

Particle and Processes

Vladimir Ivantchenko (CERN & Princeton University)
Geant4 Advanced Course

Outline

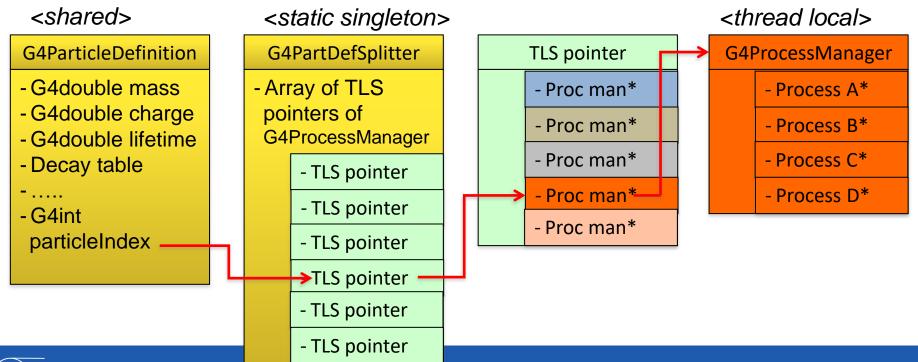
- Geant4 basic interfaces to physics
- Geant4 particles
- Geant4 processes
- Physics Lists
- Ions and exotic particles
- Geant4 cuts
- How to control/modify physics?

Geant4 basic interface to physics

- The interface of Geant4 kernel to physics is abstract
- Base physics abstract classes are following:
 - The G4ParticleDefinition objects shared between threads
 - The G4VProcess thread local objects
 - The G4ProcessManager thread local interface class
- Configuration of physics is prepared in the G4VUserPhysicsList mandatory user class
- These interfaces are stable for >20 years allowing users to work with different Geant4 versions and providing a basis for new developments
 - Concrete physics is implemented in physics models and cross section classes
 - Alternative models and cross sections are provided in Geant4 libraries
 - A user may be also a developer of a custom particle, process, physics model, or cross section

GEANT4 PARTICLES

Geant4 particles

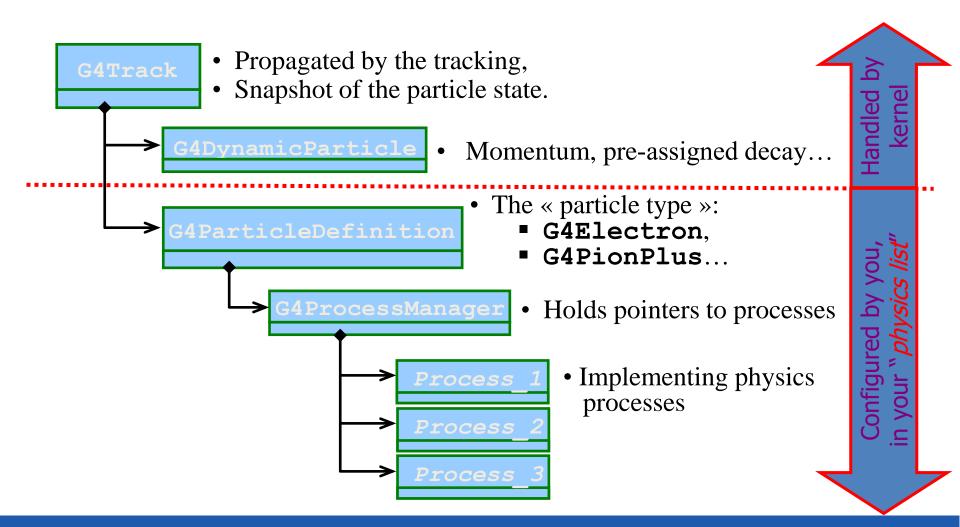

- G4ParticleDefinition is the main object keeping static information about particles
 - Name, mass, charge, quantum numbers, decay table....
- "Stable" particles
 - Leptons: e^{\pm} , μ^{\pm} ,
 - Bosons: G4Gamma, G4OpticalPhoton,
 - Geantino is a particle without any interaction
 - "Stable" hadrons: π^{\pm} , K^{\pm} ,
 - Light ions: d, t, ³He, ⁴He, and anti-ions
 - 12 hyper- and anti-hyper- nuclei are added in Geant4 11.0
 - G4Genericlon is used to define physics for all other ions
- "ShortLived" hadrons normally do not tracked by Geant4 but used internally by hadronic models
 - Quarks, di-quarks, $\rho(770)$, $\omega(783)$...

Split class – case of particle definition

- In Geant4, each particle type has its own dedicated object of G4ParticleDefinition class.
 - Static quantities: mass, charge, lifetime, decay channels, etc.,
 - Are shared by all threads
 - Dedicated object of G4ProcessManager : list of physics processes which this particle undertakes.
 - Physics process object must be thread-local
 - Thread local storage is used (TLS)

GEANT4 PROCESSES

Geant4 process



- Processes are classified as:
 - Electromagnetic
 - Hadronic
 - Decay
 - Parameterized
 - Transportation
 - **—**
- Any process has process has type and sub-type
 - const G4String& G4VProcess::GetProcessType();
 - G4int G4VProcess::GetProcessSubType();
 - This method is recommended to be used for MC truth
 - The list of sub-types is stable since introduced and only extended with new processes
- Any process may be initialized using virtual methods:
 - G4bool IsApplicable(const G4ParticleDefinition &);
 - Used to check if a process can handle the given particle type
 - void PreparePhysicsTable(const G4ParticleDefinition&);
 - void BuildPhysicsTable(const G4ParticleDefinition&);
 - Used for initialization of internal data of the process before run

From G4Track to processes

Geant4 Physics: Electromagnetic

- The standard EM part: provides a complete set of EM interactions (processes) of charged particles and gammas from 1 keV to ~PeV
 - used practically in all kind of Geant4 applications
- The low energy EM part: includes special treatments for low energy e-/+, gammas and charged hadrons:
 - more sophisticated approximations valid down to lower energies e.g. more atomic shell structure details
 - some of these models will be valid down to ~10 eV but cannot be used above upper limits, which vary from 1 MeV to few GeV
- Optical photons: interactions special only for long wavelength photons
 - processes for reflection/refraction, absorption, wavelength shifting, (special) Rayleigh scattering
 - G4OpticalPhoton is the particle type
- Phonon physics is also implemented within Geant4

Geant4 Physics: Hadronic

- Pure hadronic interactions for 0 to 100 TeV
 - elastic, inelastic, capture, fission
- Radioactive decay:
 - both at-rest and in-flight
- Photo-nuclear interaction from ~1 MeV up to 100 TeV
- Lepto-nuclear interaction from ~100 MeV up to 100 TeV
 - e+ and e- induced nuclear reactions
 - muon induced nuclear reactions
- Recently introduced processes of neutrino-nuclear interactions

Geant4 Physics: Decay, Parameterized and Transportation

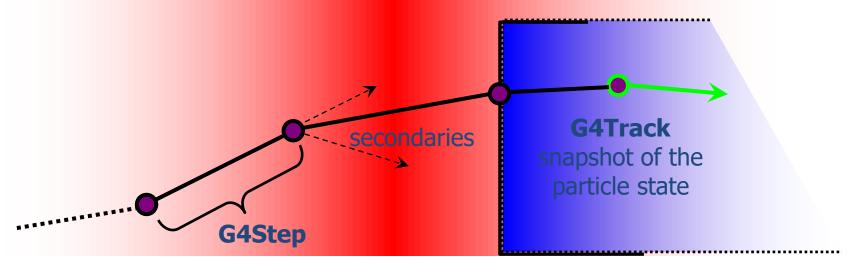
Decay processes includes:

- weak decay (leptonic, semi-leptonic decay, radioactive decay of nuclei)
- electromagnetic decay (π^0 , Σ^0 , etc.)
- strong decay not included by default
 - they are part of hadronic models
 - may be assigned by a user to a particle

Parameterized process:

- assigned to G4LogicalVolume
- instead of step-by-step simulation provides hits in the logical volume and list of particles living the volume
- for example, EM shower generation in a calorimeter based on parameters obtained from detailed simulation of the calorimeter response

Transportation process:


- responsible for propagating a particle through the geometry in electromagnetic or gravitational field
- needs to be assigned to each "stable" particle

Geant4 tracking

- G4Track is the object "pushed" step by step by the tracking:
- Moving by one step is the responsibility of the "stepping"
 - Which is the core engine of the "tracking" machinery

- These moves/steps are defined by physics or by geometry
 - Step length limit is a result of competition of processes
 - Processes involved at a step may change the G4Track
 - By default, G4Transportation stops track at the volume boundary
 - There are methods how to skip boundaries during tracking
 - Implementation exit, for example, for gamma tracking in ATLAS calorimeter

- G4VProcess is an abstract class defining the common interface of all processes in Geant4:
 - Used by all processes including G4Transportation
 - Defined in source/processes/management
- Three kinds of actions:
 - AtRest actions:

- Decay, e⁺ annihilation ...
- AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;

• For describing point-like (inter)actions, like decay in flight

AlongStep

PostStep

G4VProcess: actions summary

- The virtual «action» methods are following:
 - AtRestGetPhysicalInteractionLength(),
 AtRestDoIt();
 - AlongStepGetPhysicalInteractionLength(),
 AlongStepDoIt();
 - PostStepGetPhysicalInteractionLength(),
 PostStepDoIt();
- Optional run time virtual methods:
 - StartTracking(G4Track*);
 - Allowing the process preparation for a new G4Track
 - EndTracking();
 - End of given G4Track

- A process can implement any combination of the three AtRest,
 AlongStep, and PostStep actions:
 - for example, decay = AtRest + PostStep
- If you plan to implement your own process:
 - A set on intermediate classes exist implementing various combinations of actions, for example:
 - G4VDiscreteProcess: only PostStep actions
 - G4VContinuousDiscreteProcess: AlongStep + PostStep actions
- For EM physics there are extra extensions:
 - G4VEmProcess, G4VEnergyLossProcess, G4VMultipleScattering
- For hadronic processes there are extensions:
 - G4HadronicProcess
 - G4HadronElasticProcess

G4ProcessManager

- It is a Geant4 kernel class
 - A user should not change it
- G4ProcessManager maintains three vectors of actions:
 - One for the AtRest methods of the particle;
 - One for the AlongStep ones;
 - And one for the PostStep actions.
- Note, that the ordering of processes provided by/to the G4ProcessManager vectors is relevant and used by the stepping
 - There are few critical points you should be aware of
 - Multiple scattering can shift end point of a step
 - Scintillation, Cerenkov and some other processes assuming that a step and energy deposition at the step are defined
 - G4PhysicsListHelper class keeps information about process ordering for processes from Geant4 distribution

About process ordering

- The strongest rule for multiple-scattering, transportation, and G4Scintillation
- In your physics list, you should always have, for the ordering of the AlongGetPhysicalInteractionLength(...) methods:
 - Transportation last
 - For all particles
 - Multiple scattering second last
 - For charged particles only
 - assuming n processes[n-2] ...

[n-1] multiple scattering [n] transportation

- Why?
 - Processes return a « true path length »;
 - The multiple scattering folds up this length into a shorter « geometrical » path length;
 - Based on this new length, the transportation can geometrically limits the step.

PHYSICS LISTS

Physics Lists

- Physics List is an object that is responsible to:
 - specify all the particles that will be used in the simulation application
 - together with the list of physics processes assigned to each individual particles
- One out of the 3 mandatory objects that the user needs to provide to the G4RunManager in case of all Geant4 applications:
 - it provides the information when, how and what set of physics needs to be invoked
- Provides a very flexible way to set up the physics environment:
 - the user can chose and specify the particles that they want to be used
 - the user can chose the physics (processes) to assign to each particle
- Geant4 distribution includes the "physics_list" sub-library with many components and many predefined "reference" Physics Lists
 - Simulation results between different group of users may be compared

Modular Physics Lists

- Current recommendation to use Physics List via inheritance from G4VModularPhysicsList which derives from G4VUserPhysicsList
- Main public methods:
 - G4VModularPhysicsList::RegisterPhysics(G4VPhysicsConstructor*)
 - Addition of physics constructor
 - G4VModularPhysicsList::ReplacePhysics(G4VPhysicsConstructor*)
 - Replacement of the same type of physics constructor
- Constructor types:
 - Electromagnetic, EM extra (lepton-nuclear)
 - Decay, Radioactive Decay
 - Hadron elastic, hadron inelastic
 - Ion elastic and inelastic
 - Stopping of negatively charged particles
 - Step limiters (tracking cuts)
 - Optical
 - User may add custom constructor
- Physics List and its components are unique objects, which called in each thread two methods
 - G4VPhysicsConstructor::ConstructParticle()
 - G4VPhysicsConstructor::ConstructProcess()
 - Only const class members are allowed

Cuts definition

- In past cuts were defined in SetCuts() method of physics list
 - After migration to the MT mode, we recommend not doing this
 - Cuts may be defined via UI commands
 - Details on Geant4 cuts will be described below
- Using UI interface Geant4 kernel change cuts and try to count number of steps in the same run
 - /run/setCut 0.01 mm
 - /run/beamOn 100
- Define cuts only for electrons
 - /run/setCutForAGivenParticle e- 10 um
 - /run/setCutForRegion GasDetector 0.1 mm
 - /run/dumpCouples
- How to change low-energy limit of production threshold
 - /cuts/setLowEdge 0.1 keV
 - /cuts/setHighEdge 5 GeV
 - The highEdge limit cannot be above 10 GeV
 - Until now there was no need to increase this limit

Instantiation and ownership of physics objects

- G4PhysicsListHelper provides correct ordering for all processes from Geant4 libraries
 - G4PhysicsListHelper* helper = G4PhysicsListHelper::GetPhysicsListHelper();
 - helper->RegisterProcess(G4VProcess*, G4ParticleDefinition*);
- Custom process should be instantiated with defined ordering
 - G4ParticleDefinition* particle;
 - G4ProcessManager* man = particle->GetProcessManager();
 - man->AddDiscreteProcess(G4VDiscreteProcess*); // added to the end
 - man->AddProcess(G4VProcess*, idxAtRest, idxAlongStep, idxPostStep);
- Ownership of classes is not belonging to the Physics List class
 - G4ParticleDefinition classes are static shared between threads
 - G4VProcess classes are registered in process thread local store
 - Model classes for EM and hadronic physics are also registered in thread local stores
 - Hadronic cross sections are registered in another thread local store
 - All registrations and destructions are done automatically
- All processes, models, and cross section classes should be instantiated via "new"
 - Allowing sharing of processes/models between particles
 - Should not be included by object in any class
 - Does not guaranteed correct destruction order at different platforms

IONS AND EXOTIC PARTICLES

Geant4 Approach for Ions

- Light ions are individual Geant4 particles:
 - G4Deuteron
 - G4Triton
 - G4He3
 - G4Alpha
- Generic ion serves all other ions:
 - G4Genericlon only one particle
 - Not a real particle (charge = +1, mass = Mp)
 - Serving for any kind of ion with Z>2
 - All concrete ions peak up processes and cross sections of the G4Genericlon
 - Scaling relations are used in run time
- lon names
 - "C12" means that the carbon ion is in the ground state
 - "Co60[58.590]" is the first excitation state of Co60
 - Extra information about atomic shell may be filled to any ion

Exotic particles

- Not discovered particles are not part of Geant4 particle library
- To search exotics users should introduce non-existing particles in the user code
 - Such particles should be instantiated in ConstructParticle() method of one of custom G4VPhysicsConstructor, which is user responsibility
 - User should take care attaching processes to exotic particles in ConstractProcess() method
- Geant4 offers two extended examples
 - \$G4INSTALL/examples/extended/exoticphysics/monopole
 - \$G4INSTALL/examples/extended/exoticphysics/dmparticle
 - These examples demonstrate different variants of addition of extra particles and interactions
- In the monopole example additional classes are available for tracking of the magnetic monopole in magnetic field
 - G4MonopoleTransportation, G4MonopoleEquation

GEANT4 CUTS

How tracks are created and killed

- G4Track can be created
 - By G4VUserPrimaryGeneratorAction
 - By any G4VProcess
- Geant4 particle is tracked until it is killed by one of Geant4 processes:
 - Transport out of the world volume
 - Inelastic interaction
 - Decay
 - Tracking low energy cut in the ionization process
 - G4NeutronKiller or G4UserLimits
 - If during tracking kinetic energy become zero and there is no processes AtRest the particle is killed by the stepping manager
- Any particle may be also killed by user action classes
- Geant4 introduced conception of "cut in range"
 - Physically this means required spatial accuracy of simulation
 - At initialization for each material a production threshold for kinetic energy of secondary particles is computed
 - This means different production thresholds for different materials
 - This is the main difference between Geant4 and other simulation tools, which implement only tracking cuts and cuts per volume

Cut and production thresholds for energy loss processes

- User defines cut in range expressed in units of length
- Using this range Geant4 kernel compute production threshold T_{cut} for each material during initialization
- For a typical process (G4hlonisation, G4elonisation, ...), the production threshold T_{cut} subdivides the continuous and discrete parts of energy loss:
 - Mean rate of energy lost due to soft energy transfers
 - Cross section for discrete δ -electron production
 - above T_{cut}
 - Both energy loss and cross sections are restricted

$$\frac{dE(E, \frac{\mathbf{T}_{cut}}{dx})}{dx} = n_{at} \int_{0}^{\frac{\mathbf{T}_{cut}}{dt}} T \frac{d\sigma(Z, E, T)}{dT} dT$$

$$\sigma(Z, E, T_{cut}) = \int_{T_{cut}}^{T_{max}} \frac{d\sigma(Z, E, T)}{dT} dT$$

- At each step energy deposition is sampled by a fluctuation model using the computed mean energy loss
- Optionally, energy loss may be modified :
 - for the sampling of fluorescence and Auger-electrons emission
- 4-momentum balance is provided in all cases

What particles have cut in range?

- Cuts in range are defined for
 - Gamma
 - Electron
 - Positron
 - Proton
- Cut for proton is used for all hadrons and ions by elastic scattering processes
 - It is a cut on recoil ion kinetic energy
- By default, cut in range is defined globally
 - It is possible to have different cut in range for particle type
 - It is possible to define specific cut in range per G4Region
 - It is possible to set proton cut in range to zero
 - It is not possible to set other cuts below lowEdge limit

Which processes use cut in range?

- It is not mandatory to use cuts
 - They are needed to secure CPU performance of simulation
- Energy thresholds (derived from cut in range) are used
 - for gamma are used in Bremsstrahlung
 - for electrons are used in ionisation and e+e- pair production processes
 - for positrons is used in the e+e- pair production process
 - for gamma and electrons are used optionally ("ApplyCuts" options) in some discrete processes
 - Photoelectric effect, Compton, gamma conversion
- Production threshold for gamma and e⁺⁻ obtained from range cut cannot be whatever
 - The default low energy limit is 1 keV
 - The default high energy limit is 10 GeV
 - May be changed via UI command:
 - /cuts/setLowEdge 100 keV
- Energy threshold for protons are used to define the threshold for kinetic energy of a nuclear recoil
 - EM single scattering process
 - Hadron elastic scattering

Tracking cuts

- Additionally, to cut in range it is possible to use various tracking cuts
 - Unwanted particles may be killed after the step if corresponded flag is proposed
- In the default physics configurations two types of tracking cuts are applied:
 - Low-energy thresholds for charged particles by ionization 1 keV
 - Time cut for neutron transport 10000 ns
- Tracking cuts values are customizable and can be changed via UI commands
- User may easily setup extra tracking cut or step limiter
 - The best is to add an extra custom G4VProcess
 - G4NeutronKiller is the example

HOW TO CONTROL/MODIFY PHYSICS?

Information on Geant4 initialisation

- By default, detailed information on Geant4 physics configuration is printed
 - Tables of parameters
 - EM physics
 - Nuclear de-excitation module
 - Radioactive decay
 - Particle HP
 - EM processes and models parameters
 - For selected particles
 - Hadronic processes, models, and cross sections
 - For selected particles
 - Printout may be disabled via UI command
 - /process/had/verbose 0
 - /process/em/verbose 0
- Set of physics parameters and physics constructors may be modified before initialization of physics
 - Initialization of physics is triggered by the /run/initilize UI command
 - Between runs limited number of parameters may be changed

THANK YOU

