
Physics Assignment 1 
PHY411: Do problems 1-3 
PHY 506: Do all four problems.  

Accept the assignment from github classroom: https://classroom.github.com/a/IG6NiYSW  . You 
will then get a link to your own github area.  
You should submit your code through github classroom. Submit your writeup, and a link to your 
github classroom area where your code is, on UBLearns.  

https://classroom.github.com/a/IG6NiYSW


Problem 1 : Diffusion 
Start from the “random_walkers” python notebook. Plot the quantity  versus  in 1, 2, 
and 3 dimensions. For each dimension, calculate the diffusion constant from your simulation, 
compare with theoretical expectations.  

Problem 2 : Ising model 
Start from the “ising” python notebook.  

A. Recall that sudden reversals of the magnetization occur from time to time in systems of finite 
time. What is a reasonable value of L to be chosen to maintain one single domain instead of 
flipping throughout? What value of N do you need to ensure an appropriate MC simulation? 
Show a plot of the average magnetization per spin at temperature T = 2.0 for various values 
of L and N.  

B. Recall from class that the average magnetization per spin  can be estimated 
analytically as 
  

 
 
Re-run your simulation from part A (fixing L and N to a reasonable number) and varying the 
simulation as a function of . Fit for the critical exponent  and critical temperature .  

C. Similarly to part B, numerically compute the energy per spin, and then compute the heat 
capacity 
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Problem 3 : Computational Fluid 
Dynamics 

Start from the “16_Step_12” python notebook. Repeat the calculation, but add a small 
rectangular obstruction in the center of the pipe of length 1 / 20 and width 1/40. What boundary 
conditions are needed? Plot the resulting vector field.  

Problem 4 (506 only) : Cosmic inflation    

There is no code for you to start from explicitly. But, you can use “planetary.ipynb”, for example, 
as an inspiration.   

Assume space is completely flat so k = 0, and set R(t) = 1 at the present time. You may work in 
scaled units of the density and pressure as we did in class. The Friedmann equations are then 
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A. Solve this analytically for w = 0, 1, -1/3. 
B. Solve this numerically with an adaptive RK4 scheme for w = 0, 1, -1/3, and compare to the 

analytic solution.
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