
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Advanced C++

• C++ underwent major revision in
mid-00’s

• C++0x (x was supposed to be 4,
but..) turned into C++11

• There is now C++17, other updates

• Major changes in C++11

2

https://en.wikipedia.org/wiki/C%2B%2B11

Advanced C++

3

Copy : member data is cloned

http://avidinsight.uk/2013/05/understanding-cpp11-move-semantics/

template <class T> swap(T& a, T& b)
{
 T tmp(a); // now we have two copies of a
 a = b; // now we have two copies of b
 b = tmp; // now we have two copies of tmp (aka a)
}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html

Expensive!

Advanced C++

4

Move : member data is reassigned

http://avidinsight.uk/2013/05/understanding-cpp11-move-semantics/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html

Cheap!

Advanced C++

5

Move : member data is reassigned

http://avidinsight.uk/2013/05/understanding-cpp11-move-semantics/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html

Cheap!

Setting this to “null” is
not allowed in C++03!

But not supported in
old C++

Advanced C++

6

lvalue reference rvalue reference

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html

A a;
A& a_ref1 = a; // an lvalue reference

A a;
A&& a_ref2 = a; // an rvalue reference

A& a_ref3 = A(); // Error!
A&& a_ref4 = A(); // Ok

rvalue reference can bind to a TEMPORARY variable!

After function A()’s temporary return value goes out of scope,
does not delete the memory used for it

Advanced C++

• Move semantics

7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html

template <class T> swap(T& a, T& b)
{
 T tmp(std::move(a));
 a = std::move(b);
 b = std::move(tmp);
}

Moves a’s member data to tmp, state of a is undefined
Moves b’s member data to a, state of b is undefined
Moves tmp’s member data to b, state of tmp is undefined

Advanced C++

• How does this help?

8

Old annoying way

void modify(A & a){
 ...
}
A a;
A retval;
modify(retval);

Old bad way

A modify(A & a){
 return A(a);
}
A a;
A retval = modify(a);

Easy to write.
Lots of copies.
Really dumb.

Performant.
Annoying to write.

New way, “explicitly”:

A modify(A & a){
 return A(a);
}
A a;
A && retval = modify(retval);

Performant.
Confusing.

New way, “implicitly”:
A modify(A & a){
 return A(a);
}
A a;
A retval = modify(retval);

Easy to write.
Performant.“A” must have a

move constructor!

wins!

Advanced C++

• The “new way” with C++11 looks just like the “old way”
how you wanted all along, but requires a “move
constructor” to be guaranteed to be implemented correctly

• Move constructor example (std::vector):

9http://www.modernescpp.com/index.php/c-core-guidelines-copy-and-move-rules

template<typename T>
class Vector {
 // ...
 Vector(Vector&& a) noexcept :elem{a.elem}, sz{a.sz} { a.sz = 0; a.elem = nullptr; }
 Vector& operator=(Vector&& a) noexcept { elem = a.elem; sz = a.sz; a.sz = 0; a.elem = nullptr; }
 // ...
public:
 T* elem;
 int sz;
};

(“noexcept” means it cannot throw exception… it’s complicated)

Set “this” values to those of “a” Set “a” values to zero

Advanced C++

• So now, to make your code performant, implement the
“Rule of 5”:
–Copy constructor
–Move constructor
–Copy operator=
–Move operator=
–Destructor

• See “AdvCpp”!

10

Advanced C++

• “Old school” C++ (03 and earlier) :
Initializing data was annoying

11

https://en.wikipedia.org/wiki/C%2B%2B11

int aa[] = {1,2,3,4};
std::vector<int> a(aa);

Old way

std::vector<int> a = {1,2,3,4};

New way

Better way to initialize lists in
new standard

Advanced C++

• Type inference

–Previously: had to explicitly state type
–Now : compiler can deduce the type

12
https://en.wikipedia.org/wiki/C%2B%2B11

std::vector< std::map<int,float>::const_iterator >::const_iterator i = v.begin();

Old way

auto i = v.begin();

New way

Can also use “decltype” (declare type) to make other variables of that type!

decltype(i) j = i+2;

Advanced C++

• Range-based for loop
–Looked this before, can be combined with “auto” to make

things very compact

13

vector<int> aa= {1,2,3,4};
for (auto x : aa)
 cout << x << endl;

Advanced C++

• Anonymous (lambda) functions

–Imagine you want to sort:

14

Previously: C++11:

[](int x, int y) -> int { return x + y; }

https://en.cppreference.com/w/cpp/algorithm/sort

// sort using a custom function object
 struct {
 bool operator()(int a, int b) const
 {
 return a < b;
 }
 } customLess;
 std::sort(s.begin(), s.end(), customLess);

// sort using a lambda function
 std::sort(s.begin(), s.end(),
 [](int a, int b){return a < b;});

Lots less typing

Advanced C++

• Can allocate lists of whatever types you want (tuples)

15

typedef std::tuple <int, double, long &, const char *> test_tuple;
long lengthy = 12;
test_tuple proof (18, 6.5, lengthy, "Ciao!");

lengthy = std::get<0>(proof); // Assign to 'lengthy' the value 18.
std::get<3>(proof) = " Beautiful!"; // Modify the tuple’s fourth element.

Advanced C++

• Better pointers
–std::shared_ptr is like a regular pointer, but calls “delete”

when it goes out of scope automatically:

–Can also now hold vector<shared_ptr> (in previous C++,
had auto_ptr, but this was not supported)

16

std::vector< std::shared_ptr<A> > v_stuff;

v_stuff can hold a list of A *,
or ANYTHING derived from A!

shared_ptr<A> factory_for_A(){
 return shared_ptr<A> (new A());
}
shared_ptr<A> a = factory_for_A();

Advanced C++

• We’ve seen some examples of objects from the Standard
Template Library (STL).
–std::vector, std::map, std::string, etc
–http://www.cplusplus.com/reference/stl/

• There are many algorithms that can operate on them!
–std::sort, std::find, etc
–https://en.cppreference.com/w/cpp/algorithm

• This brings the full power of C++ and templates to bear
–Fast. Performant. Not terrible syntax.

• The STL documentation should become your absolute best
friend when coding C++

17

http://www.cplusplus.com/reference/stl/
https://en.cppreference.com/w/cpp/algorithm

Advanced C++

• Example : Sorting:
–https://en.cppreference.com/w/cpp/algorithm/sort

–Example: AdvCpp/sorting.cpp

18

https://en.cppreference.com/w/cpp/algorithm/sort

