Status and prospects in fast beam-based feedbacks

W. Höfle
CERN, Geneva, Switzerland
• Overview and review of activities from the last ten years
• focus on CERN wideband transverse feedback system developments
 • complementary to established coupled bunch feedback systems
• results of original work is referenced, credit given to the original work
• aim is to demonstrate that the technology is sufficiently advanced in order to roll-out an intra-bunch system for short bunches, aka “fast beam-based feedback”
Outline

Recap of transverse feedback systems in operation
Full exploitation of the LHC ADT system
Intra-bunch feedback in hadron synchrotrons
Hardware and technology development
Simulations towards future upgrades and accelerators
Recap of Transverse feedback systems at CERN

- CERN LHC injector chain excellent example for need of beam based feedback systems, 5 synchrotrons with transverse feedback systems
• One or multiple pick-ups, turn by turn, bunch by bunch position with digitization and processing
• widely used in high intensity lepton colliders (B factories) and light sources to provide beam stability
• High intensity hadron machines need feedback for stability as well
• Use in hadron colliders more challenging due to need for low noise systems, i.e. detection of beam oscillations
• LHC collider uses TFB all the time including with stored, colliding beams, (protons and Pb ions) since 2010
• “fast feedbacks” → extend damping to intra-bunch feedback in GHz range
Injector transverse feedbacks at CERN

- LHC Injector transverse feedbacks at CERN and studies
 - next “upgrade to digital” opportunity for LEIR

<table>
<thead>
<tr>
<th>Accelerator / energy</th>
<th>Kicker / power per electrode frequency band</th>
<th>Processing used</th>
<th>Last upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEIR</td>
<td>striplines up to 100 MHz</td>
<td>2 pick-ups</td>
<td>2005</td>
</tr>
<tr>
<td>4.2 MeV/u – 72 MeV/u (kin. E)</td>
<td>100 W, 50 Ω, up to 100 MHz</td>
<td>analog, vector sum</td>
<td></td>
</tr>
<tr>
<td>PS Booster</td>
<td>striplines up to 100 MHz</td>
<td>1 pick-up</td>
<td>2020</td>
</tr>
<tr>
<td>160 MeV – 2 GeV</td>
<td>800 W, 50 Ω</td>
<td>digital</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>striplines with impedance transformer</td>
<td>1 pick-up (+spare)</td>
<td>2020</td>
</tr>
<tr>
<td>2 GeV – 26 GeV/c</td>
<td>5 kW, 125 Ω, up to ~ 60 MHz</td>
<td>digital</td>
<td></td>
</tr>
<tr>
<td>SPS</td>
<td>electric field kickers, high impedance</td>
<td>striplines, electro-static</td>
<td>2014</td>
</tr>
<tr>
<td>14, 26 GeV/c – 450 GeV/c</td>
<td>tetrodes, 30 kW, 180 Ω, up to 20 MHz</td>
<td>digital, pick-up pairs</td>
<td></td>
</tr>
<tr>
<td>SPS for wideband feedback study</td>
<td>2 short striplines and 1 Faltin type kicker</td>
<td>1 stripline exponential PU</td>
<td>2008</td>
</tr>
<tr>
<td>26 GeV/c</td>
<td>250 W, 50 Ω, 5 MHz – 1 GHz</td>
<td>Digital up to 4 GS/s (3.2 Gs/s)</td>
<td>to 2018</td>
</tr>
</tbody>
</table>

W. Höfle, FRIXGD1 IPAC’22 June 2022, Bangkok, Thailand
Potentials of a (wideband) feedback system

- active damping of single or coupled bunch instabilities including intra-bunch motion
- no introduction of additional tune spread
- no introduction of additional non-linearities

- technically challenging and complex system → close follow-up required during operation
- imperfections can lead to loss of stabilization (i.e. noise or saturation)

Brute force sampling or band-by-band approach
JPARC intra-bunch feedback

- Intra-bunch oscillation on moderate length bunches (150 ns - 200 ns)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>1568m</td>
</tr>
<tr>
<td>Injection Energy</td>
<td>3GeV</td>
</tr>
<tr>
<td>Extraction Energy</td>
<td>30GeV</td>
</tr>
<tr>
<td>Repetition Period</td>
<td>2.48s</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>1.67-1.72 MHz</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>8</td>
</tr>
<tr>
<td>Synchrotron Tune</td>
<td>0.002-0.00001</td>
</tr>
<tr>
<td>Betatron Tune (Hor./Ver.)</td>
<td>22.41/20.75</td>
</tr>
</tbody>
</table>

- Commercial electronics iGp12 (Dimtel) adapted to the JPARC main ring
- Pick-up similar to CERN SPS wideband pick-up, good frequency response up to 1 GHz shown

Stripline pick-up with non-uniform electrodes similar to CERN SPS wideband transverse pick-ups
K. Nakamura et al., IPAC’14, THOAA03
CERN PS Example of intra-bunch feedback

- CERN PS transverse feedback
 - Example of intra-bunch instability mitigated by transverse feedback
 - within bandwidth of upgraded coupled bunch system
 - permits to run LHC beam without using the traditional coupling between H, V for instability mitigation
 - Instabilities also seen at transition crossing (up to 800 MHz) for very high intensity single bunches that could benefit from increased bandwidth of a wideband system → possible use case for bandwidth increase
CERN LHC transverse damper (aka ADT) power system

- kicker length: each kicker 1.5 m
- max voltage: 10.5 kV
- 2 μrad kick to 450 GeV beam
- gain up to beyond 20 MHz
- 16 kickers
- 32x30 kW tetrode amplifiers
- bandwidth up to 20 MHz

LHC transverse Feedback (ADT) kickers and amplifiers in tunnel point 4 of LHC, RB44 and RB46

Measured ADT frequency response. Green: bare power amplifier, blue: power amp + kicker.

Built in collaboration with JINR, Dubna, Russia; fully commissioned in 2010 with beam
W. Höfle et al. IPAC’11, MOPO012
Upgrades to LHC ADT and instability observation

• increase in kick strength not needed
• Improved signal-to-noise ration in position detection
 • novel receiver technique for bunch-by-bunch detection (I,Q sampling)
 • combining data from four pick-ups (double the initial number) per beam and plane
• frequency response shaping by digital filters, flat response to 20 MHz possible and used operational in parts of the cycle
• full exploitation of the diagnostics possibilities offered by the data from the feedback → “obsbox”, data recording
• installation of an intra-bunch feedback not base-line of HL-LHC upgrade
 • feasibility checked in simulation
• diagnostics of intra-bunch motion with multi-band instability monitor
Sampling and bandwidth

- reminder on sampling and bandwidth
 - motivated by appearance of single bunch instabilities
 - used operationally for LHC squeeze
 - and 25 ns spacing tests
 - relevant to all feedbacks

Condition for $h(nT_b) = 0$ → symmetry of roll off
LHC ADT improvements - receiver

- LHC ADT improvements, new receiver developed
 - potential to be used to extract band-by-band intra-bunch motion
 - Application possible to head tail feedback needed for crab cavities in HL-LHC

400 MHz, analog down conversion, total of 12 ADCs used
Interleaved sampling with 4 ADCs of the Δ signal at effective rate of 480 Ms/s

D. Valuch, V. Stopjakova,
IPAC’22, TUPOST007
• Analysis → tune determination from phase advance
ADT ObsBox for data recording from feedback

- data recording from feedback systems

<table>
<thead>
<tr>
<th></th>
<th>Level-1 Rate (Hz)</th>
<th>Event size (Bytes)</th>
<th>Readout Bandw. (GB/s)</th>
<th>HLT Out MB/s (Events/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE (Pb-Pb)</td>
<td>500</td>
<td>5×10^7</td>
<td>25</td>
<td>1250 (10^2)</td>
</tr>
<tr>
<td>ALICE (p-p)</td>
<td>10^3</td>
<td>2×10^6</td>
<td>25</td>
<td>200 (10^2)</td>
</tr>
<tr>
<td>ATLAS</td>
<td>10^3</td>
<td>1.5×10^6</td>
<td>50</td>
<td>$\approx 1000 (10^3)$</td>
</tr>
<tr>
<td>CMS</td>
<td>10^5</td>
<td>10^6</td>
<td>100</td>
<td>$\approx 1000 (10^3)$</td>
</tr>
<tr>
<td>LHCb</td>
<td>10^6</td>
<td>5×10^4</td>
<td>50</td>
<td>700 (1.2×10^4)</td>
</tr>
<tr>
<td>ADTObsBox</td>
<td>10^4</td>
<td>10^5</td>
<td>2</td>
<td>1280 (10^4)</td>
</tr>
</tbody>
</table>

M. Söderén, D. Valuch
EPJ Web of Conferences 245, 01036 (2020)
CHEP 2019,
https://doi.org/10.1051/epjconf/202024501036
Bunch-by-bunch observation

- Addressed by Obsbox System in LHC

L. Carver et al.
IPAC’17, MOPAB113

user trigger or through events such as detected instabilities
Instabilities in need of damping by feedback

- example of within bunch oscillation and needed bandwidth
band-by-band observation

• Multi-band instability monitor (MIM)
 • amplitude (peak) detection per band versus time

Measured response of each band

![Image of measured response of each band](image_url)
Beam position detection sensitivity to intra-bunch motion with down modulation at 400 MHz

\[I_{\Sigma}(t) = k_{\Sigma} \left[q \lambda(t) \cdot c(t) \right] \ast g(t) \]
\[Q_{\Sigma}(t) = k_{\Sigma} \left[q \lambda(t) \cdot s(t) \right] \ast g(t) \]

\[I_{\Delta}(t) = k_{\Delta} \left\{ \left(\frac{x(t)}{d_x} \cdot q \lambda(t) \right) \cdot c(t) \right\} \ast g(t) \]
\[Q_{\Delta}(t) = k_{\Delta} \left\{ \left(\frac{x(t)}{d_x} \cdot q \lambda(t) \right) \cdot s(t) \right\} \ast g(t) \]

\[X_N = \frac{I_{\Delta}I_{\Sigma} + Q_{\Delta}Q_{\Sigma}}{I_{\Sigma}^2 + Q_{\Sigma}^2} + j \frac{Q_{\Delta}I_{\Sigma} - I_{\Delta}Q_{\Sigma}}{I_{\Sigma}^2 + Q_{\Sigma}^2} \]

bunch centroid head tail motion

study relevant for planned crab cavity noise feedback

G. Kotzian et al.,
IPAC’17, TUPIK093
Intra-bunch feedback developments

- Push to shorter bunch lengths to GHz range
- Band-by-band versus brute force sampling
 - Separation of kickers for different bands
 - Mode decomposition after direct sampling
- O. Turgut et al., IPAC’16, THOAA01, C.H. Rivetta et al. IBIC’21, FROA01

Cavity options:
- 400 MHz: H=1.0 m
- 1.2 GHz: H=0.6 m

Low Q for bunch-by-bunch modulation (25 ns, 40 MHz)

J. Cesaratto
CERN-ACC-Note-2013-0047
SLAC-R-1037
Kickers built for SPS wideband feedback

• Built and installed in SPS

Invented originally for stochastic cooling by L. Faltin at CERN:
optimised design for SPS:
J. Cesaratto, IPAC’13, WEPME061
M. Wendt et al.: as built see IPAC’17 TUIK053
SPS Wideband feedback kicker

• Technology for Faltin kicker

1. Feedthrough (5 kW)
2. Electrode (Cu)
3. Supports (shapal)
4. Body & cover (316 LN / 304 L)
5. Supports

Transverse shunt impedance 3-8 kΩ (vertical) up to 1 GHz (for 1 m)
Slotline kicker SPS (Faltin-type)

- GHz bandwidth kicker

response faster than 5 ns kicker can target individual bunches @ 5 ns spacing!

installed in SPS enormous value beyond high bandwidth feedback

Simulation: M. Wendt
IPAC’17 TUIK053

17/06/2022
SPS Wideband Feedback processor - technology

- Prototype system could be used to excite beam and in feedback mode

- 4 GS/s ADC/DAC with proposal to move to 8 GS/s
- reconfigurable controller on FPGA board
- synchronised to SPS RF clock at 26 GeV/c
- careful phase and amplitude equalization in analog receiver
- possibility to remove slowly varying offset before digitization

Overall System Block Diagram: Feedback and Excitation Systems

J. Dusatko, IPAC’18, WEPAF073
G. Kotzian, IBIC’13, WEPC12
• Grow damp experiments with intra-bunch feedback
Demonstration in SPS

• Demonstration in SPS, Q22 and Q26 optics

Q26, 2×10^{11} per bunch, injection transient with feedback on

Q20 optics chosen for LIU upgrade
→ Injection energy well above transition, consequently TMCI instability threshold raised to above intensities needed for transfer to LHC
→ wideband feedback not baseline

J. D. Fox, IPAC’17, TUPIK119

W. Höfle et al.
IPAC’18, TUZGBD4
• Modelling studies

K. S. B. Li, IPAC’13, WEPME042
J. Komppula et al., IPAC’17, TUPIK091
Modelling Studies for LHC

• study for wideband feedback for LHC

K.S.B. Li
CERN-ACC-Note-2018-0058
Study for LHC

- study for wideband feedback for LHC

600 MHz feedback
Conclusion

• SPS Wideband feedback prototyping demonstrated that intra-bunch feedback is practically feasible in the GHz range at rates of multiple Gs/s
• design estimates for systems in SPS and LHC were made
• these fast feedbacks are a power tool for diagnostics as well
• technology waiting for an opportunity of an instability becoming limiting
• when designing pick-ups and kickers future bandwidth upgrades should be folded in
• kicker and pick-up design synergies with stochastic cooling systems to be explored, exploration of cavity type kickers and pick-ups interesting
• potential candidate for next project at CERN is LEIR, the low energy ion ring (consolidation, new digital system needed)
 • synergies possible with ion facilities under design and construction (FAIR, HIAF, ...)

17/06/2022 W. Höfle, FRXGD1 IPAC'22 June 2022, Bangkok, Thailand
Acknowledgements

CERN transverse feedbacks and international WBFS collaboration

CERN, Geneva, Switzerland

J. D. Fox, Stanford University, Stanford, USA
J. Cesaratto (Toohig Fellow), J. Dusatko, J. Olsen, C. Rivetta, O. Turgut,
SLAC, Menlo Park, USA

S. De Santis, M. Furman, J.-L. Vay, LBNL, Berkeley, USA
A. Drago, INFN-LNF, Frascati and Tor Vergata University, Rome, Italy
A. Alesini, S. Caschera, A Gallo, INFN-LNF, Frascati, Italy
M. Tobiyama, KEK, Tsukuba, Japan
Wideband feedback system for LIU-SPS with SLAC

courtesy K. Li

• The project is essential to acquire expertise on:
 • How to numerically model and study wideband feedback systems for mitigation of intra-bunch coherent motion
 • Prototyping of high speed electronics (4Gs/s digital signal processing system) & exploration of control algorithms

The fast synchrotron motion in the Q20 optics of the SPS is especially challenging due to the required extended controller bandwidth

• Experience has been gained using different filter types to balance flat phase response and effective noise suppression for single and multi-bunch control
• Root-locus analysis to study closed loop transfer functions, time-domain behaviour, stability
 → Expected to be less challenging for LHC/HL-LHC (lower Qs)
Wideband feedback system for LIU-SPS with SLAC

courtesy K. Li

- The project is **essential** to acquire expertise on:
 - How to **numerically model** and study wideband feedback systems for mitigation of intra-bunch coherent motion
 - Prototyping of **high speed electronics (4Gs/s digital signal processing system)** & exploration of control algorithms

The fast synchrotron motion in the Q20 optics of the SPS is especially challenging due to the required extended controller bandwidth

- Experience has been gained using different filter types to balance flat phase response and effective noise suppression for single and multi-bunch control
- Root-locus analysis to study closed loop transfer functions, time-domain behaviour, stability

 → Expected to be less challenging for LHC/HL-LHC (lower Qs)