
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Programming

• We will now be learning how to program

• First you will learn C++, because it’s harder and gets you
more in touch with the computer itself

• Then we will learn python, because it’s quick and easy with
many practical applications

2

Computers

• When I was a lad, needed
to know UNIX to check
email

• Now, you just bark the
order into your phone

• Somewhere, that order is
transferred into currents
and voltages on
transistors

• How does it happen in
between?

3

Siri! Get my
mail!

Computers

• Your voice is being
recognized by software that
does a waveform analysis
–We’ll look at the basics of

waveform analysis later in
the semester

• That software is written in
some high level language
that translates commands to
instructions for your
computer chip

• Two main modes :
• Compiled
• Interpreted

4

Computers
• Compiling in C++
• Code written in C++ is

compiled
• Outputs “assembly” code

• Assembly code is linked
together

• Then merged into the
executable

5

Computers

• Assembly code is what you need to
UNDERSTAND, but not necessarily
to WRITE
– Mnemonic for specific chipset

instructions
• Architecture specific (AMD,

Intel, etc)

• Basic instructions
– “move contents of Register 1 into

Register 2”
– “Add contents of Register 1 and

Register 2 together, store in
Register 3”

– THESE are the important issues
when concerning yourself with
writing code

• Speed, memory efficiency, etc,
primarily impacted

6

Memory address Action
Arguments

Computers

• So we need to understand the guts of what is going on
before we learn to use them correctly

• Everything in the computer is stored in a specific memory
location (address)

• It is ultimate a set of dual-state transistors, storing “on” or
“off”, interpreted as “one” or “zero” in binary:

7

Computers

• Binary is base 2
• If you haven’t encountered anything other than base 10,

we are going to cover it now

• Instead of place values as 100,101,102,103,104,…
• we have place values 20,21,22,23,24,…

• These are
BINARY DIGITS
(BI) + (TS)

• = Bits

8

Computers

• Of course, writing a LOT of 1’s and 0’s is pretty
cumbersome, so we usually abbreviate binary (preface
“0b” in C++14) with base-8 (octal, preface “0”) or base-16
(hexadecimal, preface “0x”)

• Each set of 4 bits is one hexadecimal number:
• 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f

9

Computers

• Examples :

10

Decimal Binary Octal Hexadecimal

1 “0b1" “01" “0x1"

4 “0b100" “04” “0x4”

10 “0b1010" “012" “0xa”

15 “0b1111” “017" “0xf"

16 “0b10000" “020” “0x10”

32 “0b100000" “040” “0x20"

40 “0b101000" “050" “0x28”

Computers

11

Binary and Hexidecimal

12

16^3 16^2 16^1 16^0

1 0 0 0 1

10 0 0 0 a

64 0 0 4 0

66 0 0 4 2

1035 4 0 b

0x1

0xa

0x40

0x42

Computers

• How to represent the bits on the actual transistors,
though?

• Could start from left to right, or from right to left
• Some architectures do one, some the other

• This is which “end” to start from : the “Endian” debate
–From Gulliver’s Travels, as in which end of the soft

boiled egg to crack
• “Big end -ian” : most significant digit is first
• “Little end -ian” : least significant digit is first

13

Computers

• How about NEGATIVE numbers?

• Well, uhh… easy too, right?

• Decimal -2.2 = binary -10.10

• But how to represent that? Need another bit to indicate the
sign!
–Let’s say it’s the first bit, we have to sacrifice one of

them:
–Decimal -2 = binary 110

• The first “1” counts as a negative sign

14

Computers

• Great, how about operations on these?

• Decimal 4 + 3 = 7 ===> binary 100 + 011 = 111

• Decimal 4 - 3 = 1 ===> binary 100 - 011 = 001

• Uhh, but shouldn’t “4 - 3” be the same as “4 + (-3”)?
–Uhhh…
–Decimal : 4 + (-3) ===> binary 100 + 111
–Crap. Doesn’t work!

• 100 + 111 = 1011 binary = 11 decimal, but want this to be 1!

15

Computers

• Solution : two’s complement
–https://en.wikipedia.org/wiki/Two's_complement

• Two’s complement = subtracting the number from 2N:
–Example : 10 decimal = 01010 binary
–Two’s complement = 10000 - 01010 = 10110
–Compare to the “naive” implementation of “1” in the first

place plus the number “10” :
–“naive” : 1 1010
–“2’s comp”: 1 0110

16

Computers

• Easier way : you flip the bits, then add 1 :

• decimal -10 = binary -01010
• Flip the bits : 10101
• Add one : 10110

• Ta-daaa! Like magic, but it’s math!

17

Computers

• Arithmetic still works as you’d think in two’s complement:

• Look at a 4-bit byte (max is 1111)
• Decimal 10 - 3 = 10 + (-3) = binary 01010 - 00011
• In two’s comp : (01010) + (11101) = 100111

–but only have 4 bits, the first is truncated,
so this is 0111 = 7!

• So simple arithmetic still works in two’s complement, no
need for special instructions for the chip!

18

Two’s Complement

19

7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 1

5 0 0 0 0 0 1 0 1

-5 1 1 1 1 1 0 1 1

10 0 0 0 0 1 0 1 0

-10 1 1 1 1 0 1 1 0

64 0 1 0 0 0 0 0 0

-64 1 1 0 0 0 0 0 0

• Number = 100000
• Flip the bits : 0111111
• Add 1: 1000000

20

Computers

• Storage of numbers on computers is done in binary
• Combining some 4-bit registers is called a “byte”

–Yes, like “gigabyte”.

• How many bits are in a byte?
–Architecture dependent, but typically 8

• 8-bit byte : 00111100
–Can represent numbers from (decimal) 0 - 255
–(Hexadecimal : 0x0 - 0xff)

• How do you store bigger numbers?
–put bytes together

21

Computers

• The range of values you can represent depends on if you
need it to be signed or unsigned, integer or floating point:

22

Bytes Signed? Min Max

1 Unsigned 0 255

1 Signed -128 127

2 Unsigned 0 65,535

2 Signed -32,768 32,767

Computers

• Well, that’s great for integers, but what about decimals?
–Decimal 2.2 = binary 10.10

• But in binary, how do we specify the “decimal place”
(binary place?)

• Use scientific notation : 1.35e5

• Use some bits for the
exponent, some bits for
the mantissa

• Can pick either
two bytes (single precision)
or four bytes
(double precision)

23

C++

• This brings us finally to C++

• The first concept we need to understand is the data type
–Tells the computer how you are going to INTERPRET

the bits on the register

• Example : Computer gives you
11110110100111010111011010011101

• What the heck is that?
–Is it a signed integer? -157452643
–Is it an unsigned integer? 4137514653
–Is it a float? -1.5968679E33
–Is it a double? -1.5968679100482687E33

24

C++
• Since computing (and nature) is hard, you have to

understand what the computer is giving you and how you
are interpreting it

• This is why C++ is “strongly typed” (you need to tell the
computer how you are representing the number)

25

Type Size Min Max

bool 1 bit 0 1

unsigned char 1 byte 0 255

char 1 byte -128 127

unsigned int 2 bytes 0 65,535

int 2 bytes -32,768 32,767

unsigned long int 4 bytes 0 4,294,967,295

long int 4 bytes -2,147,483,648 2,147,483,647

float 4 bytes 1.2E-38 3.4E+38

double 8 bytes 2.3E-308 1.7E+308

C++

• There is an annoyance, though : the standard specifies
that “int”, for instance, must be AT LEAST 16 bits (2 bytes).
It can be more, and sometimes is!

• This is ARCHITECTURE DEPENDENT
–size of int on linux+intel != size of int on mac+amd

–http://en.cppreference.com/w/cpp/language/types

26

http://en.cppreference.com/w/cpp/language/types

C++

27

C++

28

C++

• tl;dr :
–Data types are hard
–They are designed for efficiency
–C++ types you will use the most :

• char
• int
• unsigned int
• float
• double

–You need to be aware of the intricacies and difficulties,
though… you WILL run into this if you do any serious
numerical computing in the future.

29

