
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Code

• Code is in CompPhys/ReviewCpp/ClassExamples

2

Classes

3

C++: Classes

• You can define your own data types in C++
• These are called “classes”
• They are an aggregate of information:

–Data members:
• data for the class

–Methods:
• functions to operate on the class

• Example: member data, no methods:
class Point {
 public:
 double x;
 double y;
};

4

C++: Classes

• Access member data in two way:

• if a value: dot (a.value)
• if a pointer: arrow (b->value)
 Point p1;
 Point p2;
 p1.x = 0.;
 p1.y = 1.;
 p2.x = 2.;
 p2.y = 3.;
 std::cout << "p1: (" << p1.x << "," << p1.y << ")" << std::endl;
 std::cout << "p2: (" << p2.x << "," << p2.y << ")" << std::endl;
 Point * p = &p1;
 std::cout << "p : (" << p->x << "," << p->y << ")" << std::endl;

5

C++: Classes

• Methods: functions defined WITHIN a class:
class Point {
 public:
 double x;
 double y;

 void print() const {
 std::cout << "(" << x << "," << y << ")" << std::endl;
 };
};

• These are only accessible when you have an OBJECT of
or a POINTER to the class:

 std::cout << "p1: ";
 p1.print();
 std::cout << "p2: ";
 p2.print();
 std::cout << "p : ";
 p->print(); 6

Cannot call “print()” without an object!

Have access to the data members for “THIS” object!

C++: Classes

• Within a class, you can use a special pointer called “this”
• It is a pointer to “this” class
• Thus, these are equivalent:
 void print() const {
 std::cout << "(" << x << "," << y << ")" << std::endl;
 };

 void print() const {
 std::cout << "(" << this->x << "," << this->y << ")" << std::endl;
 };

7

• What about initialization and destruction?
• Special member functions: constructors and destructors.

• Constructor: Same as class name (like, ClassName())
–Things like “new” and initialization should go here

• Destructor: ~ClassName
–Things like “delete” of memory should go here

 Point(double ix=0., double iy=0.) { x=ix;y=iy;}
 ~Point(){}
 

• Then initialize
 Point p1(0.,1.);
 Point p2(2.,3.);

8

C++: Classes

• Members can be PUBLIC, PRIVATE, or PROTECTED:

• Public: Available to all classes
• Private: Available only to this class
• Protected: Available to derived classes (more later)

• Principle of least privilege: Make PRIVATE unless you
need it publicly

• This is called the “public interface”
• The private bit is called the “implementation”

–I like to append an underscore to the end of private
implementation members

9

C++: Classes

• Example:
class Point {
 public:
 Point(double ix=0., double iy=0.) { x_=ix;y_=iy;}
 ~Point(){}

 void print() const {
 std::cout << "(" << x_ << "," << y_ << ")" << std::endl;
 };

 double x() const { return x_;}
 double y() const { return y_;}

private:
 double x_;
 double y_;

};

10

C++: Classes

• What about “const”?
• A constant object can be declared const
• Methods that MODIFY the class would not be…um…

const.
• You need to tell the compiler which methods can be called

on const objects:

void print() const {
 std::cout << "(" << x_ << "," << y_ << ")" << std::endl;
 };

11

C++: Operator Overloading

• Can REDEFINE operators for your type (“operator
overloading”)

• For example, can define “+”, “-“, “+=“, and “-=“ to add or
subtract two points

 Point operator+(Point const & right) const {
 Point retval(x_ + right.x_, y_ + right.y_);
 return retval;
 }

 Point operator-(Point const & right) const {
 Point retval(x_ - right.x_, y_ - right.y_);
 return retval;
 }

 Point & operator+=(Point const & right) {
 x_ += right.x_; y_ += right.y_ ;
 return *this;
 }

 Point & operator-=(Point const & right) {
 x_ -= right.x_; y_ -= right.y_ ;
 return *this;
 }

12

careful!
+ and - are const,
+= and -= are not const
return BY VALUE for + and -,
BY REFERENCE for += and -=

C++: Operator Overloading

• To use:

 Point sum = p1 + p2;
 Point dif = p1 - p2;
 sum += p1;
 dif -= p2;

13

C++: Operator Overloading

• Can overload all of these operators:
• Arithmetic: + - * / % += -= *= /= %=
• Bitwise logic: ˆ & | ˆ= &= |= << >> >>= <<=
• Destructor: ~
• Assignment: =
• Logic : ! < > == != <= >= && ||
• Increment/decrement:++ --
• Dereferences: ->* ->
• Function calls: ()
• Array indices: []

• Will play with a few in your HW

14

C++: Classes and Scope

• Classes define a unique scope
• The functions of the classes are prepended with the scope.
• Example:

–void Point::print() const

15

Header Files

16

C++: Definitions and Declarations

• Just like with functions, classes can have separate
declarations and definitions

• Implementation (declarations) in header file
• Source (definitions) in a separate C++ file
• Then you can #include “Header.h”, and then LINK the

objects together later.

17

class Point {
 public:
 Point(double ix=0.,
 double iy=0.);
 ~Point();
 void print() const;
 double x() const;
 double y() const;
 private:
 double x_;
 double y_;
};

Declare in header:

#include "Point.h"
Point::Point(double ix, double iy) {
 x_=ix;y_=iy;
}
Point::~Point(){}
void Point::print() const {
 std::cout << "(" << x_ << "," << y_ << ")" << std::endl;
};
double Point::x() const { return x_;}
double Point::y() const { return y_;}

Define in separate file:

C++: Header Files

• We’ve been using header files all along
(#include <iostream>)

• In your homework you should make your own header file
(StudentRecord.h) with the StudentRecord class in it.

• Then include into your “main” files with
#include “StudentRecord.h”

• Note the “” versus <>:
–“”: Looks in current directory.
–<>: Looks in default directories.

18

C++: Header Files

• Caveat! Can declare any number of times, so need to
protect against multiple inclusion of code

• Use a preprocessor directive:

19

#ifndef Point_h
#define Point_h
class Point {
 (bla bla bla)
};
#endif

C++: Header Files

• A bit fancier:
–DECLARE the class in the header file
–DEFINE the class in the source file
–COMPILE the source into an object library
–LINK the “main” source file to the object library
–RUN!

20

Hands on

• Go to “ClassExamples”:

g++ -o read_points_example Point.cc
read_points_example.cc -I.

g++ -o read_points_example_strstream Point.cc
read_points_example_strstream.cc -I.

• Or (better!) put it in a Makefile!

21

Makefiles

22

Makefiles

• Series of rules to execute in order:

23

read_points_example: Point.cc read_points_example.cc
g++ -o read_points_example Point.cc read_points_example.cc -I.

read_points_example_strstream: Point.cc read_points_example.cc
g++ -o read_points_example_strstream Point.cc

read_points_example_strstream.cc -I.

all: read_points_example_strstream read_points_example

clean:
rm *.o *~ read_points_example_strstream read_points_example

Target
Dependencies

Rule

Makefiles

• Can also do all sorts of fancy things with Makefiles
–You’re encouraged to read about them but are not really

responsible for writing them
• Example: Compile all the cc files in a directory and make

executables (from “BasicExamples”):

24

CXX = g++
CXXFLAGS = -std=c++11

all: $(patsubst %.cc, %.out, $(wildcard *.cc))

%.out: %.cc Makefile
 $(CXX) $(CXXFLAGS) $< -o $(@:.out=)

clean: $(patsubst %.cc, %.clean, $(wildcard *.cc))

%.clean:
 rm -f $(@:.clean=)

Use g++
Use the C++11 standard

To make “all”, compile
cc files to “.out” exe files

Make the .out files, but don’t
use the “.out” suffix

Remove transients

Define “make clean” to use the “clean” statement

25

