## Final Exam:

PHY 410 : Do problems 1-3.
PHY 505: Do all 4 problems.
Store all of your codes in a folder called "Final" at the top level of your directory. Please accept the assignment here: https://classroom.github.com/a/PfA9xUjJ

Name your codes "Problem1.ipynb", "Problem2.ipynb", "Problem3.ipynb" and "Problem4.ipynb".

For Problems 1 and 2, consider the effective potential of a co-rotational frame in a 2-d 3-body system as we discussed in class:
$V\left(x^{\prime}, y^{\prime}\right)=-\frac{1-\alpha}{\sqrt{\left(x^{\prime}-\alpha\right)^{2}+y^{\prime 2}}}-\frac{\alpha}{\sqrt{\left(x^{\prime}+1-\alpha\right)^{2}+y^{\prime 2}}}-\frac{x^{\prime 2}+y^{\prime 2}}{2}$
where $x^{\prime}$ and $y^{\prime}$ are the horizontal and vertical dimensions in the co-rotating reference frame.
For the remainder of the discussion, we will write these as $x$ and $y$, but do not get confused, these are still the rotating frame. Use $\alpha=0.25$ for all problems.

## Problem 1 (25 Points) : Finding Lagrange Points

Part a (10 points): Create a separate python file called V_coriolis.py with a class called V_coriolis, with at least two methods $f$ (to implement the function above) and $d f$ (to implement the gradient of the function above). The function $f$ should return a single floating point number, and the function $d f$ should return the $x$ and $y$ values of the gradient in a list.

## Part b (25 points):

Plot the 2-d function as a contour plot.
ON THE SAME FIGURE, also plot the gradient using the quiver function.
Use the following parameters:

* Plot a square with $-2<x, y<2$ with 101 grid spacing points in each direction.
* Use 200 levels on the contour plot.
* Use a "stride" of 5 to only plot 1 out of 5 of the vectors in the vector field in the `quiver` plot.


## Problem 2 (25 Points): Trajectories

Part a (5 points): Starting with the notebook "ODEs/planetary.ipynb", copy the class "Rcp3Body" to a file called "Rcp3Body.py" in your "Final" directory. There is a chaotic dynamical system if you use the initial values in the notebook titled
"params_rcp3body_chaotic":

```
params_rcp3body_chaotic = {
    'tau':0.01,
    'accuracy':1e-6,
    'a':0.25,
    'method':'RK45',
    's':np.array([-0.35, 0.0, 0.0, 0.5]),
    'tmax':10.
    }
```

* Run that simulation and plot x vs y as a scatter plot, labeling all of the Lagrange points as is done in the example code. Extend the time to $t=100$.
* Plot the following on the same plot, label them, and draw a legend:
* x vs time
* x vs time
* vx vs time
* vy vs time

Part b (10 points): Take the FFT of all four time series from part a ( $x, y, v x, v y$ ) and plot the power series (not the absolute value!) on a log scale. Truncate your time series at n=2048 (do not perform padding). You may also use numpy functions.

Part c (10 points): Zero out the components of the FFT spectra above a spectral index of 80. Take the inverse FFT and plot the $x$ vs $t$ time series with and without this smoothing procedure on the same plot, labeling each. Also perform the same with $y$ and plot $x$ versus $y$ on the same plot with and without smoothing (with the same number of points $n=2048$ ), labeling each.

## Problem 3 (25 Points) : Resistor circuit

Consider the following resistor circuit with $R=1$ Ohm and $r$ varying between 0 and 2 Ohms.


## Part a (10 points):

Solve this analytically and plot the equivalent resistance for $r$ between 0 and 2.
Part b (15 points):
Solve for the equivalent resistance using a matrix inversion and plot the equivalent resistance for $r$ between 0 and 2.

## Problem 4 (25 Points): Particle in harmonic potential

Part a (10 points): Starting with the notebook "PDEs/wavepacket.ipynb", modify the simulation to have a harmonic oscillator potential at the center of the box with energy $V_{0}=10$, and the width should be half the length of the box. That is, the formula for the potential should be
$V(x)=V_{0}\left(\left(x-x_{0}\right) / w\right)^{2}$
where $V_{0}=10$ is the height of the potential, $x_{0}$ is the middle of the box, and $w$ should be half the length of the box

Part b (15 points): Animate the potential as shown in the "wavepacket" notebook in "PDEs". I will be executing the notebook so ensure that it works out of the box when you upload it all to GitHub!

