
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Code

• Code is in CompPhys/ReviewCpp/BasicExamples

2

C++: Pointers

• The dread cry rang through the
night…
NO! POINTERS! NOOOOO!!!!!!

3

Pointers and References

4

C++: Pointers

• Actually I’ve already taught you the concept,
just not the syntax

• Pointer is just a variable that holds the
memory address

• Syntax: “&” operator gives the address:
 int x = 123;
 int y = 456;
 int z = 789;
 std::cout << "Address of x= " << &x << ", value of x = " << x << std::endl;
 std::cout << "Address of y= " << &y << ", value of y = " << y << std::endl;
 std::cout << "Address of z= " << &z << ", value of z = " << z << std::endl;
 return 0;

Address of x= 0x7fff59364aa8, value of x = 123
Address of y= 0x7fff59364aa4, value of y = 456
Address of z= 0x7fff59364aa0, value of z = 789

5

Memory
Address Value

0x1000 0x04a45

0x1001 0x9ab38

0x1010 0x0000

0x1011 0x1003

C++: Pointers

• A pointer variable uses “*”, assign to an address of a
variable with “&”:

6

Read from right to left:
“p is a pointer to an int”

Accessing p here gives
you GARBAGE. It MUST
be initialized!!!

Access the value of the register POINTED TO by p
by DEREFERENCING (*).

Assign the pointer to point to a variable by the
ADDRESS operator (&)

C++: References

• A safer alternative is to have REFERENCES:
• Pointers that cannot be zero

• A reference variable uses “&”, can treat it like a standard
variable
• But it is not! Be careful! Underlying variable can change!

• Go to “BasicExamples”

7

C++: Pointers and References

• “ptrs.cc”

#include <iostream>

int main(void){

 int x = 10;
 int * px = &x;
 int & rx = x;
 std::cout << "Value of px= " << px << ", dereferenced = " << *px << std::endl;
 std::cout << "Value of rx= " << rx << std::endl;
 *px = 7;
 std::cout << "x = " << x << std::endl;
 rx = 9;
 std::cout << "x = " << x << std::endl;
 return 0;
}

• output:
Value of px= 0x7fff525a3a98, dereferenced = 10
Value of rx= 10
x = 7
x = 9
•

8

C++: const with pointers
• You have “const” now with two objects, the variable and the pointer
• There are therefore four possibilities:

• Pointer to int
– (value can change, pointer can change)
– int * p

• Pointer to const int
– (value cannot change, pointer can change)
– int const * p

• Const pointer to int
– (value can change, pointer cannot change)
– int * const p

• Const pointer to const int:
–(value cannot change, pointer cannot change)
– const int * const

9

C++: ptrs/refs in functions

• Can use pointers and refs as arguments to functions!
• “ptrs_and_funcs.cc”
#include <iostream>

void increment1(int p){ ++p; std::cout << "p = " << p << std::endl;}
void increment2(int &p){ ++p; std::cout << "p = " << p << std::endl;}
void increment3(int *p){ ++(*p); std::cout << "*p = " << *p << std::endl;}

int main(void){

 int x = 3;
 int & rx = x;
 int * px = &x;
 std::cout << "0: x = " << x << std::endl;
 increment1(x);
 std::cout << "1: x = " << x << std::endl;
 increment2(rx);
 std::cout << "2: x = " << x << std::endl;
 increment3(px);
 std::cout << "3: x = " << x << std::endl;

 return 0;
}

10

0: x = 3
p = 4
1: x = 3
p = 4
2: x = 4
*p = 5
3: x = 5

C++: ptrs/refs in functions

• Pass by value:
– COPIES value

into a temporary
variable called “x”

• Pass by reference:
–Pass

REFERENCE to
variable,
temporarily called
“x”

• Pass by pointer
–Pass POINTER to

variable, pointer is
called “x”

11

void func(int x); void func(int &x); void func(int *x);

• Use when you don’t
want to modify value,
and cheap to copy

• Use when you want
to modify value, and
expensive to copy,
ptr=0 disallowed

• Use when you want
to modify value, and
expensive to copy,
ptr=0 allowed

Also usable with CONST

C++: Why are pointers hard?

• Dereferencing uninitialized pointers gives you a
segmentation fault
–That’s the best case scenario

–Worst case scenario: It works accidentally, and you
accidentally give your credit card information to that
Nigerian Prince who keeps emailing you

• Memory management!

12

Memory management

13

C++: Memory Management

• You have access to several pieces of memory:

–Code: where your code lives
–Data: static and global variables
–Stack: static memory

• local variables and function parameters known at compile time
–Heap: dynamic memory

• anything not known at compile time

–The heap HAS to be accessed via pointer
• Improperly handling this is a pain

–The others can be accessed via value or reference

14

C++: Memory Management

• Allocate on the heap with “new”
• Remove from the heap with “delete”:
 int i = 123;
 int * p = new int(456);

 std::cout << "i = " << i << std::endl;
 std::cout << "*p= " << *p << std::endl;

 (*p) += 10;
 std::cout << "*p= " << *p << std::endl;

 delete p;

15

Allocate an integer
off the heap, assign
its address to “p”

Do stuff with that
heap variable

Remove from the heap

C++: Memory Management

• Every “new” has to come with a “delete”
–Otherwise you get a memory leak
–Adds memory that does not get cleaned up, eventually

your program crashes the computer

• Can be non-obvious
–What if a function creates a “new” variable and returns

it?
–Still in scope.
–Stays on the heap.
–This is called a “factory”

16

C++: Memory Management

• In modern C++, use “std::auto_ptr” or “std::shared_ptr”
• These will automatically delete the object when the last

reference to it goes out of scope
–I.E. you don’t have to worry about the delete operation
–Also access like a standard pointer:

 std::auto_ptr<int> pa (new int(789));
 std::cout << "*pa=" << *pa << std::endl;

17

Can use the template argument to use ANY type
(more on templates later!)

Arrays and vectors

18

C++: Arrays and Vectors
• What if you want a group of objects together?

– Arrays (off the stack)
• Intrinsic to C++
• Static at compile time
• Syntax:

 int array[5] = {0,1,2,3,4};

– Vectors (off the heap)
• Part of the Standard Template Library
• Not known at compile time
• Syntax:

 std::vector<int> vec;
• Then use “push_back” to add variables
• (can also “push_front”, etc…)
• more on this later
• In C++0X and C++11: can initialize like an array (see above)

– When compiling with g++: add “-std=c++0x”
19

5 elements Initialized to values here

NOTE: C++ arrays need
EITHER a size, OR an
initialization, but do not
need both if you don’t want.

C++: Arrays and Vectors
• Can access individual elements with “[]”:
array[1] = 1;
• Arrays are just a sequential list of

variables
– Knows nothing about itself.
– Can only LEGALLY access elements

LESS THAN the size of the array!
– Totally fine with illegal behavior, and

will give you garbage
• Vectors are a CLASS, so does know

something about itself
– More on classes later
– Can therefore:

• check the size:
 n = vec.size();

• access elements only if they exist
with the “at” method (more later)

20

C++: Arrays and Vectors

• N objects in a CONTIGUOUS row of memory:
• For arrays, these are static and from the stack (*)
• For vectors, these are dynamic and from the heap
array[0] = 0, address = 0x7fff51618990
array[1] = 1, address = 0x7fff51618994
array[2] = 2, address = 0x7fff51618998
array[3] = 3, address = 0x7fff5161899c
array[4] = 4, address = 0x7fff516189a0

• (*)
Technically you can still get arrays off the heap also and
do your own dynamic memory allocation. Don’t do that.
Just use std::vector.

21

C++: Arrays and Vectors

• Since arrays are just a list of
variables, what is the relation
between POINTERS and
ARRAYS?

• The syntax “a[3]” means:
–Go to the position 3

variables after the first one
–But you could just use also

use pointers for that!

22

C++: Arrays and Vectors

• Copying arrays:
–C++: I have no idea what you’re talking about. Do it

yourself.
 int array[5] = {0,1,2,3,4};
 int array2[5];
 for (unsigned int i = 0; i < 5; ++i) {
 array2[i] = array[i];
 }
• Copying vectors:

–C++: Oh! Yeah, sure, no problem!
 std::vector<int> vec3(vec);

–

23

C++: Arrays and Vectors

• Multi-dimensional arrays and vectors look like:
 int M[3][4];

• Literally: M is an array of “arrays of size 4”

• Alternatively can use a vector of vectors:
std::vector< std::vector<int> > N(3, std::vector<int>(4));

24

3 x 4

C++: Arrays and Vectors

• std::vector also introduces ITERATORS
• Act like pointers, but are classes (hence smarter)

 for(std::vector<int>::const_iterator i = vec.begin(); i != vec.end(); ++i) {
 std::cout << "i = " << *i << std::endl;
 }

• In C++0x and later, can also loop over each item like:
 for (int i : vec) {
 std::cout << "i = " << i << std::endl;
 }

• Why the complication?
• Faster and safer.

25

C++: Arrays and Vectors

• Special case of arrays: arrays of “char”

• Similar case as arrays and vectors, char a[10] is a fixed-
width array (length 10) that can be printed to form
characters.

• Then “std::string” is similar in spirit to “std::vector”

• Moral: use std::string when possible.

26

I/O

27

C++: Command Line Arguments

• Another nice use of arrays: COMMAND LINE
ARGUMENTS

• You’re already familiar with them (like, “cp old.txt new.txt”)

• How to use?
int main(int argc, char * argv[]){
• Literally:

–argc = number of command line arguments
• I.E. size of array “argv”

–argv = array of char arrays, each with a string.

28

C++: Command Line Arguments

• Example: Syntax “commandline.cc”:
int main(int argc, char * argv[]){
 for (unsigned int i = 0; i < argc; ++i) {
 std::cout << "Argument " << i << " is " << argv[i] << std::endl;
 }
}

• If our executable is “a.out”, we type on the command line
and get:

> ./a.out this is how we do it
Argument 0 is ./a.out
Argument 1 is this
Argument 2 is is
Argument 3 is how
Argument 4 is we
Argument 5 is do
Argument 6 is it

• notice: the first argument is the NAME of the executable!

29

C++: File I/O

• Files in C++ can be opened and closed, in read or write
mode.

• The interface to read and write is the same as “std::cout”
and “std::cin”.
–“std::ofstream” : output formatted stream
• “std::ifstream” : input formatted stream

• Their “parents” (more later) are :
–“std::ostream” : output stream
–“std::istream” : input stream

30

See Chapter 13 of “progcpp.pdf” Textbook for details

C++: File I/O

• Example : copy double from one file to another: “fileio.cc”
#include <fstream>
#include <iostream>

int main(void){

 std::ifstream in("inputfile.txt");
 std::ofstream out("myfile.txt");
 double d;
 in >> d;
 out << d;
 out.close();

 return 0;
}

31

C++: File I/O

• Within a function, you can use “ostream” and “istream”
(“fileio_infuncs.cc”):

void input (std::istream & in) {
 std::string line;
 std::getline(in, line, ',');
 std::string firstname = line;
 std::getline(in, line, ',');
 std::string lastname = line;
 std::getline(in, line);
 int score = std::atof(line.c_str());

 std::cout << "First name is " << firstname << std::endl;
 std::cout << "Last name is " << lastname << std::endl;
 std::cout << "Score is " << score << std::endl;
}

32

Will need this snippet
for your Homework!

