
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Code

• Code is in
–CompPhys/ReviewCpp/InheritanceExamples
–CompPhys/ReviewCpp/Maps
–CompPhys/ReviewCpp/TemplateExamples

2

Inheritance

3

C++: Inheritance

• You’ve already seen inheritance:
–std::istream is a PARENT of std::ifstream

• Base (parent) classes are more general
• Derived (child) classes are more specific

4

C++: Inheritance

• Distinguish between “has a” and “is a” relationships

• Example:
–A Honda HAS A motor
–A Honda IS A car

• Now: make this into a data model

5

C++: Inheritance

• Example: StudentRecord

• From your homework, you looked
at StudentRecord.

• StudentRecord HAS A first name
• StudentRecord HAS A last name
• StudentRecord HAS A score

6

class StudentRecord {
. . .

 std::string firstname_;
 std::string lastname_;
 double score_;

};

C++: Inheritance

• Now try to make this into an interface with SPECIALIZED
attributes

• Suppose we have a special StudentRecord, i.e. a record
with a student’s score in a specific class (say, Physics).

• How do we generalize?
–Make a BASE CLASS out of StudentRecord
–Make DERIVED CLASSES to implement the specifics

7

C++: Inheritance

• Syntax:

8

class StudentRecord {
. . .

};

class StudentRecordForAlgebra :  
 public StudentRecord {
. . .

};

Base Class

Derived Class

Inherits PUBLICLY from StudentRecord
(can have private but don’t worry about it)

C++: Inheritance

• What’s the use?
–Generalization!

• Suppose you have a base class, “Car”, and two derived
classes “Honda” and “Chevy”. You want to write code to
have a robot fill up the gas tank.

• The logic is really about Cars, not Hondas or Chevies.
–So something like:

9

class Car {
 bool fill(Gas const & gas);
};
class Chevy : public Car {???};
class Honda : public Car {???};

C++: Inheritance

• Syntax is to make the function VIRTUAL in the base class:

• Then OVERRIDE them in the derived classes and fill in
relevant details:

10

class Car {
 virtual bool fill(Gas const & gas);
};

class Chevy : public Car {
 virtual bool fill(Gas const & gas){
 fillLeftSide(gas);
 }
};
class Honda : public Car {
 virtual bool fill(Gas const & gas){
 fillRightSide(gas);
 }  
};

C++: Inheritance

• In C++:
–Use “virtual” keyword

• In C++11 and later: can use “override” keyword:

11

class Chevy : public Car {
 virtual bool fill(Gas const & gas){
 fillLeftSide(gas);
 }
};

class Chevy : public Car {
 bool fill(Gas const & gas) override {
 fillLeftSide(gas);
 }
};

This is a bit stricter, requires that the
function be exactly the same as a
virtual function in the base class.

C++: Inheritance

• Now we understand “public”, “protected”, and “private”:

• Public: available to all code
• Protected: available to “this” class and any derived classes
• Private: available only to “this” class

12

C++: Inheritance

• With inheritance, you can use polymorphism:
–Call code from the DERIVED class by accessing through

the BASE class

13

std::vector< Car *> cars;
Chevy malibu;
Honda accord;
cars.push_back(&malibu);
cars.push_back(&accord);

for (Car * pcar : cars) {
 pcar->Fill(gas);
}

Can make BASE CLASS POINTERS
to the derived class objects

Then treat them the same way in code
without having to know specific details!

C++: Inheritance

• This works through the VIRTUAL TABLE (vtable)
–Pointer to code that is defined at RUN TIME

• “Dynamic binding” or “late binding”
• To call derived classes, need to DEREFERENCE the pointer in the

vtable
– This can sometimes lead to poorer performance… more later

–Depending on run-time value of objects, looks at a
different class

• Example:

14

std::vector< Car *> cars;
Car * pcar_1 = get_car_from_user();
Car * pcar_2 = get_car_from_user();
cars.push_back(pcar_1);
cars.push_back(pcar_2);

for (Car * pcar : cars) {
 pcar->Fill(gas);
}

C++: Inheritance

• If your base class doesn’t actually refer to a real type, it is
a PURE INTERFACE

• Also known as an “abstract base class”

• In our “Car” example, there is no such model of “Car” that
is just “Car”. You need to have a Honda or a BMW or a
Toyota or a Chevy or a Ford.
–Therefore Car should be abstract!

• Syntax: provide virtual DECLARATION of a function, with
no DEFINITION, set it equal to zero:

15

class Car {
 virtual bool fill(Gas const & gas) = 0;
};

C++: Inheritance

• Example of generalizing StudentRecord:

• Suppose we have a specialized cases of StudentRecord:
–StudentRecordPhysics : inputs TWO scores
–StudentRecordLiterature : inputs THREE scores

• To make generic: make “base” class have a
vector<double> to represent scores

16

Friends

17

C++: Friend Classes

• Data access:
–Protected : derived classes

• What about OTHER classes or functions you want to be
able to access?
–Friends!

–Yes, really.

• One common use : operator<< and operator>>

18

C++: Friend classes

• Syntax is pretty simple: in your class definition, just like the
Mines of Moria:

• speak friend, and enter

19

class A{
public:

 friend class B;
};

B now has access to all of A’s private
and protected data

C++: Friend Classes
• Often use for operator<< and operator>>:

• In header (.h) file:

• In source (.cc) file:

20

class StudentRecord {
 public:
 . . .

 friend std::ostream & operator<<(std::ostream & out, StudentRecord const &);
 friend std::istream & operator>>(std::istream & in , StudentRecord const &);
}

std::ostream & operator<<(std::ostream & out, StudentRecord const &right)
{ right.print(out); return out; }

std::istream & operator>>(std::istream & in, StudentRecord &right)
{ right.input(in); return in; }

Hands on

• Folder “InheritanceExample”

• Type “make” and you get the executable

21

Class Templates

22

C++: Templates

• We’ve been using templates since last week:
• Operates on ANY class
• std::vector<int>, std::vector<double>,

std::vector<StudentRecordPhysics>, etc

• Now let’s look a bit deeper

23

C++: Class Templates

24

Cookie
Cookie

template

template< class T>
class Storage

Class
template

ClassStorage<int> s(2);

C++: Class Templates

• Similar to function templates, declare with
“template <class T>”

• Then the code you write has a PLACEHOLDER value
called “T”. “T” is not a class. It is a dummy. It does not
exist.

• This defines an INTERFACE to operate on the class object

25

C++: Class Templates

• So std::vector<T> is a template

• It doesn’t matter if “T” is a float or an int (or a
StudentRecord), the operations of “std::vector” are
unchanged!

• Class template std::vector<T>, then make classes like
std::vector<int>, std::vector<StudentRecordPhysics>, etc.

26

C++: Class Templates

• If you do not correctly set up your templates, you will get
sixty-seven pages of compiler warnings

• It issues the warnings for EVERY instance of the class
template

• Usually the first one is the one you care about, and it is
actually usually descriptive, so READ THEM!

27

C++: Class Templates

• Can also have MULTIPLE template parameters
• Example: Associative container “std::map”

–Like a vector, but has an abstract KEY and can be sorted
in any way you like “Compare”

• Example: “Maps”

28

template<
 class Key,
 class T,
 class Compare = std::less<Key>,
 class Allocator = std::allocator<std::pair<const Key, T> >
> class map;

http://en.cppreference.com/w/cpp/utility/functional/less
http://en.cppreference.com/w/cpp/memory/allocator
http://en.cppreference.com/w/cpp/utility/pair

