
Final Exam:
PHY 410 : Do problems 1-3.

PHY 505: Do all 4 problems.

Store all of your codes in a folder called “Final” at the top level of your directory. Please accept
the assignment here: https://classroom.github.com/a/PfA9xUjJ

Name your codes “Problem1.ipynb”, “Problem2.ipynb”, “Problem3.ipynb” and
“Problem4.ipynb”.

https://classroom.github.com/a/PfA9xUjJ

For Problems 1 and 2, consider the effective potential of a co-rotational frame in a 2-d 3-body
system as we discussed in class:

where and are the horizontal and vertical dimensions in the co-rotating reference frame.

For the remainder of the discussion, we will write these as and , but do not get confused,
these are still the rotating frame. Use for all problems.

Problem 1 (25 Points) : Finding Lagrange Points

Part a (10 points): Create a separate python file called V_coriolis.py with a class called
V_coriolis, with at least two methods f (to implement the function above) and df (to
implement the gradient of the function above). The function f should return a single floating
point number, and the function df should return the x and y values of the gradient in a list.

Part b (25 points):

Plot the 2-d function as a contour plot.

ON THE SAME FIGURE, also plot the gradient using the quiver function.

Use the following parameters:

* Plot a square with with 101 grid spacing points in each direction.

* Use 200 levels on the contour plot.

* Use a "stride" of 5 to only plot 1 out of 5 of the vectors in the vector field in the `quiver` plot.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

Problem 2 (25 Points): Trajectories

Part a (5 points): Starting with the notebook “ODEs/planetary.ipynb”, copy the class
“Rcp3Body” to a file called “Rcp3Body.py” in your “Final” directory. There is a chaotic
dynamical system if you use the initial values in the notebook titled
“params_rcp3body_chaotic”:

params_rcp3body_chaotic = {
 'tau':0.01,
 'accuracy':1e-6,
 'a':0.25,
 'method':'RK45',
 's':np.array([-0.35, 0.0, 0.0, 0.5]),
 'tmax':10.
}

* Run that simulation and plot x vs y as a scatter plot, labeling all of the Lagrange points as is
done in the example code. Extend the time to t=100.
* Plot the following on the same plot, label them, and draw a legend:

* x vs time
* x vs time
* vx vs time
* vy vs time

Part b (10 points): Take the FFT of all four time series from part a (x,y,vx,vy) and plot the power
series (not the absolute value!) on a log scale. Truncate your time series at n=2048 (do not
perform padding). You may also use numpy functions.

Part c (10 points): Zero out the components of the FFT spectra above a spectral index of 80.
Take the inverse FFT and plot the x vs t time series with and without this smoothing procedure
on the same plot, labeling each. Also perform the same with y and plot x versus y on the same
plot with and without smoothing (with the same number of points n=2048), labeling each.

Problem 3 (25 Points) : Resistor circuit

Consider the following resistor circuit with R = 1 Ohm and r varying between 0 and 2 Ohms.

Part a (10 points):
Solve this analytically and plot the equivalent resistance for r between 0 and 2.

Part b (15 points):
Solve for the equivalent resistance using a matrix inversion and plot the equivalent resistance
for r between 0 and 2.

Problem 4 (25 Points): Particle in harmonic potential

Part a (10 points): Starting with the notebook “PDEs/wavepacket.ipynb”, modify the
simulation to have a harmonic oscillator potential at the center of the box with energy ,
and the width should be half the length of the box. That is, the formula for the potential should
be

where is the height of the potential, is the middle of the box, and should be half
the length of the box

Part b (15 points): Animate the potential as shown in the “wavepacket” notebook in “PDEs”. I
will be executing the notebook so ensure that it works out of the box when you upload it all to
GitHub!

