
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Code

• Code is in CompPhys/ReviewCpp/BasicExamples

2

Expressions and Arithmetic

3

C++: Expressions and Arithmetic

• An expression is a sequence of operators and operands
that specifies a computation

• Arithmetic is just like in regular math, but can happen on
other types besides numbers!

4

C++: Expressions and Arithmetic
• We’ve already seen the standard OUTPUT in C++ (cout)
• Now to take a look at standard INPUT in C++ (cin)
• We will use cin to get two values and compute their sum

– Enter them in order with a space between

• Go to CompPhys/ReviewCpp/BasicExamples/addition.cc
#include <iostream>
int main() {
 int value1, value2, sum;
 std::cout << "Please enter two integer values: ";
 std::cin >> value1 >> value2;
 sum = value1 + value2;
 std::cout << value1 << " + " << value2 << " = " << sum
<< '\n';
}
• Then compile and execute

5

C++: Expressions and Arithmetic

• What are we looking at? Individual expressions ALWAYS
evaluate to a value

• Examples:

42; // value: 42
sum = value1 + value2; // value: “sum”
12 > 13; // value: false

6

C++: Expressions and Arithmetic

• Arithmetic operators behave basically how you expect

• Can have BINARY operators (two operands) or UNARY
operators (one operand)
–For arithmetic operators, only “+” and “-“ can be unary

7

C++: Expressions and Arithmetic

• Logical operators work on individual boolean variables:

8

C++: Expressions and Arithmetic

• Bitwise operators do the same thing, bit by bit:
–and (&)
–or (|)
–exclusive or (^)
–bit shift left (<<)
–bit shift right (>>)

9

C++: Conditional Execution

• All CONDITIONS in C++ evaluate to bools

• Possible conditions:

• Now you can see the boolean VARIABLES assigned to the
output of EXPRESSIONS:

 bool expression = 14 < 16;
 std::cout << expression << std::endl;
•

10

Logical versus Bitwise Operators

• bitwise comparison of “5” and “4:
#include <iostream>

int main(void) {
 unsigned int i = 0x5;
 unsigned int j = 0x4;
 unsigned int k = i | j;
 unsigned int l = i & j;
 unsigned int m = i ^ j;
 std::cout << "i = " << std::hex << i << std::endl;
 std::cout << "j = " << std::hex << j << std::endl;
 std::cout << "i|j = " << std::hex << k << std::endl;
 std::cout << "i&j = " << std::hex << l << std::endl;
 std::cout << "i^j = " << std::hex << m << std::endl;
 return 0;
}

• Output:
i = 5
j = 4
i|j = 5
i&j = 4
i^j = 1

11

C++: Expressions and Arithmetic

• Example: operators.cc
#include <iostream>
int main(void) {

 std::cout << -5 << std::endl;
 std::cout << 5 + 3 << std::endl;
 std::cout << 5 * 3 << std::endl;
 std::cout << 21.32 / 38.0 << std::endl;
 std::cout << 12 / 4 << std::endl;
 std::cout << 13 / 4 << std::endl;
 std::cout << 13. / 4. << std::endl;
 return 0;
}

• Compile and execute, and answer:
–Which of these does not behave the same as you would

expect?
–What is the difference between the last two expressions?

12

C++: Expressions and Arithmetic

• Arithmetic has to be done on TYPES
–Types remain constant throughout the operation!

• Examples:
– “int + int = int”
– “int - int = int”
– “int * int = int”
– “int / int = int”

• But wait! The last one is dodgy… fractions are NOT
integers!
–Integers are NOT CLOSED under division!

13

C++: Expressions and Arithmetic

• So how do we handle integer division?
–The the same way ALL division is handled in C++

• As integers:
9 / 3 = 3
10 / 3 = 3
11 / 3 = 3
12 / 3 = 4

14

Truncation, truncation, truncation

C++: Expressions and Arithmetic

• Integer division and modulus:

• Division gives you the number of times the divisor (3)
evenly goes into the dividend (25), i.e. 8

• Modulus gives you the remainder, i.e. 1

• Can be used in lots of applications (like, arrays! more later
on that)

15

Division

Modulus

C++: Expressions and Arithmetic

• If you want ratios and fractions, you need floats or doubles!
• This is why “13 / 4” is different from “13. / 4.”

• 13/4 gives you 3 (int)
• 13./4. gives you 3.25 (float or double)

• What about MIXED TYPE? 13. / 4 = ?

• Go to mixed.cc

16

C++: Expressions and Arithmetic
• Integers are a subset of reals

– Therefore “int” can always be converted to “float” or “double”
– The way we say this is int is “narrower” than float, and float is

“wider” than int

• However, the converse is NOT true: this is called “narrowing”
– Cannot represent 1.9 as an int

• The C++ standard says : TRUNCATION, TRUNCATION,
TRUNCATION
– It does NOT round!!!

“int i = 1.999999” gives you “1”, not “2”

– Some compilers will warn you (“potential loss of data”)
– Other compilers will happily give you the garbage you asked

for. 17

C++: Expressions and Arithmetic

• If you have an expression with MIXED TYPES, the
standard will “widen” the narrower one
–so “float / int” will give you a “float”
–Also “int / float” will give you a “float”
–But remember “int / int” will give you an “int”

18

C++: Expressions and Arithmetic

• This is a whole lot of guessing, though
• Better way is called “casting”

–What we did before was IMPLICIT casting
–We now EXPLICITLY cast

• Several casting cases are possible, but we will focus on
the first one now: “static_cast”.

 int j = static_cast<int>(g);
 std::cout << j << std::endl;

• This says “interpret g as an integer, assign it to j”.
• We will go through other casts later

• static_cast is better because it can be checked at
COMPILE TIME (very beneficial later on)

19

C++: Expressions and Arithmetic

• Operator precedence and associativity:

–Follows same rules you’ve always learned:

“Please Excuse My Dear Aunt Sally”
=
Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction

• Associativity also follows this

• But! Use parentheses to be clear when necessary!
f = 2 + 3*4;
and
f = 2 + (3*4);

• Both correct, but second is clearer
20

C++: Expressions and Arithmetic

• Formatting and whitespace : C++ does not care about
either. All of these are okay:

#include <iostream>

int f1(void){ return 1;}
int f2(void){
 return 2;
}

int
f3
(void)
{
return
 3;
}

int main(void){

 std::cout << f1() << std::endl;
 std::cout << f2() << std::endl;
 std::cout << f3() << std::endl;

 return 0;
}

21

C++: Expressions and Arithmetic

• CANNOT put whitespace in between variable names or
within an operator

• MUST have whitespace between type and variable name.

• These are OK:
 int my_int = 0;
 float MyFloat = 0.0;

• These are not:
 double My Double = 0.0;
 charMyChar('a');

22

C++: Expressions and Arithmetic

• “Shortcut” operators and “optimization” operators

• There are other operators that are shorthand for a
combination

• Example: Incrementing a value:
 x = x + 1;

• Can also be written as
 x++;

• OR!
 ++x;

• “Post-increment” and “pre-increment” operators
• Also have “minus minus” 23

C++: Expressions and Arithmetic

• Post-increment versus pre-increment:
–Post: increment AFTER statement is executed
–Pre: increment BEFORE statement is executed

• If just alone, no difference. These are equivalent:
 int x = 0;
 x = x + 1;
 x++;
 ++x;

• If inside more complicated statement, there is a difference:
 int x1 = 1;
 int x2 = 1;
 int y1 = ++x1;
 int y2 = x2++;

 std::cout << "x1 = " << x1 << ", y1 = " << ++x1 << std::endl;
 std::cout << "x2 = " << x2 << ", y2 = " << x2++ << std::endl;

• gives:
x1 = 2, y1 = 2
x2 = 2, y2 = 1
•

24

Conditional Execution

25

C++: Conditional Execution

• The execution can then be CONDITIONAL upon the
outcome of a boolean variable

• Simplest format is the “if/else” formalism

26

C++: Conditional Execution

• This works exactly as you expect, but pedantically:

• Example:
 int i1 = 0;
 if (i1 < 2) {
 std::cout << "i1 is too small. Eat more." << std::endl;
 }

• Note:
–The statement is ONLY ONE STATEMENT

• If you want multiple lines, enclose in curly braces

27

C++: Conditional Execution

• For if/else:

• Example:
 int i1 = 0;
 if (i1 < 2) {
 std::cout << "i1 is too small. Eat more." << std::endl;
 }
 else {
 std::cout << "i1 is big enough." << std::endl;
 }

• Again: only SINGLE STATEMENTS come after, multiples
must be in curly braces

28

C++: Conditional Execution

• Can nest or do sequences. CompPhys/ReviewCpp/
BasicExamples/conditionals.cc

#include <iostream>

int main(void) {

 int i = 0;
 std::cout << "Enter a number: ";
 std::cin >> i;

 if (i > 2) {
 std::cout << "This is greater than 2. Way too much!" << std::endl;
 } else{
 if(i == 2) {
 std::cout << "Phew! This is 2." << std::endl;
 } else if (i == 1) {
 std::cout << "So close, but this is only 1!" << std::endl;
 } else {
 std::cout << "Yuck, this is even less than 1." << std::endl;
 }
 }

 return 0;
}

29

C++: Conditional Execution

• But bools are just one single bit
• What if your expression gives you another type?
• Example:
#include <iostream>

int main(void) {

 int i = 0;
 std::cout << "Enter a number: ";
 std::cin >> i;

 if (i + 5) {
 std::cout << "Tweet!" << std::endl;
 } else {
 std::cout << "Nuke!" << std::endl;
 }

 return 0;
} 30

Uhhh… what?

C++: Conditional Execution

• If your expression is cast to “0” (zero), then it is false
• If your expression is cast to “!0” (not zero), then it is true

• So this looks like one thing, and gives you something else
you didn’t expect, but it is exactly what you told it to do:

#include <iostream>

int main(void) {

 int i = 0;
 std::cout << "Enter a number: ";
 std::cin >> i;

 if (i = 5) {
 std::cout << "Nuke!" << std::endl;
 } else {
 std::cout << "Tweet!" << std::endl;
 }

 return 0;
} 31

As long as this is
not equal to 5,
we’re saved???

C++: Conditional Execution

• Logic operations are very useful here also:

• Like bitwise, but TWO symbols together
–Logical and: &&
–Logical or : ||
–Logical not: !
–Logical xor: ^^

32

Floating point and type concerns

33

C++: Narrowing

• Go to CompPhys/ReviewCpp/BasicExamples/narrowing.cc
:

int main(void) {
 double d = 22000000000000.0;
 int i = d;
 std::cout << "d = " << d << ", i = " << i << std::endl;
 return 0;
}

• Now compile with the “-Wconversion” flag (enables
conversion… don’t ask me why -Wall didn’t work last time):

> g++ -Wconversion narrow.cpp -o narrow

• and you get:
narrow.cpp: In function ‘int main()’:
narrow.cpp:9: warning: conversion to ‘int’ from ‘double’ may
alter its value

• And sure enough, if you try to run:
d = 2.2e+13, i = -2147483648

34

C++: Floating point comparison

• We’ve seen the “==“ operator for ints
–If we try “5 == 5”, it returns “true”
–If we try “1 == 0”, it returns “false”

• (unless you’re KellyAnne Conway, in which case it returns
“alternative_true”)

– If we try “5.0 == 5.0”, what does this do?
• What does this even mean?

35

C++: Floating point comparison

• CompPhys/ReviewCpp/BasicExamples/floatcompare.cc

#include <iostream>

int main(void) {

 float f1 = 5.0f;
 float f2 = 5.000000001f;

 if (f1 == f2) {
 std::cout << "Nuke!" << std::endl;
 } else {
 std::cout << "Tweet!" << std::endl;
 }

 return 0;
}

• Compile and run, what do you get?

36

C++: Floating point comparison
• Comparing floats only makes sense within the precision of

the “mantissa”!

• Even still, terrible
idea to try the “==“
operator

• Better: assign a tolerance you can live with, and look if it is
within the tolerance!
–BAD: “f1 == f2”
–GOOD: “std::abs(f1 - f2) < tolerance”

• You need to pick a tolerance your program needs
–For C++ “tolerance”, you can use

std::numeric_limits<double>::epsilon() 37

C++: Floating point comparison

• CompPhys/ReviewCpp/BasicExamples/
floatcompare_better.cc

include <iostream>
#include <cmath>
#include <limits>

int main(void){
 float f1 = 5.0f;
 float f2 = 5.000000001f;
 float tolerance = 0.01f;

 if (std::abs(f1 - f2) < tolerance) {
 std::cout << "Nuke!" << std::endl;
 } else {
 std::cout << "Tweet!" << std::endl;
 }

 if (std::abs(f1 - f2) < std::numeric_limits<float>::epsilon()) {
 std::cout << "Within machine precision!" << std::endl;
 }
}

• Compile and run, what do you get?
38

http://floatcompare_better.cc

C++: Floating point comparison

39http://www.smbc-comics.com/?id=2999

Strings

40

C++: Strings

• You may have noticed that there is nothing for a BUNCH
OF CHARACTERS together in C++

• This is called a “string” in other languages

• C++ has no intrinsic concept of a “string”, it’s just a bunch
of “characters” lined up

• We will go over strings in detail later, but there is a library
called the “Standard Template Library” that we’ve already
seen (#include <iostream>)

• Now we will use the “strings” from the standard template
library (std)

• Strings can basically use the standard logical expressions
as you expect, but we will go into more later 41

C++: Strings

• CompPhys/ReviewCpp/BasicExamples/strings.cc
#include <iostream>
#include <string>

int main(void) {

 std::string s1;
 std::cout << "Enter a string: ";
 std::cin >> s1;

 std::cout << "Your string is: " << s1 << std::endl;

 if (s1 == "Yay!") {
 std::cout << "Yay? Just what I was thinking!" << std::endl;
 }
}

• Grad students: you can utilize something like this for your
HW’s

42

Miscellania

43

C++: Switch

• There is another option for multiple-way “if” statements:
“Switch”

• Just like a giant “if/else”
statement, but easier to use

• Constraint: can only use
on integer types

44

