
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Code

• Code is in CompPhys/ReviewCpp/BasicExamples

2

Flow control : Iteration

3

C++: Iteration

• It’s a royal pain to count. Humans suck at it.
• Computers are really, really fantastic at it, though.
• Similarly, computers are great at doing the same thing over

and over (and over and over andoverandoverandover)

• This is referred to as “iteration”. C++ options:
–“while” loop
–“do while” loop
–“for” loop
–“goto” statements (never use them)

4

C++: Iteration

• Most commonly used is probably “for” loops:

• Initializes with “initialization”
• Executes “statement” until “condition” is met
• After each iteration, “modification” is performed

5

C++: Iteration

• Example: “forloop.cc”:
#include <iostream>
int main(void){

 for (unsigned int i = 0; i < 10; ++i) {
 std::cout << i << ", ";
 }
 std::cout << std::endl;
 return 0;
}

• compile and execute, and you get:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

6

C++: Iteration

• Can also nest them: “forloop_nested.cc”:

#include <iostream>
int main(void){

 for (unsigned int i = 0; i < 10; ++i) {
 for (unsigned int j = i; j < 10; ++j){
 std::cout << "(" << j << ", " << i << "), ";
 }
 std::cout << std::endl;
 }
 return 0;
}

• Compile and run, what do you get?

7

C++: Iteration

• Related concepts:
–“continue” : automatically continue to the next iteration,

don’t execute the rest
–“break”: get out of the loop right away
–Useful for termination abnormally and for error checking

• Things to be careful about:
–Infinite loops : you didn’t give a correct termination

condition
–Incorrect initialization : your initialization was incomplete

8

C++: Iteration

• Similar to “for” loops are “do, while” and “while” loops

• Very similar, except the “do, while” loop ALWAYS executes
the “statement” at least once, whereas “while” will only do
it if the “condition” is met

• Use “break” and “continue” to get out, OR adjust the
variables in “condition”

9

C++: Iteration

• “while” and “for” loops can be made semantically identical
(while syntactically different)

10

C++: Iteration

• Example: “whileloop.cc”
#include <iostream>
int main(void){
 int i = 0;
 while(i < 5) {
 std::cout << i << ", ";
 ++i;
 }
 std::cout << std::endl;
 return 0;
}

•

11

C++: Iteration

• How about using the “break” statement? “whileloop_break.cc"

#include <iostream>
int main(void){
 int i = 0;
 std::cout << "Enter a number, negative number to quit" << std::endl;
 while(std::cin >> i) {
 if (i < 0) {
 std::cout << "Negative number entered, exiting." << std::endl;
 break;
 } else {
 std::cout << "You entered i=" << i << std::endl;
 }
 }
 return 0;
}

12

C++: Iteration

• Another nice “either / or but not both” construct is the
“conditional” operator “?”. Syntax is:

• Fast way of saying :
– if (condition) expression 1
–else expression 2

13

Scope

14

C++: Scope

• Now in a position to talk about “scope”
• Scope is the lifetime of a variable, denoted by curly braces

“{ }”
• A variable must be unique IN THE CURRENT SCOPE, but

can be duplicated in DIFFERENT scopes
• Loops have different scopes because they are separated

by {}
• So what does this give you? “scope.cc"

#include <iostream>
int main(void){
 unsigned int i = 1000;
 for(unsigned int i = 0; i < 10; ++i) {
 std::cout << i << std::endl;
 }
 std::cout << "Outside the loop, i = " << i << std::endl;
 return 0;
}
• 15

C++: Scope

• This is the first instance of something having the same
name but different scope

• You can declare variables to have GLOBAL scope or
LOCAL scope
–Global: all functions and all files can see it

• Bad! Maximally violates principle of least privilege but sometimes
has a use

–Local: only defined within { }
• Good! Principle of least privilege satisfied

16

Special scopes: Functions

17

C++: Functions

• Now we’ve seen how to execute BLOCKS of code
• What if we want to name those blocks?

–That’s a function

• We’ve already seen the first function (“main”)
• What about others?

• Remember mathematical functions, like “squared”?

• Literally: “input x, return x*x”

18

f(x) = x2

C++: Functions

• So we can generalize:

• Take inputs, do stuff, give output

19

FunctionInput Output

C++: Functions

• Lots of functions already defined (Example: cmath)

• http://www.cplusplus.com/reference/cmath/

20

C++: Functions

• Syntax is completely intuitive, so try “mathexamples.cc”
• Intuitive so I won’t belabor:

#include <iostream>
#include <cmath>

int main(void) {
 float x = 0.5;

 std::cout << "sin(x) = " << sin(x) << std::endl;
 std::cout << "tan(x) = " << cos(x) << std::endl;
 std::cout << "cos(x) = " << tan(x) << std::endl;
 std::cout << "log(x) = " << log(x) << std::endl;
 std::cout << "log10(x) = " << log10(x) << std::endl;

 return 0;
}

21

C++: Functions

• Writing your own function:

22

output type function_name arguments() {

}

Function’s body

C++: Functions

• Example: “xsquared.cc” x2
#include <iostream>

float xsquared(float x){ return x*x; }

int main(void) {
 float x = 5.0;
 std::cout << xsquared(x) << std::endl;

 return 0;
}

23

Function must be declared ahead of time

Then you call it with parentheses: “bla(x)”

C++: Functions

• In C++, you must DECLARE a function ahead of time
• However, you can DEFINE it whenever you want

–Declare: Shows the types.
–Define: the actual code of the function

• declaration:
float xsquared(float);

• definition:
float xsquared(float x){ return x*x; }

• Can be the same, but need not be
–For complicated functions, usually don’t define them

ahead of time, just declare them

24

C++: Functions

• Return values:
–Can only return ONE VALUE
–Python can do many, but not C++

• Important programming practice: returning a number “by
value” as in a function makes THREE COPIES of the
return type
–Fine for built-in types
–Terrible, horrible, no good, bad for big classes
–C++0x and later have “move” semantics (more on that

later) that makes 1.5 copies instead of three :)

25

C++: Functions

• Can also specify a DEFAULT value for function inputs:

#include <iostream>

int squared(int i = 0) { return i*i;}

int main(void)
{

 std::cout << squared() << std::endl; // Returns 0
 std::cout << squared(2) << std::endl; // Returns 4
 return 0;
}

26

C++: Functions

• What about SCOPE of variables? “funcscope.cc”
–Global scope: variable available to ALL functions
–Local scope: variable available to THIS function only
–static: variable available to THIS function, but value is

kept after scope ends (useful for counting)

#include <iostream>
unsigned int i = 1000;
int duh(void) {
 static unsigned int count = 0;
 unsigned int i = 2;
 std::cout << "for the " << count << "th time, i = " << i << std::endl;
 ++count;
 return i;
}

int main(void){
 for (unsigned int i = 10; i < 20; ++i) {
 std::cout << "i = " << i << ", duh() = " << duh() << ", global i = " << ::i << std::endl;
 }
 return 0;
}

27

C++: Functions

• Can call functions within functions

• Can call YOUR OWN function within functions (recursion)

• Example: Fibonacci sequence “fibo.cc”:
#include <iostream>

int fibonacci(int n) {
 if (n <= 0)
 return 0;
 else if (n == 1)
 return 1;
 else
 return fibonacci(n - 2) + fibonacci(n - 1);
}

int main(void)
{
 for (unsigned int i = 0; i < 10; ++i) {
 std::cout << fibonacci(i) << ", ";
 }
 std::cout << std::endl;

 return 0;
}

28

C++: Functions

• C++ has a nice feature in OVERLOADING functions
–Example: if you want x2, what do you need?

• Input as int
• Input as float
• Input as double
• Input as unsigned int
• Input as short
• Input as unsigned long
• …

• But you probably want them all to be called the same thing
(xsquared)

• You can define multiple functions with different
ARGUMENT TYPES
–Caveat: Cannot differ only by return type

29

C++: Functions

• Looks like this: “xsquared_types.cc”
include <iostream>

int squared(int x){ return x*x;}
float squared(float x){ return x*x;}
double squared(double x){ return x*x;}
long squared(long x) { return x*x;}

int main(void)
{
 int i = 5;
 long j = 10;
 float x = 0.5;
 double y = 1.5;

 std::cout << squared(i) << std::endl;
 std::cout << squared(j) << std::endl;
 std::cout << squared(x) << std::endl;
 std::cout << squared(y) << std::endl;

 return 0;
}
•

30

C++: Functions

• Isn’t it annoying to write that over and over? And if I try a
new type, I have to recompile? What a pain.

• If only there were some way to fix this…

31

Function templates

32

C++: Function Templates

• Do I have a DEAL for YOU!
• You can create a “function template” instead of a function

• This tells you HOW to create a function if you are GIVEN
the types

• Syntax is a bit weird:

template< class T>
T squared(T x){ return x*x;}

33

This is NOT A FUNCTION.
This is a TEMPLATE for a function.

C++: Function Template

34

Cookie
Cookie

template

template< class T>
T squared(T x){ return x*x;}

Function
template

Function squared<int>(2)

C++: Function Templates

• Functions : Compiled, exist in memory

• Function templates: NOT compiled, must be given a type

• EACH type gets a SEPARATE function in memory, on
demand

• More on templates later

35

