σ increase in d, the variations in the mT , p!T , and pνT fits are −0.5 (−0.3), 1.3 (1.0), and −2.8 (−1.7) MeV
respectively in the electron (muon) channel. These systematic uncertainties are uncorrelated between the electron
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FIG. S34: Distributions of p!T for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.
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FIG. S35: Distributions of pνT for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.

inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].
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and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.
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FIG. S35: Distributions of pνT for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.

inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].

W → μν candidates W → eν candidates
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FIG. 2: Distributions of pZT (top) and φ∗η (bottom) from simulation (histogram) and data (circles) for Z-boson decays
to µµ (left), and to ee (right). The pZT distributions are used to fit for the nonperturbative parameter g2 and for αs,
and the φ∗η distributions provide a consistency check. The φ∗η distribution in the electron channel is modulated by
the periodic azimuthal acceptance of the 24 calorimeter wedges. In these and other figures, “PKS” refers to the
Kolmogorov-Smirnov probability of agreement between the shapes of the data and simulated distributions.

C. QED radiation

As described in Ref. [19], final-state radiation (FSR) of photons is simulated using the photos program [41],
because photos can be interfaced with the resbos event generator. FSR photons are produced with an energy
cutoff of Eγ > 0.4 MeV. Tripling the Eγ threshold shifts the value of MW by 1 MeV, which is taken as a systematic
uncertainty on the choice of Eγ threshold. A comparison of FSR from the photos and horace programs [53] finds
consistency at the level of 0.7 MeV [54], which is taken as the uncertainty in the FSR algorithm. The horace program
additionally includes the exact NLO QED calculation, the effects of initial-state radiation (ISR) and interference
between ISR and FSR. Calibration of the photos program to the more accurate horace program yields a correction
of 4± 2MC stat MeV which is propagated to the MW result. Uncertainties on the horace simulation are estimated
to be 1 MeV [19]. As in Ref. [19], internal photon conversion [55] is simulated with an uncertainty on MW of 1 MeV.
The combined uncertainty on MW due to QED radiation is 2.7 MeV in both the electron and muon channels and is
correlated between the channels and the fit distributions.

V. W AND Z BOSON EVENT SELECTION

The lepton selection criteria follow Ref. [19]. The criteria can be degraded by the presence of nearby energy
associated with the hadronic recoil. Hence, the lepton identification efficiency depends on the projection of the recoil
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FIG. 32: Distributions of uT from simulation (histogram) and data (circles) for W boson (top) and Z boson
(bottom) decays in the muon (left) and electron (right) channels. The simulation uses parameters fit from Z boson
data, and the uncertainty on the simulation is due to the statistical uncertainty on these parameters. The data
mean (µ), rms spread (σ) skewness (λ), and excess kurtosis (κ) are well modeled by the simulation. The χ2 values
and the Kolmogorov-Smirnov (KS) probabilities are based only upon the statistical uncertainties in the data and do
not take into account the systematic uncertainties in the simulation.

(NN) [67] to distinguish such misidentified muons from signal muons. The method, described in Refs. [19, 64], uses
the isolation variables, that is the calorimeter energy and track momenta in a cone surrounding the muon candidate
with radius ∆R =

√

(∆η)2 + (∆φ)2 = 0.4 in the η−φ plane. The distribution of the NN output for the W -boson data
is fitted to the sum of the signal and background distributions, with the background fraction as the free parameter
for χ2 minimization. The signal sample is obtained from W → µν events generated with pythia [56] and the CDF
geant-based simulation [38]. The background sample is obtained from data satisfying the W → µν selection criteria
except for the additional criteria of pνT < 10 GeV and uT < 45 GeV. The jet misidentification background is computed
separately for |η| < 0.6 and |η| > 0.6 since different muon detectors operate in these regions. The background fractions
are found to be consistent with each other and with zero. For the MW measurement we use the combined best-fit
fraction of (0.01± 0.04stat)%.

The decay-in-flight (DIF) background is caused by low-momentum, long-lived mesons such as pions or kaons de-
caying to muons in the tracking volume, resulting in the reconstruction of high-pT kinked tracks. As described in
Ref. [19], the pattern of hit residuals indicating such kinks, the track impact parameter, and the fit quality are used
to both reduce and estimate the DIF background. The distribution of the track fit χ2/dof from W → µν candidates
in the data are fit to a sum of signal and DIF background templates with the background fraction as the free param-
eter. Muons from Z → µµ data are used to provide the signal template and W → µν data with large track impact
parameters (2 < d0 < 5 mm) provide the DIF background template. The contamination of real W → µν events in
the background template due to the d0 resolution is taken into account using the Z → µµ data. The DIF background
fraction is estimated to be (0.20±0.14)%. Systematic uncertainties are estimated by comparing background templates
made from different impact-parameter regions and from different requirements on the hit residual patterns.
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W boson production and decay

Parton distributions impact the measurement through lepton acceptance

  Restriction in  reduces the fraction of low-pT leptons


Small correction applied to update to NNPDF3.1 NNLO PDF 
  The set with the most W charge asymmetry measurements at the time 
  

Uncertainty determined using a principal component analysis on the replica set 
  Measurement sensitive to ~15 eigenvectors

  Leading 25 eigenvectors used to estimate uncertainty (3.9 MeV)

  Three general NNLO PDF sets (NNPDF3.1, CT18, and MMHT14) have a range of  MeV from mean


Photos resummation with ME corrections used to model final-state photon radiation 
validated by studying the average radiation in EM towers around the charged lepton,  
and with the Z mass measurement

η

±2.1

I. INTRODUCTION

In the standard model (SM) of particle physics, all
electroweak interactions are mediated by the W boson,
the Z boson, and the massless photon, in a gauge theory
with symmetry group SUð2ÞL ×Uð1ÞY [1]. If this sym-
metry were unbroken, the W and Z bosons would be
massless. Their nonzero observed masses require a sym-
metry-breaking mechanism [2], which in the SM is the
Higgs mechanism. The mass of the resulting scalar exci-
tation, the Higgs boson, is not predicted but is constrained
by measurements of the weak-boson masses through loop
corrections.
Loops in the W-boson propagator contribute to the

correction Δr, defined in the following expression for
the W-boson mass MW in the on-shell scheme [3]:

M2
W ¼ ℏ3π

c
αEMffiffiffi

2
p

GFð1 −M2
W=M

2
ZÞð1 − ΔrÞ

; (1)

where αEM is the electromagnetic coupling at Q ¼ MZc2,
GF is the Fermi weak coupling extracted from the muon
lifetime measurement, MZ is the Z-boson mass, and Δr ¼
3.58% [4] includes all radiative corrections. In the SM, the
electroweak radiative corrections are dominated by loops
containing top and bottom quarks, but also depend loga-
rithmically on the mass of the Higgs boson MH through
loops containing the Higgs boson. A global fit to SM
observables yields indirect bounds onMH, whose precision
is dominated by the uncertainty on MW , with smaller
contributions from the uncertainties on the top quark mass
(mt) and on αEM. A comparison of the indirectly con-
strainedMH with a direct measurement ofMH is a sensitive
probe for new particles [5].
Following the discovery of the W boson in 1983 at the

UA1 and UA2 experiments [6], measurements ofMW have
been performed with increasing precision using

ffiffiffi
s

p
¼

1.8 TeV pp̄ collisions at the CDF [7] and D0 [8] experi-
ments (Run I); eþe− collisions at

ffiffiffi
s

p
¼ 161–209 GeV at

the ALEPH [9], DELPHI [10], L3 [11], and OPAL [12]
experiments (LEP); and

ffiffiffi
s

p
¼ 1.96 TeV pp̄ collisions at

the CDF [13] and D0 [14] experiments (Run II).
Combining results from Run I, LEP, and the first Run II
measurements yields MW ¼ 80399% 23 MeV=c2 [15].
Recent measurements performed with the CDF [16] and
D0 [17] experiments have improved the combined world
measurement to MW ¼ 80385% 15 MeV=c2 [18]. The
CDF measurement, MW ¼ 80387% 19 MeV=c2 [16], is
described in this paper and is the most precise single
measurement of the W-boson mass to date.
This paper is structured as follows. An overview of the

analysis and conventions is presented in Sec. II. A
description of the CDF II detector is presented in
Sec. III. Section IV describes the detector simulation.
Theoretical aspects of W- and Z-boson production and
decay, including constraints from the data, are presented in

Sec. V. The data sets are described in Sec. VI. Sections VII
and VIII describe the precision calibration of muon and
electron momenta, respectively. Calibration and measure-
ment of the hadronic recoil response and resolution are
presented in Sec. IX, and backgrounds to the W-boson
sample are discussed in Sec. X. The W-boson-mass fits to
the data, and their consistency-checks and combinations,
are presented in Sec. XI. Section XII summarizes the
measurement and provides a combination with previous
measurements and the resulting global SM fit.

II. OVERVIEW

This section provides a brief overview of W-boson
production and decay phenomenology at the Tevatron, a
description of the coordinate system and conventions used
in this analysis, and an overview of the measurement
strategy.

A. W-boson production and decay at the Tevatron

In pp̄ collisions at
ffiffiffi
s

p
¼ 1.96 TeV, W bosons are

primarily produced via s-channel annihilation of valence
quarks, as shown in Fig. 1, with a smaller contribution from
sea-quark annihilation. These initial-state quarks radiate
gluons that can produce hadronic jets in the detector. TheW
boson decays either to a quark-antiquark pair (qq̄0) or to a
charged lepton and neutrino (lν). The hadronic decays are
overwhelmed by background at the Tevatron due to the
high rate of quark and gluon production through quantum
chromodynamics (QCD) interactions. Decays to τ leptons
are not included since the momentum measurement of a τ
lepton is not as precise as that of an electron or muon. The
mass of theW boson is therefore measured using the decays
W → lν (l ¼ e, μ), which have about 22% total branching
fraction. Samples selected with the corresponding Z-boson
decays, Z → ll, are used for calibration.

B. Definitions

The CDF experiment uses a right-handed coordinate
system in which the z axis is centered at the middle of the
detector and points along a tangent to the Tevatron ring in
the proton-beam direction. The remaining Cartesian

p
u (d)
u
d (u)

p

u
u
d

g

 (Z)+W
+l

)- (lν

γ

FIG. 1. Quark-antiquark annihilation producing aW or Z boson
in pp̄ collisions. Higher-order processes such as initial-state
gluon radiation and final-state photon radiation are also
illustrated.
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FIG. 33: Distributions of mT for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.
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FIG. 34: Distributions of p!T for W boson decays to µν (left) and eν (right) final states in simulated (histogram) and
experimental (points) data. The simulated distribution is based on the true W -boson mass value that maximizes the
likelihood in data and includes backgrounds (shaded). The likelihood is computed using events between the two
arrows.

applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table X).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. 39-41 [64]. The
systematic uncertainties considered in Table VIII would induce additional expected shifts upon changing fit ranges,
which are not displayed in the error bars.

[1] S. Glashow, Nucl. Phys. 22, 579 (1961); A. Salam and J. C. Ward, Phys. Lett. 13, 168 (1964); S. Weinberg, Phys. Rev.
Lett. 19, 1264 (1967).

[2] P. W. Anderson, Phys. Rev. 130, 439 (1963); F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964); P. W. Higgs,
Phys. Rev. Lett. 13, 508 (1964); G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).

36

 (GeV) ν
T

p
30 35 40 45 50 55

E
ve

n
ts

 /
 0

.2
5

 G
e

V

0

20

40

310×
 

/dof = 63 / 622χ

 = 43 %2χP

 = 70 %KSP

 (GeV) ν
T

p
30 35 40 45 50 55

E
ve

n
ts

 /
 0

.2
5

 G
e

V

0

20

310×
 

/dof = 69 / 622χ

 = 23 %2χP

 = 96 %KSP

FIG. 35: Distributions of pνT for W boson decays to µν (left) and eν (right) final states in simulated (histogram) and
experimental (points) data. The simulated distribution is based on the true W -boson mass value that maximizes the
likelihood in data and includes backgrounds (shaded). The likelihood is computed using events between the two
arrows.
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FIG. 36: Differences between the data and simulation, divided by the expected statistical uncertainty, for the mT

distributions in the muon (left) and electron (right) channels.
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FIG. S34: Distributions of p!T for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.
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FIG. S35: Distributions of pνT for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.

inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].
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FIG. S36: Differences between the data and simulation, divided by the expected statistical uncertainty, for the mT

distributions in the muon (left) and electron (right) channels.
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FIG. S37: Differences between the data and simulation, divided by the expected statistical uncertainty, for the p!T
distributions in the muon (left) and electron (right) channels.
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and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.
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maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
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inputs, χ2/dof and the probability of obtaining a χ2/dof at least as large, are summarized in Table S9.

B. Consistency checks

We compare the electron and muon p!T fit results obtained from subsamples of the data chosen to enhance possible
residual instrumental effects (Table S10). The uncertainty on the difference between the W+ → µ+ν and W− → µ−ν
fits includes the uncertainty due to the COT alignment (the uncertainty in the intercept of the linear fit in Fig. S6),
which contributes to this mass splitting. The mass fit differences for the electron channel are shown with and without
applying an E/p-based calibration from the corresponding subsample. The stability of the momentum and energy
scales is verified by performing Z-boson mass fits in subsamples separated in chronological time (indicated by run
number in Table S10).

We additionally test the stability of the mass fits as the fit ranges are varied. The variations of the fitted mass values
relative to the nominal results are consistent with expected statistical fluctuations, as shown in Figs. S39-S41 [107].
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FIG. S36: Differences between the data and simulation, divided by the expected statistical uncertainty, for the mT

distributions in the muon (left) and electron (right) channels.
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Combination mT fit p!T fit pνT fit Value (MeV) χ2/dof Probability

Electrons Muons Electrons Muons Electrons Muons (%)

mT ! ! 80 439.0± 9.8 1.2 / 1 28

p!T ! ! 80 421.2± 11.9 0.9 / 1 36

pνT ! ! 80 427.7± 13.8 0.0 / 1 91

mT & p!T ! ! ! ! 80 435.4± 9.5 4.8 / 3 19

mT & pνT ! ! ! ! 80 437.9± 9.7 2.2 / 3 53

p!T & pνT ! ! ! ! 80 424.1± 10.1 1.1 / 3 78

Electrons ! ! ! 80 424.6± 13.2 3.3 / 2 19

Muons ! ! ! 80 437.9± 11.0 3.6 / 2 17

All ! ! ! ! ! ! 80 433.5± 9.4 7.4 / 5 20

TABLE IX: Combinations of various fit results (in MeV) and the associated uncertainties, χ2, and χ2-probabilities.

TABLE X: Differences (in MeV) between W -mass p!T -fit results and Z-mass fit results obtained from subsamples of
our data with equal statistics. For the spatial and time dependence of the electron channel fit result, we show the
dependence with (without) the corresponding cluster energy calibration using the subsample E/p fit.

Fit difference Muon channel Electron channel

MW ("+)−MW ("−) −7.8± 18.5stat ± 12.7COT 14.7± 21.3stat ± 7.7E/p
stat (0.4± 21.3stat)

MW (φ! > 0)−MW (φ! < 0) 24.4± 18.5stat 9.9± 21.3stat ± 7.5E/p
stat (−0.8± 21.3stat)

MZ(run > 271100)−MZ(run < 271100) 5.2± 12.2stat 63.2± 29.9stat ± 8.2E/p
stat (−16.0± 29.9stat)
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Combination mT fit p!T fit pνT fit Value (MeV) χ2/dof Probability

Electrons Muons Electrons Muons Electrons Muons (%)
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pνT ! ! 80 427.7± 13.8 0.0 / 1 91

mT & p!T ! ! ! ! 80 435.4± 9.5 4.8 / 3 19

mT & pνT ! ! ! ! 80 437.9± 9.7 2.2 / 3 53

p!T & pνT ! ! ! ! 80 424.1± 10.1 1.1 / 3 78

Electrons ! ! ! 80 424.6± 13.2 3.3 / 2 19

Muons ! ! ! 80 437.9± 11.0 3.6 / 2 17

All ! ! ! ! ! ! 80 433.5± 9.4 7.4 / 5 20

TABLE IX: Combinations of various fit results (in MeV) and the associated uncertainties, χ2, and χ2-probabilities.

TABLE X: Differences (in MeV) between W -mass p!T -fit results and Z-mass fit results obtained from subsamples of
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The W boson mass is an important parameter in particle physics


Measurement of W boson mass with <10 MeV precision achieved with complete CDF data set


Result of >20 years of experience with the CDF II detector


0.01% precision required flexibility: all experimental aspects controlled by the analysis team 

Reconstruction, alignment, calibration, simulation, analysis 

Analysis procedures approved pre-unblinding and frozen 


Surprising 0.1% deviation from SM motivates expanded study of mW measurements and procedures
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3.2 CDF Run II detector

The CDF Run II detector [3], in operation since 2001, is an azimuthally and forward-backward
symmetric apparatus designed to study pp̄ collisions at the Tevatron. It is a general purpose,
cylindrical-shaped detector which combines:

• A tracking system, that provides a measurement of the charged particle momenta, event z
vertex position and detects secondary vertices.

• A Time-of-Flight system, to identify charged particles.

• A non-compensated calorimeter system, with the purpose of measuring the energy of charged
and neutral particles produced in the interaction.

• Drift chambers and scintillators to muon detection.

The detector is shown in figures 3.4 and 3.5. CDF uses a coordinate system with the positive
z-axis lies along the direction of the incident proton beam, φ is the azimuthal angle, θ is the
polar angle (measured from the detector center), and pT is the component of momentum in the
transverse plane. A description of all the systems starting from the devices closest to the beam
and moving outward is presented in the next sections, where the detectors most relevant in the
analysis are explained in more detail.

Figure 3.4: Isometric view of the CDF Run II detector.

the central tracking drift chamber [8] to the back end of the CEM calorimeter.
These components are the outer aluminum casing of the tracker, the time-
of-flight (TOF) system [9] attached to this casing, the solenoidal coil [10]
that provides a nearly uniform 1.4 T magnetic field in the tracking volume,
the central preshower system (CPR) [11] beyond the solenoid, and the CEM
calorimeter (including longitudinal segmentation) [12].

Fig. 1. A cut-away view of the CDF detector. We use a simplified geant4 model
of the outer casing of the central drift chamber, the time-of-flight detector (not
shown), the solenoid coil, the preshower detector, and the central electromagnetic
calorimeter.

The CEM calorimeter is divided into 0.1 × 0.15 η − φ [13] towers, shown in
Fig. 2. The tower geometry depends on η, with towers numbered according
to their distance in η from η = 0. The longitudinal segmentation of Tower 0
is an alternating system of 31 scintillator sheets and 30 aluminum-clad lead
sheets, with a plate of aluminum at the front end of the tower. Each lead sheet
is 3.175 mm thick and the aluminum cladding is 380 µm thick on each side
of the sheet. Each scintillator sheet is 5 mm thick. A thin (6 mm) aluminum
casing contains a strip and wire chamber at the position of shower maximum
(after six lead-scintillator sandwiches). Almost all the material between the
tracking volume and the first scintillator – the outer casing of the tracker, the

3
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FIG. 38: Differences between the data and simulation, divided by the expected statistical uncertainty, for the pνT
distributions in the muon (left) and electron (right) channels.

Source of systematic mT fit p!T fit pνT fit

uncertainty Electrons Muons Common Electrons Muons Common Electrons Muons Common

Lepton energy scale 5.8 2.1 1.8 5.8 2.1 1.8 5.8 2.1 1.8

Lepton energy resolution 0.9 0.3 -0.3 0.9 0.3 -0.3 0.9 0.3 -0.3

Recoil energy scale 1.8 1.8 1.8 3.5 3.5 3.5 0.7 0.7 0.7

Recoil energy resolution 1.8 1.8 1.8 3.6 3.6 3.6 5.2 5.2 5.2

Lepton u|| efficiency 0.5 0.5 0 1.3 1.0 0 2.6 2.1 0

Lepton removal 1.0 1.7 0 0 0 0 2.0 3.4 0

Backgrounds 2.6 3.9 0 6.6 6.4 0 6.4 6.8 0

pZT model 0.7 0.7 0.7 2.3 2.3 2.3 0.9 0.9 0.9

pWT /pZT model 0.8 0.8 0.8 2.3 2.3 2.3 0.9 0.9 0.9

Parton distributions 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

QED radiation 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

Statistical 10.3 9.2 0 10.7 9.6 0 14.5 13.1 0

Total 13.5 11.8 5.8 16.0 14.1 7.9 18.8 17.1 7.4

TABLE VIII: Uncertainties on MW (in MeV) as resulting from the transverse-mass, charged-lepton pT and neutrino
pT fits in the W → µν and W → eν samples. The third column for each fit reports the portion of the uncertainty
that is common in the µν and eν results. The muon and electron energy resolutions are anti-correlated because the
track pT resolution and the electron cluster ET resolution both contribute to the width of the E/p peak, which is
used to constrain the electron cluster ET resolution.
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the isolation variables, that is the calorimeter energy and track momenta in a cone surrounding the muon candidate
with radius ∆R =

√

(∆η)2 + (∆φ)2 = 0.4 in the η−φ plane. The distribution of the NN output for the W -boson data
is fitted to the sum of the signal and background distributions, with the background fraction as the free parameter for
χ2 minimization. The signal sample is obtained from W → µν events generated with pythia [101, 102] and the CDF
geant-based simulation [86]. The background sample is obtained from data satisfying the W → µν selection criteria
except for the additional criteria of pνT < 10 GeV and uT < 45 GeV. The jet misidentification background is computed
separately for |η| < 0.6 and |η| > 0.6 since different muon detectors operate in these regions. The background fractions
are found to be consistent with each other and with zero. For the MW measurement we use the combined best-fit
fraction of (0.01± 0.04stat)%.

The decay-in-flight (DIF) background is caused by low-momentum, long-lived mesons such as pions or kaons de-
caying to muons in the tracking volume, resulting in the reconstruction of high-pT kinked tracks. As described in
Ref. [43], the pattern of hit residuals indicating such kinks, the track impact parameter, and the fit quality are used
to both reduce and estimate the DIF background. The distribution of the track fit χ2/dof from W → µν candidates
in the data are fit to a sum of signal and DIF background templates with the background fraction as the free param-
eter. Muons from Z → µµ data are used to provide the signal template and W → µν data with large track impact
parameters (2 < d0 < 5 mm) provide the DIF background template. The contamination of real W → µν events in
the background template due to the d0 resolution is taken into account using the Z → µµ data. The DIF background
fraction is estimated to be (0.20±0.14)%. Systematic uncertainties are estimated by comparing background templates
made from different impact-parameter regions and from different requirements on the hit residual patterns.

Muons from cosmic rays are removed with efficiency greater than 99% using a dedicated tracking algorithm [51].
The cosmic-ray background estimated for a previous data set [39] is reduced by the ratio of run-time to integrated
luminosity to obtain the background fraction of (0.01± 0.01)% in the current sample.

TABLE S6: Various background fractions in the
W → µν data set, and the corresponding uncertainties
on the mT , pµT , and pνT fits for MW due to background
normalization and shape (in parentheses). Where
applicable, a negative sign is used to indicate a
negative correlation between fits.

Fraction δMW (MeV)

Source (%) mT fit pµT fit pνT fit

Z/γ∗
→ µµ 7.37± 0.10 1.6 (0.7) 3.6 (0.3) 0.1 (1.5)

W → τν 0.880± 0.004 0.1 (0.0) 0.1 (0.0) 0.1 (0.0)

Hadronic jets 0.01± 0.04 0.1 (0.8) -0.6 (0.8) 2.4 (0.5)

Decays in flight 0.20± 0.14 1.3 (3.1) 1.3 (5.0) -5.2 (3.2)

Cosmic rays 0.01± 0.01 0.3 (0.0) 0.5 (0.0) 0.3 (0.3)

Total 8.47± 0.18 2.1 (3.3) 3.9 (5.1) 5.7 (3.6)

TABLE S7: Background fractions from various sources
in the W → eν data set, and the corresponding
uncertainties on the mT , peT , and pνT fits for MW due
to background normalization and shape (in
parentheses). Where applicable, a negative sign is used
to indicate a negative correlation between fits.

Fraction δMW (MeV)

Source (%) mT fit peT fit pνT fit

Z/γ∗
→ ee 0.134± 0.003 0.2 (0.3) 0.3 (0.0) 0.0 (0.6)

W → τν 0.94± 0.01 0.6 (0.0) 0.6 (0.0) 0.6 (0.0)

Hadronic jets 0.34± 0.08 2.2 (1.2) 0.9 (6.5) 6.2 (−1.1)

Total 1.41± 0.08 2.3 (1.2) 1.1 (6.5) 6.2 (1.3)

The mT , pµT , and pνT distributions for the various backgrounds are added to the signal simulation templates for the
MW fits. The background templates are obtained from the custom simulation for W and Z boson backgrounds, from
identified cosmic ray events for the cosmic ray background, and from muons in W → µν events with large d0 and
DIF-like hit residuals (isolation) for the decay-in-flight (hadronic jet) background. After including uncertainties on
the shapes of the distributions, the total uncertainties on the background estimates result in uncertainties of 3.9, 6.4,
and 6.8 MeV on MW for the mT , pµT , and pνT fits, respectively (Table S6).

B. W → eν Backgrounds

We model the Z/γ∗ → ee background using the custom simulation. It is important to model the uninstrumented
regions (cracks) in the EM calorimeter, and the EM and hadronic calorimeter response in these cracks. We tune the
custom simulation of these detector attributes using a control sample of Z/γ∗ → ee data, in which one electron is
the fiducial electron and the second is associated with a track pointing toward a crack region. The tuned simulation
reproduces the rate for the second electron to pass through the crack regions, as well as the distributions of the ratios

the isolation variables, that is the calorimeter energy and track momenta in a cone surrounding the muon candidate
with radius ∆R =

√

(∆η)2 + (∆φ)2 = 0.4 in the η−φ plane. The distribution of the NN output for the W -boson data
is fitted to the sum of the signal and background distributions, with the background fraction as the free parameter for
χ2 minimization. The signal sample is obtained from W → µν events generated with pythia [101, 102] and the CDF
geant-based simulation [86]. The background sample is obtained from data satisfying the W → µν selection criteria
except for the additional criteria of pνT < 10 GeV and uT < 45 GeV. The jet misidentification background is computed
separately for |η| < 0.6 and |η| > 0.6 since different muon detectors operate in these regions. The background fractions
are found to be consistent with each other and with zero. For the MW measurement we use the combined best-fit
fraction of (0.01± 0.04stat)%.

The decay-in-flight (DIF) background is caused by low-momentum, long-lived mesons such as pions or kaons de-
caying to muons in the tracking volume, resulting in the reconstruction of high-pT kinked tracks. As described in
Ref. [43], the pattern of hit residuals indicating such kinks, the track impact parameter, and the fit quality are used
to both reduce and estimate the DIF background. The distribution of the track fit χ2/dof from W → µν candidates
in the data are fit to a sum of signal and DIF background templates with the background fraction as the free param-
eter. Muons from Z → µµ data are used to provide the signal template and W → µν data with large track impact
parameters (2 < d0 < 5 mm) provide the DIF background template. The contamination of real W → µν events in
the background template due to the d0 resolution is taken into account using the Z → µµ data. The DIF background
fraction is estimated to be (0.20±0.14)%. Systematic uncertainties are estimated by comparing background templates
made from different impact-parameter regions and from different requirements on the hit residual patterns.

Muons from cosmic rays are removed with efficiency greater than 99% using a dedicated tracking algorithm [51].
The cosmic-ray background estimated for a previous data set [39] is reduced by the ratio of run-time to integrated
luminosity to obtain the background fraction of (0.01± 0.01)% in the current sample.

TABLE S6: Various background fractions in the
W → µν data set, and the corresponding uncertainties
on the mT , pµT , and pνT fits for MW due to background
normalization and shape (in parentheses). Where
applicable, a negative sign is used to indicate a
negative correlation between fits.

Fraction δMW (MeV)

Source (%) mT fit pµT fit pνT fit

Z/γ∗
→ µµ 7.37± 0.10 1.6 (0.7) 3.6 (0.3) 0.1 (1.5)

W → τν 0.880± 0.004 0.1 (0.0) 0.1 (0.0) 0.1 (0.0)

Hadronic jets 0.01± 0.04 0.1 (0.8) -0.6 (0.8) 2.4 (0.5)

Decays in flight 0.20± 0.14 1.3 (3.1) 1.3 (5.0) -5.2 (3.2)

Cosmic rays 0.01± 0.01 0.3 (0.0) 0.5 (0.0) 0.3 (0.3)

Total 8.47± 0.18 2.1 (3.3) 3.9 (5.1) 5.7 (3.6)

TABLE S7: Background fractions from various sources
in the W → eν data set, and the corresponding
uncertainties on the mT , peT , and pνT fits for MW due
to background normalization and shape (in
parentheses). Where applicable, a negative sign is used
to indicate a negative correlation between fits.

Fraction δMW (MeV)

Source (%) mT fit peT fit pνT fit

Z/γ∗
→ ee 0.134± 0.003 0.2 (0.3) 0.3 (0.0) 0.0 (0.6)

W → τν 0.94± 0.01 0.6 (0.0) 0.6 (0.0) 0.6 (0.0)

Hadronic jets 0.34± 0.08 2.2 (1.2) 0.9 (6.5) 6.2 (−1.1)

Total 1.41± 0.08 2.3 (1.2) 1.1 (6.5) 6.2 (1.3)

The mT , pµT , and pνT distributions for the various backgrounds are added to the signal simulation templates for the
MW fits. The background templates are obtained from the custom simulation for W and Z boson backgrounds, from
identified cosmic ray events for the cosmic ray background, and from muons in W → µν events with large d0 and
DIF-like hit residuals (isolation) for the decay-in-flight (hadronic jet) background. After including uncertainties on
the shapes of the distributions, the total uncertainties on the background estimates result in uncertainties of 3.9, 6.4,
and 6.8 MeV on MW for the mT , pµT , and pνT fits, respectively (Table S6).

B. W → eν Backgrounds

We model the Z/γ∗ → ee background using the custom simulation. It is important to model the uninstrumented
regions (cracks) in the EM calorimeter, and the EM and hadronic calorimeter response in these cracks. We tune the
custom simulation of these detector attributes using a control sample of Z/γ∗ → ee data, in which one electron is
the fiducial electron and the second is associated with a track pointing toward a crack region. The tuned simulation
reproduces the rate for the second electron to pass through the crack regions, as well as the distributions of the ratios
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W+ initial 
state

Type Pythia LO Madgraph LO Madgraph NLO

u dbar v-v 81.7% 82.0% 82.7%

dbar u s-s 8.9% 9.0% 8.8%

u sbar v-s 1.6% 1.9% 1.8%

sbar u s-s 0.3% 0.3% 0.3%

c sbar s-s 2.9% 2.9% -

sbar c s-s 2.9% 2.9% -

c dbar s-v 0.7% 0.7% -

dbar c s-s 0.2% 0.2% -

u g v-g - 3.7%

g dbar g-v - 1.8%

g u g-s - 0.4%

dbar g s-g - 0.5%

g sbar g-s - 0.02%

sbar g s-g - 0.02%
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FIG. S32: Distributions of uT from simulation (histogram) and data (circles) for W boson (top) and Z boson
(bottom) decays in the muon (left) and electron (right) channels. The simulation uses parameters fit from Z boson
data, and the uncertainty on the simulation is due to the statistical uncertainty on these parameters. The data
mean (µ), rms spread (σ) skewness (λ), and excess kurtosis (κ) are well modeled by the simulation. The χ2 values
and the Kolmogorov-Smirnov (KS) probabilities are based only upon the statistical uncertainties in the data and do
not take into account the systematic uncertainties in the simulation.

MeV, and 5.3 MeV from the mT , p!T , and pνT fits, respectively. Since the recoil model parameters are obtained from
combined fits to Z → ee and Z → µµ data, with a constraint from the W → eν and W → µν data, the recoil model
uncertainties are correlated between the electron and muon channels.

IX. BACKGROUNDS

Backgrounds in the W -boson samples arise from the following processes: Z/γ∗ → '', where one lepton (electron or
muon) is not detected; W → τν with a reconstructed lepton from the τ decay; and a jet misreconstructed as a lepton
in multijet events. Backgrounds in the W → µν sample also arise from cosmic rays and long-lived hadrons decaying
to muons.

A. W → µν Backgrounds

We model the Z/γ∗ → µµ background using events generated with the custom simulation. The key aspects
of the custom simulation in this case are the muon-finding efficiency and the energy deposition by the muon in the
calorimeters, both as functions of pseudorapidity. These detector characteristics are measured in Z/γ∗ → µµ data and
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FIG. S31: Distributions of u|| (top) and u⊥ (bottom) from simulation (histogram) and data (circles) for W boson
decays to µν (left) and eν (right) final states. The simulation uses parameters fit from W and Z boson data, and
the uncertainty on the simulation is due to the statistical uncertainty on these parameters. The data mean (µ), rms
spread (σ), skewness (λ), and excess kurtosis (κ) are well modeled by the simulation. The χ2 values and the
Kolmogorov-Smirnov (KS) probabilities are based only upon the statistical uncertainties in the data and do not take
into account the systematic uncertainties in the simulation.

parameters with the Z boson data, including the constraint from the pWT spectrum from data, are shown in Table S5.
For the mT and pνT fits, the pWT spectrum constraint from data reduces the uncertainties due to the calorimeter response
and resolution parameters. For the p"T fit these uncertainties are increased, but there is a more than compensating
reduction in the theoretical uncertainty due to the pWT /pZT spectrum ratio, to which the p"T fit is sensitive. The
constraint from the pWT data spectrum is another new feature that incorporates additional information compared to
Ref. [43].

C. Model tests

We compare the simulated and measured recoil quantities in Z-boson and W -boson events. Comparing the u|| and
u⊥ (Fig. S31) distributions from data and simulation shows no evidence of bias. Since these distributions are not
used as inputs for model tuning, they provide independent validation of the recoil model. The uT distributions are
also well modeled by the tuned simulation (Fig. S32). Z bosons decaying to forward (|η| > 1) electrons confirm the
quality of the relative central-to-plug calorimeter calibration [43, 109].

The uncertainties on the MW fits are obtained by propagating the recoil model parameter uncertainties (Table S5).
The uncertainties due to the hadronic response (resolution) model are 1.8 (1.8) MeV, 3.5 (3.6) MeV, and 0.7 (5.2)
MeV respectively on the mT , p"T and pνT fits. The total uncertainty on MW due to the recoil model is 2.6 MeV, 5.0
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TABLE S5: Signed shifts in the MW fit values, in MeV, due to 1σ increases in the recoil model parameters, after
applying the pWT data spectrum as a constraint. The parameters are uncorrelated with each other and the resulting
uncertainties are added in quadrature for a given fit. The signed shifts are used to propagate the correlations
between fits. The “source” column indicates the distributions used for constraining each parameter.

Parameter Description Source mT p!T pνT
a average response Fig. S23 −1.6 −2.9 −0.2

b response non-linearity Fig. S23 −0.8 −2.0 0.7

Response 1.8 3.5 0.7

NV spectator interactions Fig. S24 0.5 −3.2 3.6

shad sampling resolution Fig. S24 0.3 0.3 0.8

f4
π0 EM fluctuations at low uT Fig. S25 −0.3 −0.2 −1.0

f15
π0 EM fluctuations at high uT Fig. S25 −0.3 −0.3 −0.2

α angular resolution at low uT Fig. S26 1.4 0.1 2.5

β angular resolution at intermediate uT Fig. S26 0.2 0.1 0.7

γ angular resolution at high uT Fig. S26 0.3 0.3 0.7

fa
2 average dijet component Fig. S27 0.1 −1.1 0.8

fs
2 variation of dijet component with uT Fig. S27 −0.1 −0.2 −0.1

kξ average dijet resolution Fig. S28 −0.1 0.1 −0.3

δξ fluctuations in dijet resolution Fig. S28 −0.2 0.2 −1.1

Aξ higher-order term in dijet resolution Fig. S28 0.1 −1.0 0.7

µξ —"— Fig. S28 −0.5 −0.4 −0.9

εξ —"— Fig. S28 0.1 −0.2 0.4

S+
ξ —"— Fig. S28 0.5 −0.4 1.4

S−
ξ —"— Fig. S28 −0.3 −0.2 −0.5

qξ —"— Fig. S28 −0.2 0.0 0.2

Resolution 1.8 3.6 5.2

reproduced in the custom simulation. They are validated using a Z/γ∗ → µµ sample generated with pythia [101, 102]
and simulated with the full geant-based detector simulation. The uncertainty on this tuning is propagated to the
MW measurement as an uncertainty in the background normalization and shapes estimated for Z/γ∗ → µµ decays.

The ratio of Z/γ∗ → µµ to W → µν acceptances is determined from the custom simulation, and multiplied by
the ratio of cross sections times branching ratios to obtain the Z/γ∗ → µµ background normalization. The standard
model calculation of the ratio RW/Z ≡ σB(W → µν)/σB(Z → µµ) yields 10.96±0.06 [72], including the uncertainties
due to PDFs and the renormalization and factorization scale variations. We include an additional 1% uncertainty on
the ratio of W and Z boson acceptances due to the uncertainty in the muon-finding efficiency, and obtain the estimate
for the Z/γ∗ → µµ background in the W → µν candidate sample of (7.37 ± 0.10)%. The bulk of this background
arises from muons with |η| ! 1 escaping the tracker acceptance.

The normalization and the shapes of the kinematic spectra for the Z → µµ background are varied by changing the
recoil model and the muon energy deposition in the calorimeters in the custom simulation by their uncertainties. The
normalization has fractional uncertainties of 1.2% from RW/Z , 0.1% from the muon energy deposition, 0.2% from
recoil resolution, and 0.1% from recoil scale, for a total normalization fractional uncertainty of 1.3%. The uncertainty
on the W boson mass from the normalization uncertainty of this background is (1.6, 3.6, 0.1) MeV respectively on
the (mT , p

µ
T , p

ν
T ) fits. The variation in the shapes due to recoil response tuning, recoil resolution tuning, and the

muon energy deposition causes uncertainties of (0.1, 0.2, 0.2) MeV, (0.2, 0.1, 0.4) MeV, and (0.7, 0.1, 1.4) MeV on the
(mT , p

µ
T , p

ν
T ) fits, respectively.

The W → τν background is estimated from the custom simulation, which generates W → τν events in the same way
as W → eν and W → µν events, and which includes the τ polarization and decay dynamics as described in Ref. [43].
The custom simulation predicts (0.880± 0.004)% for the W → τν background fraction, where the uncertainty is due
to the uncertainty in the hadronic recoil model.

Background from multijet events where a jet mimics a muon track is estimated using an artificial neural network
(NN) [110] to distinguish such misidentified muons from signal muons. The method, described in Refs. [43, 107], uses
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FIG. S16: Distributions (circles) of dielectron mass calculated using (left) only track information and (right)
calorimeter ET with best-fit simulation templates overlaid (histogram) for events with nonradiative electrons (top),
one radiative electron (middle), or two radiative electrons (bottom). Fit ranges are enclosed by arrows.

VIII. RECOIL MEASUREMENT

In this section we describe the treatment of the data for the measurement of the hadronic recoil vector, and the
parametric model used for its simulation. The model uses parameters and distributions measured in data to describe
the production of hadrons and the associated detector response.

Corrections are applied to data to improve the spatial uniformity of the calorimeter response to the hadronic recoil
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FIG. S15: Measured energy scale as a function of electron ET for W → eν (left) and Z → ee (right) data, with the
line SE = 1 overlaid. The simulation is corrected with the best-fit value of ζ = (7.2± 0.4)× 10−3 in Eq. (S1).

TABLE S3: Summary of momentum scale
determinations using J/ψ-meson data and Υ-meson
data with (BC) and without (NBC) beam-constrained
tracks. The systematic uncertainties for the Υ samples
are obtained using BC Υ data and assumed to be the
same for NBC Υ data, since the sources are completely
correlated.

Sample ∆p/p (ppm)

J/ψ → µµ −1401± 2stat ± 29syst
Υ → µµ (NBC) −1371± 13stat ± 34syst
Υ → µµ (BC) −1380± 10stat ± 34syst

TABLE S4: Summary of MZ measurements (in MeV)
obtained using subsamples of data containing events
with nonradiative electrons (E/p < 1.1), one radiative
electron (E/p > 1.1), or two radiative electrons.
Calorimeter-based and track-based measurements are
shown for each category; uncertainties are statistical
only.

Electrons Calorimeter Track

E/p < 1.1 only 91 190.9± 19.7 91 215.2± 22.4

E/p > 1.1 and E/p < 1.1 91 201.1± 21.5 91 259.9± 39.0

E/p > 1.1 only 91 184.5± 46.4 91 167.7± 109.9

with the E/p-based calibration, consistent with the known value of MZ at the level of 0.4σ. The systematic uncer-
tainties on MZ are due to the E/p calibration (6.5 MeV), the COT momentum-scale calibration (2.3 MeV), alignment
corrections (0.8 MeV), and the QED radiative corrections (3.1 MeV). Following this validation of the E/p-based
calibration, the MZ measurement is combined with it to obtain the final electron energy calibration for the MW

measurement, with a corresponding uncertainty of 5.8 MeV.
We test the detector simulation by measuring MZ using electron track momenta in three configurations: neither

electron radiative (i.e., both with E/p < 1.1), one electron radiative (E/p > 1.1), and both electrons radiative.
The results of the fits are shown in Table S4 and Fig. S16. Combining the measurements of events with at least
one radiative electron gives MZ = 91 226.3 ± 19.4stat MeV, consistent with the known MZ . The calorimeter-based
measurements in the same categories of radiative and nonradiative electrons also provide consistent results (Table S4
and Fig. S16).

We combine the Z → ee mass measurement from Eq. (S13) with the E/p-based calibration, which set SE to unity
with an uncertainty of 76 ppm. Taking the correlations due to COT alignment and calibration, the calorimeter non-
linearity parameter ζ and QED radiative corrections into account, we obtain the final calorimeter-energy scale-factor

[∆SE ]E/p+Z = −14± 72 ppm (S14)

to be applied to the W -boson data for the MW measurement. The Z → ee mass-based calibration carries a weight of
20% in this combination.
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FIG. S17: Average measured energy (in MeV) in the electromagnetic (left) and hadronic (right) calorimeters in the
vicinity of the muon in W -boson decays. The differences ∆φ and ∆η are signed such that positive differences
correspond to towers closest to the muon position at the CEM shower-maximum. The three towers inside the box
are removed from the recoil measurement.

energy. The beam axis does not exactly coincide with the calorimeter cylindrical axis, which induces a sinusoidal
bias as a function of azimuth in the energy flow detected from hadronic activity. The azimuthal bias increases with
|η| [39, 43]. This variation is removed by aligning each plug calorimeter in the data before computing #uT , using
minimum-bias data. We apply a relative energy scale between the central and plug calorimeter responses to improve
uniformity and resolution [39, 43].

The parametric simulation of the recoil response and resolution is tuned using pT -balance in Z → $$ events, since the
dilepton transverse momentum is measured with high precision. The recoil reconstruction and simulation is discussed
in Refs. [39, 43].

A. Lepton tower removal

The calorimeter towers with lepton energy deposits are excluded from the #uT calculation to avoid double-counting
the lepton energy. The exclusion of these towers also removes hadronic energy from the recoil calculation. The latter
effect is included in the simulation by subtracting from #uT the estimated hadronic energy in these towers.

The average energy in the tower traversed by a muon and surrounding towers is shown in Fig. S17. The muon
energy deposition is localized to the traversed tower and occasionally the neighboring towers in η, hence the three-
tower region shown in Fig. S17 is removed. The energy from electron showers spreads across more towers compared
to the minimum-ionizing muon trace. The seven-tower region shown in Fig. S18 fully contains the transverse shower
spread, hence this region is removed for electrons. The small energy excesses (above the hadronic energy plateau)
visible in nearby towers outside these regions are due to final-state QED radiation, which is modeled by the simulation.
Defining the transverse direction of the lepton by the unit vector l̂ and of the #uT vector by the unit vector ûT , the
components u|| ≡ #uT · l̂, u⊥ ≡ #uT · (l̂ × ûT ) and the magnitude uT ≡ |#uT | (Fig. S3) are defined. In the simulation,
the lepton tower removal is modeled by the distribution of the hadronic energy in the three- or seven-tower regions,
along with its dependence on u||, |u⊥|, and |η|.

The hadronic energy deposited in these three- and seven-tower regions is estimated in situ from the W boson
candidate events. The hadronic energy detected in towers separated by 90◦ in azimuth from the lepton direction
is not biased by QED radiation from the lepton, and also not biased by the event selection criteria as discussed in
Refs. [39, 43]. Therefore, energy measurements in the three- and seven-tower regions defined at this azimuth, and at
the same pseudorapidity as the lepton, are used to estimate the hadronic energy deposited in the removed towers.

Given the stochastic nature of particle production and the steeply-falling distribution of particle energies, the
distribution of energy received in these regions is highly skewed. The positive-energy component of the distribution
is modeled by a histogram of its logarithm, which compresses and captures its skewed tail. The probability that no
particles impact this region, thereby depositing zero energy, depends on the component of the hadronic recoil vector in
this region’s direction. Using the measurements in the 90◦-rotated regions, the fraction of zero-energy measurements
is parametrized as a function of u||, as shown in Fig. S19.

In addition to its distribution, the dependences of the mean hadronic energy on u||, |u⊥|, and |η| are also measured
(Fig. S20). These measurements are used to model the lepton removal. The predictions from the simulation are
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W → µν (left) or W → eν (right) data (blue circles) and simulation (red lines).

(which is well measured) and uT is used to fit for the model parameters. The balance is computed by projecting these
transverse vectors on the “η” axis [parallel to #pT (Z → $$)] and the orthogonal “ξ” axis in the transverse plane, as
shown in Fig. S3 [108].
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FIG. S20: Variation of hadronic ET in the three-tower (left) and seven-tower (right) region rotated by 90◦ in
azimuth from the muon (left) or electron (right) as a function of u|| (top), |u⊥| (middle), and η (bottom) for
W → µν (left) or W → eν (right) data (blue circles) and simulation (red lines).

(which is well measured) and uT is used to fit for the model parameters. The balance is computed by projecting these
transverse vectors on the “η” axis [parallel to #pT (Z → $$)] and the orthogonal “ξ” axis in the transverse plane, as
shown in Fig. S3 [108].



Electron momentum calibration

16

)νe→|] (Wη|9≈Tower number [
0 1 2 3 4 5 6 7

  
  

  
E

S

0.999

1

1.001

1.002

ee)  →E/p (Z

1 1.2 1.4 1.6

E
ve

n
ts

 /
 0

.0
0

7
  

 

0

5

310×

 ppmstat 173± = -203 ESΔ

/dof = 42 / 402χ

 = 35 %2χP

 = 99 %KSP

FIG. 13: (Left) Measured calorimeter energy scale in bins of electron tower in W → eν data after corrections are
applied, with the line SE = 1 overlaid. The towers are numbered in order of increasing |η| and each tower subtends
∆η ≈ 0.11. (Right) Distribution of E/p for Z → ee data (circles) after the full energy-scale calibration; the best-fit
template (histogram) is overlaid. The fit region is enclosed by arrows.

VII. ELECTRON MOMENTUM MEASUREMENT

An electron radiates bremsstrahlung photons as it traverses the approximately 19% of a radiation length in the
tracking volume [12], which degrades its track momentum resolution. Most of these photons are coalesced with the
electron shower in the calorimeter, therefore we use the higher-resolution calorimeter energy measurement for the
MW and MZ fits. The calibration of the track momentum p is transferred to the calorimeter energy E by fitting the
distribution of their ratio, E/p. The mean of the ratio is used to improve the spatial and temporal uniformity of
the calorimeter response, by applying corrections as functions of electron position and experiment running time. The
distribution of the ratio is also used to determine the amount of radiative material upstream and in the calorimeter.
The calorimeter calibration is verified by measuring the mass of the Z boson in Z → ee events. After this validation,
the MZ measurement is used as an additional calibration source for the MW measurement.

A. E/p calibration

Following event reconstruction [31], the mean E/p in the range 0.9–1.1 is used to correct 1–2% response variations
in electron-energy measurement in the data. These variations are mapped as functions of distance from tower edges
in φ and z and corrected following Refs. [12, 19]. The spatial uniformity calibration has improved because of the
increased sample size of the data. Furthermore, a temporal uniformity calibration of the EM calorimeter is introduced
in this analysis; assuming azimuthal symmetry, the calorimeter response in each longitudinal tower is studied as
functions of experiment operational time, and the time-dependence is corrected for. Next, the likelihood fits for the
calorimeter energy scale are performed separately in the eight longitudinal towers. Applying these corrections to the
data eliminates the dependence on electron |η| (Fig. 13).

The amount of radiative material is simulated using a fine-grained three-dimensional lookup table, as described
in Sec. III. The tail of the E/p distribution (E/p > 1.12), which is sensitive to the total number of radiation
lengths traversed, is used to tune the latter in the simulation by performing a maximum likelihood fit. We obtain a
multiplicative factor SW

mat = 1.0493± 0.0016stat ± 0.0012QCD (SZ
mat = 1.0428± 0.0060stat) to the number of radiation

lengths in the simulation, where the QCD systematic uncertainty refers to background contamination due to QCD
jets. The results from W and Z data are statistically consistent within 1σ and are combined to give the correction
SW,Z
mat = 1.0488 ± 0.0020 applied to the simulation. Figure 14 shows the E/p distributions for both W → eν and

Z → ee data after the correction factor is applied. Displayed on each of these distributions in this figure is the
quantity ∆Smat ≡ Smat − 1, which averages to zero over the W → eν and Z → ee samples.

The accurate simulation of electron and photon showers requires knowledge of the amount of CEM material [37].
The relative fraction of electron candidates with low E/p (0.90 < E/p < 0.93) to those in the range 0.90 < E/p < 1.09
is sensitive to longitudinal shower leakage, and hence the CEM thickness in radiation lengths. A maximum likelihood
fit to this fraction is used to tune the radiation-length (X0) thickness of each tower by ≈ 0.1X0. The statistical
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FIG. S15: Measured energy scale as a function of electron ET for W → eν (left) and Z → ee (right) data, with the
line SE = 1 overlaid. The simulation is corrected with the best-fit value of ζ = (7.2± 0.4)× 10−3 in Eq. (S1).

TABLE S3: Summary of momentum scale
determinations using J/ψ-meson data and Υ-meson
data with (BC) and without (NBC) beam-constrained
tracks. The systematic uncertainties for the Υ samples
are obtained using BC Υ data and assumed to be the
same for NBC Υ data, since the sources are completely
correlated.

Sample ∆p/p (ppm)

J/ψ → µµ −1401± 2stat ± 29syst
Υ → µµ (NBC) −1371± 13stat ± 34syst
Υ → µµ (BC) −1380± 10stat ± 34syst

TABLE S4: Summary of MZ measurements (in MeV)
obtained using subsamples of data containing events
with nonradiative electrons (E/p < 1.1), one radiative
electron (E/p > 1.1), or two radiative electrons.
Calorimeter-based and track-based measurements are
shown for each category; uncertainties are statistical
only.

Electrons Calorimeter Track

E/p < 1.1 only 91 190.9± 19.7 91 215.2± 22.4

E/p > 1.1 and E/p < 1.1 91 201.1± 21.5 91 259.9± 39.0

E/p > 1.1 only 91 184.5± 46.4 91 167.7± 109.9

with the E/p-based calibration, consistent with the known value of MZ at the level of 0.4σ. The systematic uncer-
tainties on MZ are due to the E/p calibration (6.5 MeV), the COT momentum-scale calibration (2.3 MeV), alignment
corrections (0.8 MeV), and the QED radiative corrections (3.1 MeV). Following this validation of the E/p-based
calibration, the MZ measurement is combined with it to obtain the final electron energy calibration for the MW

measurement, with a corresponding uncertainty of 5.8 MeV.
We test the detector simulation by measuring MZ using electron track momenta in three configurations: neither

electron radiative (i.e., both with E/p < 1.1), one electron radiative (E/p > 1.1), and both electrons radiative.
The results of the fits are shown in Table S4 and Fig. S16. Combining the measurements of events with at least
one radiative electron gives MZ = 91 226.3 ± 19.4stat MeV, consistent with the known MZ . The calorimeter-based
measurements in the same categories of radiative and nonradiative electrons also provide consistent results (Table S4
and Fig. S16).

We combine the Z → ee mass measurement from Eq. (S13) with the E/p-based calibration, which set SE to unity
with an uncertainty of 76 ppm. Taking the correlations due to COT alignment and calibration, the calorimeter non-
linearity parameter ζ and QED radiative corrections into account, we obtain the final calorimeter-energy scale-factor

[∆SE ]E/p+Z = −14± 72 ppm (S14)

to be applied to the W -boson data for the MW measurement. The Z → ee mass-based calibration carries a weight of
20% in this combination.
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FIG. S13: (Left) Measured calorimeter energy scale in bins of electron tower in W → eν data after corrections are
applied, with the line SE = 1 overlaid. The towers are numbered in order of increasing |η| and each tower subtends
∆η ≈ 0.11. (Right) Distribution of E/p for Z → ee data (circles) after the full energy-scale calibration; the best-fit
template (histogram) is overlaid. The fit region is enclosed by arrows.
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FIG. S14: Distributions of E/p in data (circles) and simulation with the best-fit value of SW,Z
mat (histograms) in

W → eν (left) and Z → ee (right) events.

combination has a statistical uncertainty of 42 ppm. After applying the combined SE in the simulation, the simulated
E/p distributions show good agreement with the W → eν (Fig. 2 of the main text) and Z → ee (Fig. S13) data
respectively. Displayed on these figures is the value of ∆SE ≡ SE − 1, which averages to zero over the W → eν and
Z → ee samples.

The E/p-based calibration uncertainties are due to Smat (2.7 MeV), the tracker material model (3.0 MeV), calorime-
ter thickness (0.4 MeV), nonlinearity (2.4 MeV), and resolution (0.9 MeV). Including the statistical uncertainty of
3.4 MeV gives a total E/p-based calibration uncertainty on MW of 6.1 MeV.

B. Z → ee mass measurement and calibration

As with the calibration of track momenta using J/ψ and Υ events, the E/p-based calorimeter-energy calibration is
validated with a measurement of the Z-boson mass, which is initially blinded as described in Sec. I. Using simulated
templates, the maximum likelihood fit in the range 81 000 < mee < 101 000 MeV (Fig. 3 of the main text) yields

MZ = 91 194.3± 13.8stat ± 7.6syst MeV (S13)
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FIG. S16: Distributions (circles) of dielectron mass calculated using (left) only track information and (right)
calorimeter ET with best-fit simulation templates overlaid (histogram) for events with nonradiative electrons (top),
one radiative electron (middle), or two radiative electrons (bottom). Fit ranges are enclosed by arrows.

VIII. RECOIL MEASUREMENT

In this section we describe the treatment of the data for the measurement of the hadronic recoil vector, and the
parametric model used for its simulation. The model uses parameters and distributions measured in data to describe
the production of hadrons and the associated detector response.

Corrections are applied to data to improve the spatial uniformity of the calorimeter response to the hadronic recoil
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TABLE S2: Fractional uncertainties, in parts per million (ppm), on the tracker momentum scale determined from
the J/ψ and Υ(1S) meson masses reconstructed in dimuon decays. The last column shows the correlation coefficient
between the J/ψ and Υ results. The tracks in the J/ψ → µµ sample are not beam-constrained (NBC) while the
tracks in the Υ(1S) → µµ sample may be beam-constrained (BC). Also shown in the “correlation” column is the
component of the total uncertainty that is correlated between the J/ψ and Υ determinations, which is 16 ppm.

Source J/ψ (ppm) Υ (ppm) Correlation (%)

QED 1 1 100

Magnetic field non-uniformity 13 13 100

Ionizing material correction 11 8 100

Resolution model 10 1 100

Background model 7 6 0

COT alignment correction 4 8 0

Trigger efficiency 18 9 100

Fit range 2 1 100

∆p/p step size 2 2 0

World-average mass value 4 27 0

Total systematic 29 34 16 ppm

Statistical NBC (BC) 2 13(10) 0

Total 29 36 16 ppm

from beam-constrained Υ → µµ data used to obtain these corrections are shown in Fig. S11, after the corrections are
applied.

The COT longitudinal scale sz and twist parameter t need not be identical for the J/ψ and Υ samples because
the track selection criteria are slightly different. The COT contains eight superlayers with 12 sense wires each. Since
the J/ψ mesons are not all promptly produced, their muon tracks are not beam-constrained. To ensure optimal
momentum resolution, all eight superlayers are required to contribute hits to these tracks. In comparison, the tracks
in the Υ, Z- and W -boson samples are required to have at least 6 superlayers contributing hits, which ensures stable
reconstruction efficiency while the beam constraint improves the momentum resolution. The innermost superlayer,
which contributes to the measurement of the longitudinal coordinate due to its 2o stereo angle, has an inefficiency of
≈ 1% due to its high occupancy. Since the stereo angle of each superlayer has been calibrated to about 1% of itself,
a 1% inefficiency can induce a difference of O(100 ppm) in sz between the two track selections. The twist parameter
t corresponds to a relative rotation of ±6 µrad (±12 µrad) of the longitudinal endplates of the COT in the J/ψ (Υ)
sample, equivalent to a ±8 µm (±16 µm) east-west endplate twist at the COT outer radius. The small difference
between samples is again consistent with selection differences and the precision of the relative east-west endplate
alignment.

The longitudinal position calibration of the COT, while relevant for extracting information on track curvature from
the J/ψ → µµ and Υ → µµ mass measurements, is ultimately irrelevant for the MW measurement since the latter
depends only on the track pT and the hadronic recoil measurements. The longitudinal position calibration obtained
from the BC Υ sample is used for the Z-boson mass measurements. Similarly, the twist parameter t is ultimately
irrelevant since its effect is antisymmetric in cos θ and cancels when averaged over the polar angle distribution. It is
incorporated in the alignment solely to monitor and improve the uniformity of the J/ψ → µµ and Υ → µµ samples.

The measurements of ∆p/p with unconstrained (NBC) and beam-constrained (BC) tracks are consistent as shown in
Fig. S12 and Table S3 (their difference is [9±9stat] ppm, where the statistical error on the difference is due to the beam
constraint and is equal to the quadrature difference of the respective statistical errors). The systematic uncertainties on
these measurements are evaluated mirroring the procedure adopted from the J/ψ-based calibration and are detailed in
Table S2. The BC Υ → µµ sample is divided into two equal size sub-samples to check the stability of the momentum
scale versus time and versus instantaneous luminosity. The momentum scales are consistent within the statistical
uncertainty; the difference between the later and earlier datasets is (∆p

p )later − (∆p
p )earlier = (23± 22stat) ppm and the

difference between the higher and lower instantaneous-luminosity datasets is (∆p
p )higher−(∆p

p )lower = (22±22stat) ppm

(the later dataset has a higher average instantaneous luminosity).

Muon momentum calibration
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Track momentum calibration
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FIG. S5: Track trigger efficiency as a function of track
η for electrons identified in the calorimeter. The
measurement used W -boson events collected with a
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FIG. S6: Difference in 〈E/p〉 between positrons and
electrons as a function of cot θ, and its linear fit. The
curvature corrections given in Eq. (S4) have been
applied.

and muon channels.
The η-dependent efficiency for reconstructing leptons due to track trigger requirements is measured using W -boson

events collected with a trigger with no track requirement as described in Ref. [43]. The efficiency is described by a
double-Gaussian function (Fig. S5) which captures the effects of COT structural supports. The uncertainty in the
trigger efficiency measurement has a negligible impact on the MW measurement.

VI. MUON MOMENTUM MEASUREMENT

The momentum of a muon produced in a pp̄ collision is measured using a helical track fit to the hits in the COT, with
a constraint to the transverse position of the beam for promptly produced muons [39, 43], i.e., muons produced directly
in the hard scatter. To maximize accuracy and precision, we perform a momentum calibration using data samples with
muonic decays of J/ψ mesons, Υ(1S) mesons, and Z-bosons. All calibrations are based on maximum-likelihood fits
to the data spectra using simulated templates of the line-shapes. The templates are indexed by the COT momentum
scale when fitting J/ψ → µµ and Υ(1S) → µµ data, by the Z-boson pole mass when fitting the Z → $$ data, and
by the CEM energy scale when fitting the E/p spectrum. Uniformity of the calibration is significantly enhanced by
an alignment of the COT wire-positions using cosmic-ray data [51]. The cosmic-ray alignment was performed [65] for
the complete data-taking period corresponding to the data used in this analysis. A number of improvements were
incorporated in the latest alignment procedure [65] compared to the procedure presented in Ref. [43]. As a result,
residual biases that were not resolved in the previous iteration of the alignment were eliminated in this iteration [65].

The cosmic-ray-based alignment is used in track reconstruction and validated with tracks from electrons and
positrons from W -boson decays. Global misalignments to which the cosmic ray reconstruction is insensitive are
corrected at the track level using the difference in 〈E/p〉 between electrons and positrons, where E/p is in the range
0.9–1.1. Additive corrections are applied to q/pT , a quantity proportional to the track’s curvature, where q is the
particle charge,

q∆p−1
T = (43.2 cot2 θ − 12.6 +B cot θ) PeV−1 . (S4)

The difference in 〈E/p〉 between positrons and electrons as a function of cot θ [50] is shown in Fig. S6 after the
correction of Eq. (S4). The uncertainty on parameter B = (0 ± 4) PeV−1, which induces an uncertainty of 0.8 MeV
on MW , is given by the statistical uncertainty on the slope in Fig. S6. The uncertainty in the other two parameters
in Eq. (S4) cancels when averaged over the symmetric production of W+ and W− bosons in the pp̄ collisions at the
Tevatron.

Residual tracker misalignments studied using difference in E/p between electrons and positrons 

Correction as a function of polar angle applied to measured tracks from W and Z decays


Linear dependence on cot theta would cause a bias in the mW mass fit


No linear correction required, statistical precision from E/p constrains the bias to <0.8 MeV



50

Measurement updates

Method or technique impact section of paper

Detailed treatment of parton distribution functions +3.5 MeV IVA

Resolved beam-constraining bias in CDF reconstruction +10 MeV VI C

Improved COT alignment and drift model [65] uniformity VI

Improved modeling of calorimeter tower resolution uniformity III

Temporal uniformity calibration of CEM towers uniformity VIIA

Lepton removal procedure corrected for luminosity uniformity VIIIA

Higher-order calculation of QED radiation in J/ψ and Υ decays accuracy VI A & B

Modeling kurtosis of hadronic recoil energy resolution accuracy VIII B 2

Improved modeling of hadronic recoil angular resolution accuracy VIII B 3

Modeling dijet contribution to recoil resolution accuracy VIII B 4

Explicit luminosity matching of pileup accuracy VIII B 5

Modeling kurtosis of pileup resolution accuracy VIII B 5

Theory model of pWT /pZT spectrum ratio accuracy IVB

Constraint from pWT data spectrum robustness VIII B 6

Cross-check of pZT tuning robustness IVB

TABLE S1: Summary of analysis updates with respect to [43]. The second column provides a quantitative estimate
of the change induced in the previous result [43] due to the update. In case this estimate is not available, the second
column indicates whether the update is expected to improve the temporal or spatial uniformity of the detector,
increase the robustness of the analysis or the accuracy of the result.

of these updates is presented in Table S1, along with the expected impact and references to the sections of this
supplement where the respective descriptions are provided. In some cases, the additive change induced by the update
can be added to our previously published MW value of MW = 80 387± 19 MeV [41, 43] since the updated procedures
can be incorporated into the previous analysis without repeating the latter. In other cases, the impact is classified
in terms of the expected improvement in detector uniformity, analysis accuracy, or robustness. The shifts shown
in the first two rows of Table S1 result in an updated value of MW = 80 400.5 MeV. With the correlations due to
parton distribution functions, the momentum scale calibration and QED radiative corrections taken into account, the
consistency between the updated previous measurement and the new measurement is at the percent level, assuming
purely Gaussian fluctuations. Considering the large number of systematic improvements in analysis techniques, the
best estimate of MW quoted in this paper is a freestanding result obtained from a blind procedure, and supersedes
our 2012 result [41, 43] in the same spirit as the latter superseding our 2007 result [38]. Subsequent analyses with
new or modified procedures, such as independently blinded measurements in subsamples of data, are being pursued.

II. THE CDF II DETECTOR

The CDF II detector [39, 72, 73] is forward-backward and cylindrically symmetric [50]. Its relevant components, in
order of increasing radius, are a charged-particle tracking system, composed of a silicon vertex detector [74] between
radii of 2.5 cm and 29 cm, and an open-cell drift chamber [48] in the radial range of 40 < r < 138 cm and covering
the region |z| < 155 cm; a superconducting solenoid [75] with a length of 5 m and a radius of 1.5 m, generating
a 1.4 T magnetic field; electromagnetic calorimeters [76, 77] to contain electron and photon showers and measure
their energies, and hadronic calorimeters [78] to measure the energies of hadronic showers; and a muon detection
system [49] for identification of muon candidates with pT ! 2 GeV. Collision events passing three levels of online
selection (trigger) are recorded for offline analysis. The major detector subsystems are described in Ref. [43].

Charged particles with pT ! 300 MeV and |η| " 1 traverse the entire radius of the central outer tracking drift
chamber (COT) [48]. The hit positions in the COT are used to reconstruct the helical trajectory of a charged particle
using a χ2 minimization, including an optional constraint to the transverse position of the beam. The fitted helix
is parameterized by the signed transverse impact parameter (minimal distance) with respect to the nominal beam
axis, d0 (in the absence of the beam constraint); the azimuthal angle of the track direction at closest approach to
the beam, φ0; the longitudinal position at closest approach to the beam, z0; the cotangent of the polar angle, cot θ;
and the curvature, c ≡ q/(2R), where q = ±1 is the particle charge and R is the radius of curvature. The measured
track pT is proportional to the inverse of the track curvature. Information from the silicon vertex detector is not used
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Dimension-6 operators modify pole masses, vertex factors, and the vev
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Parameter Input Value Ref.

m̂Z 91.1875± 0.0021 [19, 32, 33]

ĜF 1.1663787(6)× 10−5 [32, 33]

α̂ew 1/137.035999074(94) [32, 33]

Table 1. Current best estimates of the core input parameters used to make predictions in the
SMEFT.

muon decays ĜF and the measured Z mass (m̂Z). It is convenient to relate observables in

terms of the parameters g2, sin2 θ = g21/(g
2
1 + g22) and the electroweak vacuum expectation

value (vev) v. Defining at tree level the effective measured mixing angle

sin2 θ̂ =
1

2
−

1

2

√

1−
4πα̂ew√
2 ĜF m̂2

Z

, (2.1)

then the measured value of the SUL(2) gauge coupling can be inferred (at tree level) via

ĝ2 sin θ̂ = 2
√
π α̂1/2

ew . (2.2)

The effective measured vacuum expectation value (vev) in the SM can be defined as

v̂2 = 1/
√
2 ĜF . All of these input parameters are redefined going from the SM to the

SMEFT, and the resulting shifts are characterized in section 2.1. We will consistently

use the notation that the measured parameters, or inferred measured parameters (such as

sin2 θ̂, ĝ2), are denoted with a hat superscript. In relating predictions to these input pa-

rameters we will consistently only include corrections in the SMEFT that are suppressed

by v̄2T /Λ
2, neglecting v̄4T /Λ

4 contributions. For this reason SMEFT parameters multi-

plying insertions of higher dimensional operators can be traded for α̂ew, v̂2, m̂Z using the

SM relations.6

2.1 Input parameters

Calculating expressions, we use the canonically normalized SMEFT in the basis of ref. [15].

By canonically normalized, we mean that the kinetic terms of all propagating fields have

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in ref. [16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in ref. [16].

The SM Lagrangian parameters and theoretical predictions for observables in the SM will

have no superscript (no hat and no bar) and if we stop at the leading order of the SM

value we will add: (. . .)SM to specify it. In the following sections we will use the shorthand

notation s2
θ̂
= sin2 θ̂, c2

θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the

gauge couplings given by g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the

relation between the SMEFT Lagrangian parameters and the measured input parameters

in this section.
6As well as these core input parameters, we also note that the values of

{

mt,αs,mH ,mc,mb,mτ ,

V ij
CKM ,∆α(5)

had, · · ·
}

are also required in a truly global EWPD analysis of all data.
7See the appendix for a discussion of the notational conventions.
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2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related

to ĜF via eq. (2.5) as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is

trivial to re-introduce, and this shift can be considered to be implicitly flavour dependent.

2.1.2 MZ

The mass eigenstate of the Z boson is redefined as

M̄2
Z =

v̄2T
4

(
g1

2 + g2
2
)
+

1

8
v̄4TCHD

(
g1

2 + g2
2
)
+

1

2
v̄4T g1g2CHWB. (2.8)

The difference between the M̂Z input parameter and the SM expression for the Z mass

(in the SMEFT) defines δM2
Z as

δM2
Z ≡ M̂2

Z −
v̄2T
4

(
g1

2 + g2
2
)
= −

1

2
√
2

M̂2
Z

ĜF

CHD −
2 21/4

√
π
√
α̂ M̂Z

Ĝ3/2
F

CHWB. (2.9)

Note that this difference is defined in terms of the vev in the SMEFT — v̄T . The SM

relations between Lagrangian parameters and input parameters are used on the right hand

side of eq. (2.9), as the SMEFT corrections to these relations are higher order in v̄2T /Λ
2.
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The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related

to ĜF via eq. (2.5) as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is

trivial to re-introduce, and this shift can be considered to be implicitly flavour dependent.

2.1.2 MZ

The mass eigenstate of the Z boson is redefined as

M̄2
Z =

v̄2T
4

(
g1

2 + g2
2
)
+

1

8
v̄4TCHD

(
g1

2 + g2
2
)
+

1

2
v̄4T g1g2CHWB. (2.8)

The difference between the M̂Z input parameter and the SM expression for the Z mass

(in the SMEFT) defines δM2
Z as

δM2
Z ≡ M̂2

Z −
v̄2T
4

(
g1

2 + g2
2
)
= −

1

2
√
2

M̂2
Z

ĜF

CHD −
2 21/4

√
π
√
α̂ M̂Z

Ĝ3/2
F

CHWB. (2.9)

Note that this difference is defined in terms of the vev in the SMEFT — v̄T . The SM

relations between Lagrangian parameters and input parameters are used on the right hand

side of eq. (2.9), as the SMEFT corrections to these relations are higher order in v̄2T /Λ
2.
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2.1.3 sin2 θ

The kinetic mixing introduced by the operator with Wilson coefficient CHWB leads to a

redefinition of the usual sθ = sin θ mixing angle of the SM given by

s2
θ
=

g1
2

g2
2 + g1

2 +
g1g2

(
g2

2 − g1
2
)

(
g1

2 + g2
2
)2 v̄2TCHWB. (2.10)

Here s2
θ
is used to rotate to the mass eigenstate fields in the SMEFT. As a short hand

notation, we define

δs2θ ≡ sin2 θ̂−sin2 θ̄ = −
sθ̂ cθ̂

2
√
2 ĜF

(
1−2s2

θ̂

)
[
sθ̂ cθ̂

(
CHD+4C(3)

H"−2Cll

)
+2CHWB

]
. (2.11)

2.2 Gauge couplings in the SMEFT: ḡ1, ḡ2

We relate the Lagrangian parameters ḡ2, ḡ1 to the input parameters at tree level via

ḡ21 + ḡ22 = 4
√
2 ĜF M̂2

Z

(

1−
√
2 δGF −

δM2
Z

M̂2
Z

)

, (2.12)

ḡ22 =
4π α̂

s2
θ̂

[

1 +
δs2θ
s2
θ̂

+
ĉθ
ŝθ

1
√
2 ĜF

CHWB

]

. (2.13)

2.3 MW in the SMEFT

The mass of the W boson is redefined in the SMEFT as

M̄2
W =

ḡ22 v̄
2
T

4
. (2.14)

Expressing M̄2
W in terms of the inputs parameters we get:

M̄2
W = M2

W

(

1 +
δs2
θ̂

s2
θ̂

+
cθ̂

sθ̂
√
2ĜF

CHWB +
√
2δGF

)

= M2
W − δM2

W , (2.15)

where δM2
W = −M2

W

(
δs2

θ̂

s2
θ̂

+
c
θ̂

s
θ̂

√
2ĜF

CHWB +
√
2δGF

)
.

3 Redefinition of vector boson couplings

3.1 Neutral currents

3.1.1 Redefinition of Z couplings

The effective axial and vector couplings of the SMEFT Z boson are defined as follows

LZ,eff = 221/4
√
ĜF M̂Z

(
JZ"
µ Zµ + JZν

µ Zµ + JZu
µ Zµ + JZd

µ Zµ
)
, (3.1)

where (JZx
µ )pr = x̄p γµ

[
(ḡxV )

pr
eff − (ḡxA)

pr
eff γ5

]
xr for x = {u, d, &, ν}. In general, these currents

are matricies in flavour space. When we restrict our attention to the case of a minimal

linear MFV scenario (JZx
µ )pr $ (JZx

µ )δpr. In the standard basis, the effective axial and

vector couplings are modified from the SM values by a shift defined as

δ(gxV,A)pr = (ḡxV,A)
eff
pr − (gxV,A)

SM
pr , (3.2)
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The effective axial and vector couplings of the SMEFT Z boson are defined as follows
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(
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µ Zµ + JZν

µ Zµ + JZu
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µ Zµ
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, (3.1)

where (JZx
µ )pr = x̄p γµ

[
(ḡxV )

pr
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pr
eff γ5

]
xr for x = {u, d, &, ν}. In general, these currents

are matricies in flavour space. When we restrict our attention to the case of a minimal
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µ )pr $ (JZx
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eff
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SM
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where

δ(g!V )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

H!
pr

+ C(3)
H!
pr

)

− δs2θ, (3.3)

δ(g!A)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
H!
pr
− C(3)

H!
pr

)

, (3.4)

δ(gνV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
H!
pr
− C(3)

H!
pr

)

, (3.5)

δ(gνA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
H!
pr
− C(3)

H!
pr

)

, (3.6)

δ(guV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−
sθ̂ cθ̂
3

CHWB + C(1)
Hq
pr

+ C(3)
Hq
pr

+ CHu
pr

)

+
2

3
δs2θ, (3.7)

δ(guA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
− sθ̂ cθ̂ CHWB − C(1)

Hq
pr
− C(3)

Hq
pr

+ CHu
pr

)
, (3.8)

δ(gdV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
+
sθ̂ cθ̂
3

CHWB − C(1)
Hq
pr

+ C(3)
Hq
pr
− CHd

pr

)

−
1

3
δs2θ, (3.9)

δ(gdA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB + C(1)

Hq
pr
− C(3)

Hq
pr
− CHd

pr

)
. (3.10)

3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = $, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,!
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
Wµ

±

]
, (3.13)
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where in the SM one has
(
JW+,!
µ

)

pr
= ν̄p γ

µ
(
ḡW+,!
V − ḡW+,!

A γ5
)
#r, (3.14)

(
JW−,!
µ

)

pr
= ν̄p γ

µ
(
ḡW−,!
V − ḡW−,!

A γ5
)
#r. (3.15)

In the SMEFT we note that in the flavour symmetric limit

δ
(
gW±,!
V

)

rr
= δ

(
gW±,!
A

)

rr
=

1

2
√
2ĜF

(
C(3)
H!
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.16)

Note that although the corrections in the SMEFT shown preserve the left handed

structure of the current for the lepton couplings, we introduce a separate axial and vector

coupling for later convenience. For the quark charged currents one similarly finds

δ
(
gW±,q
V

)

rr
= δ

(
gW±,q
A

)

rr
=

1

2
√
2ĜF

(
C(3)
Hq
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.17)

There is also dependence on the operator QHud
rr

for the W quark current. When we assume

linear MFV, the Wilson coefficient of this operator is suppressed by

CHud
rr
∝
[
Yu Y

†
d

]

rr
, (3.18)

and in this case, this contribution is neglected for reasons of consistency. Light quark mass

suppressed corrections are neglected in the SM predictions of many of the observables

considered here, and also when higher dimensional operators are inserted.

4 Observables

Whenever possible, we express all observables in terms of shifts of the form

δGF , δM
2
Z , δM

2
W , δs2θ, δg

x
V,A, δg

W±,y
V.A . (4.1)

Here x = #, u, d and y = #, q. Added to these corrections for each observable are contribu-

tions due to explicit operator insertions that are not (easily) expressible in terms of these

common shifts. These net shift variables do not correspond to a basis for L(6), they are

simply a convenient shorthand notation for some terms in the effective Lagrangian.

4.1 Differential cross section for !+!− → ff̄

Observables that are not limited to the Z pole are an important source of information on

Wilson coefficients present in the SMEFT. Corrections to the 2→ 2 differential spectrum

predicts the total cross sections σ!+!−→f f̄ where f = {#, u, c, b, d, s} (here the final and

initial state leptons are defined to not have the same flavour), as well as the differential

and angular observables for these processes. A general expression in the SMEFT valid

for on and off resonance scattering includes a contribution from Z and γ exchange as well

as the effect of ψ4 operators and the interference of all of these terms, see figure 1. Our

discussion of this general expression in the SMEFT will largely build on the discussion in

ref. [19] which itself borrows heavily from ref. [34].8

8For classic related results, that are outside of the systematic SMEFT analysis presented here,

see ref. [35].
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V − ḡW−,!

A γ5
)
#r. (3.15)

In the SMEFT we note that in the flavour symmetric limit

δ
(
gW±,!
V

)

rr
= δ

(
gW±,!
A

)

rr
=

1

2
√
2ĜF
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where

δ(g!V )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

H!
pr

+ C(3)
H!
pr

)

− δs2θ, (3.3)

δ(g!A)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
H!
pr
− C(3)

H!
pr

)

, (3.4)

δ(gνV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
H!
pr
− C(3)

H!
pr

)

, (3.5)

δ(gνA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
H!
pr
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H!
pr

)

, (3.6)

δ(guV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−
sθ̂ cθ̂
3

CHWB + C(1)
Hq
pr

+ C(3)
Hq
pr

+ CHu
pr

)

+
2

3
δs2θ, (3.7)

δ(guA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
− sθ̂ cθ̂ CHWB − C(1)

Hq
pr
− C(3)

Hq
pr

+ CHu
pr

)
, (3.8)

δ(gdV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
+
sθ̂ cθ̂
3

CHWB − C(1)
Hq
pr

+ C(3)
Hq
pr
− CHd

pr

)

−
1

3
δs2θ, (3.9)
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2
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δM2

Z
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+
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4
√
2 ĜF
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)
. (3.10)
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This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define
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, (3.13)
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, (3.13)
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2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

H!
pr

+ C(3)
H!
pr

)

− δs2θ, (3.3)

δ(g!A)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF
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2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
H!
pr
− C(3)

H!
pr

)

, (3.4)

δ(gνV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF
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2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
H!
pr
− C(3)

H!
pr

)

, (3.6)

δ(guV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF
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2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.
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ELECTROWEAK PARAMETERS
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Parameter Input Value Ref.

m̂Z 91.1875± 0.0021 [19, 32, 33]

ĜF 1.1663787(6)× 10−5 [32, 33]

α̂ew 1/137.035999074(94) [32, 33]

Table 1. Current best estimates of the core input parameters used to make predictions in the
SMEFT.

muon decays ĜF and the measured Z mass (m̂Z). It is convenient to relate observables in

terms of the parameters g2, sin2 θ = g21/(g
2
1 + g22) and the electroweak vacuum expectation

value (vev) v. Defining at tree level the effective measured mixing angle

sin2 θ̂ =
1

2
−

1

2

√

1−
4πα̂ew√
2 ĜF m̂2

Z

, (2.1)

then the measured value of the SUL(2) gauge coupling can be inferred (at tree level) via

ĝ2 sin θ̂ = 2
√
π α̂1/2

ew . (2.2)

The effective measured vacuum expectation value (vev) in the SM can be defined as

v̂2 = 1/
√
2 ĜF . All of these input parameters are redefined going from the SM to the

SMEFT, and the resulting shifts are characterized in section 2.1. We will consistently

use the notation that the measured parameters, or inferred measured parameters (such as

sin2 θ̂, ĝ2), are denoted with a hat superscript. In relating predictions to these input pa-

rameters we will consistently only include corrections in the SMEFT that are suppressed

by v̄2T /Λ
2, neglecting v̄4T /Λ

4 contributions. For this reason SMEFT parameters multi-

plying insertions of higher dimensional operators can be traded for α̂ew, v̂2, m̂Z using the

SM relations.6

2.1 Input parameters

Calculating expressions, we use the canonically normalized SMEFT in the basis of ref. [15].

By canonically normalized, we mean that the kinetic terms of all propagating fields have

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in ref. [16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in ref. [16].

The SM Lagrangian parameters and theoretical predictions for observables in the SM will

have no superscript (no hat and no bar) and if we stop at the leading order of the SM

value we will add: (. . .)SM to specify it. In the following sections we will use the shorthand

notation s2
θ̂
= sin2 θ̂, c2

θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the

gauge couplings given by g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the

relation between the SMEFT Lagrangian parameters and the measured input parameters

in this section.
6As well as these core input parameters, we also note that the values of

{

mt,αs,mH ,mc,mb,mτ ,

V ij
CKM ,∆α(5)

had, · · ·
}

are also required in a truly global EWPD analysis of all data.
7See the appendix for a discussion of the notational conventions.
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Observable Experimental Value Ref. SM Theoretical Value Ref.

m̂Z [GeV] 91.1875± 0.0021 [19] – –

m̂W [GeV] 80.385± 0.015 [49] 80.365± 0.004 [50]

ΓZ [GeV] 2.4952± 0.0023 [19] 2.4942± 0.0005 [48]

R0
! 20.767± 0.025 [19] 20.751± 0.005 [48]

R0
c 0.1721± 0.0030 [19] 0.17223± 0.00005 [48]

R0
b 0.21629± 0.00066 [19] 0.21580± 0.00015 [48]

σ0h [nb] 41.540± 0.037 [19] 41.488± 0.006 [48]

A!FB 0.0171± 0.0010 [19] 0.01616± 0.00008 [32]

Ac
FB 0.0707± 0.0035 [19] 0.0735± 0.0002 [32]

Ab
FB 0.0992± 0.0016 [19] 0.1029± 0.0003 [32]

Table 2. Experimental and theoretical values of the observables used in the illustrative fits.

For example, a set of reasonable prior conditions to impose is that the power counting

expansion of the theory is under control, and that each individual observable falls within

Nσ of each measurement, so that

Cfit < 0.1, θ̂i − θi(Cmin
fit ) < N δθi (5.3)

with δθi the total combined error on an observable θi. The value of N chosen in these

conditions dictates the specific global minimum found in the χ2 minimization. In particular

the presence of the Ab
FB anomaly that deviates at the ∼ 2.5σ level from the SM predictions

indicates that N > 2.5 as a minimization condition is reasonable to not bias the global

minimum in favour of non-vanishing Cmin
fit . Choosing N = 2.8, and seeding a minimization

with Cmin
fit = 0, we find

Cmin
fit =

{
−3.0, 7.9, 12, 87,−14, 3.4,−11× 101, 9.2, 0.13,−1.4× 10−2

}
× 10−4. (5.4)

It is interesting to note that with this procedure the least constrained entries in Cmin
fit

corresponds to operators that lead to vertex corrections of the Z boson to fermions.

However, we stress the arbitrariness of the conditions imposed to obtain this minima

and that it does not hold any particular physical significance. For example, another rea-

sonable prior condition can be constructed based on noting that one can group the Ci into

subgroups that strongly mix under RG evolution (see refs. [16, 51–53] for the relevant RGE

results). Such Wilson coefficients will tend to flow together in value under RG evolution.

This can motivate grouping the operators into classes of the form

Cq =

{
C(1)
Hq
pr
, C(3)

Hq
pr
, CHu

pr
CHd

pr

}
, C! =

{

C(1)
H!
pr
, C(3)

H!
pr
, CHe

pr

}

. (5.5)

Then imposing the conditions in eq. (5.3) gives a minimum with these grouped Wilson

coefficients O(10−3) and CHWB ∼ O(10−5). The individual minima, with two different
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Fig. 1. Left diagram is the leading order W ± production process at the Tevatron. The remaining figures show the leading order CC03 processes (defined in a double pole 
approximation) used to extract m̂W at LEPII.

Table 1
W ± mass measurements reported by the Tevatron and 
LEPII collaborations.

Result Value Ref.

DØ 80.375 ± 0.023 [17]
CDF 80.387 ± 0.019 [18]

Tev. Comb. 80.387 ± 0.016 [19]

LEP threshold 80.42 ± 0.20 ± 0.03 [20]
LEP direct 80.375 ± 0.025 ± 0.022 [20]

LEP. Comb. 80.376 ± 0.033 [20]

Global Comb. 80.385 ± 0.015 [21]

the second measurement employed at LEPII, where m̂W is ex-
tracted via kinematic fits to the W pair invariant mass distribution 
away from the threshold region. This issue is related to the issue 
we study in detail at the Tevatron, and we return to this point 
in Section 6. We stress that all the experimental approaches re-
ported in Table 1 are appropriate when consistency testing the 
SM, and can be combined as in Refs. [19–21] under the SM as-
sumption.

This paper is aimed at the consistent interpretation of m̂W
measurements in a different field theory than the SM, the SMEFT. 
When all dimension six operators are allowed to be present with 
arbitrary Wilson coefficients, interpretation of the measurements 
is modified. This modification comes about by an impact on the 
measurement itself, and in the mapping of the experimental re-
sults to different Lagrangian parameters. In this paper, we focus on 
the first question. We examine whether a bias on the measured 
m̂W arises due to SMEFT corrections and thus whether an addi-
tional theoretical error of this form should be included in fits of 
SMEFT parameters due to such a bias. After describing the modifi-
cations of W ± parameters in the SMEFT in Section 2, the potential 
bias is analyzed in detail for the Tevatron measurement in Sec-
tions 3–5. In Section 6 we comment on the LEPII measurements, 
whereas Section 7 is reserved for conclusions

2. The W ± mass and width in the SMEFT

In the SM, at tree level, the input parameter set {m̂Z , Ĝ F , α̂ew}
fix m̂2

W = 2 
√

2πα̂ew/(Ĝ F s2
θ̂
) where

s2
θ̂

= 1/2 −
√

1 − 4πα̂ew/
√

2Ĝ F m̂2
Z . (1)

The shift in the pole mass δm2
W = m̂2

W − m̄2
W in the U(3)5 sym-

metric version of the SMEFT is given by [8]

δm2
W

m̂2
W

= %̂

[
4 C H W B + cθ̂

sθ̂

C H D + 4
sθ̂

cθ̂

C (3)
H& − 2

sθ̂

cθ̂

C& &

]
, (2)

where %̂ = cθ̂ sθ̂/(c2
θ̂
− s2

θ̂
) 2

√
2Ĝ F . We use a δ to indicate a shift in 

a quantity due to the complete set of corrections present at leading 
order in the power counting in the SMEFT. We use the Warsaw ba-

sis of dimension six operators in the SMEFT [23] that defines the 
Wilson coefficients Ci = {C H W B , C H D , C (3)

H&, C& &}. The cut off scale 
has been absorbed into the definition of the Wilson coefficients so 
that the mass dimension of these parameters is −2. The value of 
m̄2

W can be predicted in the SM with complete one loop [24] and 
even full two loop corrections [25]. The full one loop corrections 
compared to the Born approximation to '̄W are a ∼ 2% [26] cor-
rection. The size of this correction depends on how the tree level 
value of '̄W is related to the input observables. Absorbing univer-
sal radiative corrections into the parameters defining the width in 
an improved Born approximation reduces the size of the remain-
ing perturbative corrections at one loop to ∼ 0.5% [24,26,27]. The 
effect of still neglected higher order perturbative terms is then ex-
pected to be a loop factor smaller than this variation.

The expression for the shift of 'W in terms of the input param-
eter Ĝ F and the derived value m̂W in the SMEFT is given by

δ'W

'̂W
=

√
2

3 Ĝ F

[
C (3)

H& + 2 C (3)
Hq

]
−

√
2 δĜ F − 3

2
δm2

W

m̂2
W

, (3)

where '̂W = 9
√

2Ĝ F m̂3
W /(12 π). Here δĜ F = C (3)

H&/Ĝ F − C& &/2Ĝ F
and we are considering the massless fermion limit. Being conser-
vative, so long as δ'W /'̄W ! 0.5% it is clear that neglected SMEFT 
corrections can have a non-negligible impact on the theory error 
of an extracted value of m̂W at the Tevatron. This condition corre-
sponds to a bound on the Wilson coefficients and the cut off scale 
of the form (/

√
C i " 3.5 TeV, which are the cases of interest mo-

tivated by the hierarchy problem.

3. Spectra for extractions of mW at the Tevatron

We illustrate the effect of generalizing these measurements into 
the SMEFT following the analytic methods of Ref. [12]. This is suf-
ficient for our purposes as detector resolution effects can only be 
approximated without direct access to the experimental data, and 
are substantial.

The value of m̄2
W is extracted from Tevatron data using kine-

matic templates for distributions in the variables mT , P T &, /E T . The 
latter is found to have a small effect on the fit [17], so we ne-
glect this spectrum. We define the transverse mass to be m2

T =
2P T ,& P T ,ν(1 − cos θ&ν), with P T ,&/ν and θ&ν the momenta and an-
gle between the leptons in the perpendicular plane to the p̄ p
collision axis. We agree with the result in Ref. [12] for dσ /dmT
for the effective kinematic spectra once the partonic production 
mechanism is factorized out, consistent with a narrow width ex-
pansion, and integrated over Parton Distribution Functions (PDF’s), 
generating an effective pT for W ± . Note however the correc-
tion to the last term in the numerator of the I function (de-
rived from the Jacobian), correcting a typo in Ref. [12]. Here µ2 =
m2

T /s′ , α = (γ 2 − 1)1/2 = P T ,W /
√

s′ and γ =
√

P 2
T ,W + s′/

√
s′. 

P T ,W is the transverse momentum of the W ± boson present 
due to the effects of PDFs. We find the following results for 
dσ /dmT
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43, 62] as well as models describing their individual position measurements within the COT. The COT position
resolution as a function of radius is determined using muon tracks from Υ-meson, W -boson, and Z-boson decays. All
wire positions in the COT are measured with 1 µm precision using an in situ sample of cosmic ray muons [63], in
addition to the electron tracks from W -boson decays. The difference between electron and positron track momenta,
relative to their measured energy in the calorimeter (which is charge-independent), strongly constrains certain modes
of internal misalignment in the COT.

The track momentum measurement in the COT is calibrated by measuring the masses of the J/ψ and Υ(1S)
mesons reconstructed in their dimuon decays and comparing them with the known values [10]. These meson mass
measurements are performed using maximum-likelihood fits to the dimuon mass distributions from data, using tem-
plates obtained from the custom simulation. Measurements of these masses as functions of muon momenta are used
to correct for small inaccuracies in the magnetic field map, the COT position measurements, and the modeling of
the energy loss by particles traversing the detector. A mismodeling of the energy loss would lead to a bias linear in
the mean inverse pT of the two muons. No such bias is observed after applying the magnetic field non-uniformity,
COT and energy-loss corrections (see Fig. 2). The curvature q/pT measured by the COT, where q is the particle
charge, is an analytic function of the true curvature. The curvature response function analytically yields a linear
dependence of the measured invariant mass on p−1

T , and higher-order terms in p−1
T are negligible. The correction

for the fractional deviation of the measured momentum from its correct value, ∆p/p ≡ pmeasured/ptrue − 1, is inferred
from the comparison of the measured meson masses to their more precise world-average masses. The ∆p/p corrections
extracted from the individual J/ψ and Υ(1S) invariant mass fits are consistent with each other, and the results are
combined to obtain ∆p/p = (−1393± 26) parts per million (ppm).

The combined momentum calibration is used to measure the Z-boson mass in the dimuon channel (see Fig. 3),
which is blinded with a random offset in the range [−50, 50] MeV until all analysis procedures are established.
The unblinded measurement is MZ = 91 192.0 ± 6.4stat ± 4.0syst MeV, which is consistent with the world average
of 91 187.6 ± 2.1 MeV [10, 44] and therefore provides a precise consistency check. Systematic uncertainties on
MZ are due to uncertainties on the longitudinal coordinate measurements in the COT (1.0 MeV), the momentum
calibration (2.3 MeV), and the QED radiative corrections (3.1 MeV). The latter two sources are correlated with
the MW measurement. The Z → µµ mass measurement is then included in the final momentum calibration. The
systematic uncertainties due to the magnetic field nonuniformity dominate the total uncertainty of 25 ppm in the
combined momentum calibration.

Distribution W -boson mass (MeV) χ2/dof

mT (e, ν) 80 429.1± 10.3stat ± 8.5syst 39/48

p!T (e) 80 411.4± 10.7stat ± 11.8syst 83/62

pνT (e) 80 426.3± 14.5stat ± 11.7syst 69/62

mT (µ, ν) 80 446.1± 9.2stat ± 7.3syst 50/48

p!T (µ) 80 428.2± 9.6stat ± 10.3syst 82/62

pνT (µ) 80 428.9± 13.1stat ± 10.9syst 63/62

combination 80 433.5± 6.4stat ± 6.9syst 7.4/5

TABLE I: Individual fit results and uncertainties for
the MW measurements. The fit ranges are
65− 90 GeV for the mT fit and 32− 48 GeV for the p!T
and pνT fits. The χ2 of the fit is computed using the
expected statistical uncertainties on the data points.
The last row shows the combination of the six fit
results using the best linear unbiased estimator [64].

Source Uncertainty (MeV)

Lepton energy scale 3.0

Lepton energy resolution 1.2

Recoil energy scale 1.2

Recoil energy resolution 1.8

Lepton efficiency 0.4

Lepton removal 1.2

Backgrounds 3.3

pZT model 1.8

pWT /pZT model 1.3

Parton distributions 3.9

QED radiation 2.7

W boson statistics 6.4

Total 9.4

TABLE II: Uncertainties on the combined MW result.

After track momentum (p) calibration, the electron’s calorimeter energy (E) is calibrated using the peak of the
E/p distribution in W → eν (Fig. 2) and Z → ee (Fig. 13) data. Fits to this peak in bins of electron ET determine
the electron energy calibration and its dependence on ET . The radiative region of the E/p distribution (E/p > 1.12)
is fitted to measure a small correction (≈ 5%) to the amount of radiative material traversed in the tracking volume.
The EM calorimeter resolution is measured using the widths of the E/p peak in the W → eν sample and of the mass
peak of the Z → ee sample.

We use the calibrated electron energies to measure the Z-boson mass in the dielectron channel (see Fig. 3), which
is also blinded with the same offset as used for the dimuon channel. The unblinded result, MZ = 91 194.3 ±
13.8stat ± 7.6syst MeV, is consistent with the world average, providing a stringent consistency check of the electron

calibration from the corresponding subsample. A residual
dependence of the CEM energy scale on azimuth and time
is observed. By suppressing this dependence through a
calibration, the remaining variation of the electron channel
mass fit is eliminated.
The variations of the fitted mass values relative to the

nominal results, as the fit regions are varied, are consistent
with statistical fluctuations, as shown in Figs. 42–44 [51].
Furthermore, this consistency check is conservative, as the
known systematic uncertainties are not included in dis-
played error bars. The systematic uncertainties that we
consider (Tables IX–XI) would induce additional expected

shifts between fit regions. The observed shifts in
Figs. 42–44 are typically substantially smaller than these
systematic uncertainties.

XII. SUMMARY

Wemeasure theW-boson mass using a sample of proton-
antiproton collision data corresponding to an integrated
luminosity of 2.2 fb−1 collected by the CDF II detector atffiffiffi
s

p
¼ 1.96 TeV. We use fits to mT , pl

T , and pν
T distribu-

tions of the W → μν and W → eν data samples to obtain

MW ¼ 80387" 12stat " 15syst MeV ¼ 80387" 19 MeV;

which is the single most precise measurement of MW to
date. This measurement subsumes the previous CDF
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FIG. 41. Differences between the data and simulation, divided
by the expected statistical uncertainty, for the pν

T distributions in
the muon (top) and electron (bottom) channels.

TABLE XII. Summary of fit results to the mT , pl
T , and pν

T
distributions for the electron and muon decay channels.

Distribution MW (MeV) χ2=d:o:f:

W → eν
mT 80408" 19 52=48
pl
T 80393" 21 60=62

pν
T 80431" 25 71=62

W → μν
mT 80379" 16 57=48
pl
T 80348" 18 58=62

pν
T 80406" 22 82=62

TABLE XIII. Statistical correlations between the mT , pl
T , and

pν
T fits in the muon and electron decay channels.

Correlation W → μν (%) W → eν (%)

mT − pl
T 67.2" 2.8 70.9" 2.5

mT − pν
T 65.8" 2.8 69.4" 2.6

pl
T − pν

T 25.5" 4.7 30.7" 4.5

TABLE XIV. Uncertainties in units of MeV on the final
combined result on MW .

Source Uncertainty

Lepton energy scale and resolution 7
Recoil energy scale and resolution 6
Lepton tower removal 2
Backgrounds 3
PDFs 10
pTðWÞ model 5
Photon radiation 4
Statistical 12
Total 19

TABLE XV. Charged-lepton pT-fit mass shifts (in MeV) for
subdivisions of our data. For the spatial and time dependence of
the electron channel fit result, we show the dependence without
(with) the corresponding cluster energy calibration using the
subsample E=p fit. The variation observed without cluster energy
recalibration is eliminated upon recalibration, proving that the
effect arises dominantly due to residual variation of the energy
scale.

Fit difference W → μν W → eν

MWðlþÞ −MWðl−Þ 71" 70 −49" 42
MWðϕl > 0Þ−MWðϕl < 0Þ −54"36 −117"42ð−58"45Þ
MW (Aug 2006–Sep 2007)−
MW (Mar 2002–Aug 2006) 116" 36 −266" 43ð39" 45Þ
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