
PY410 / 505 
Computational Physics 1 

Salvatore Rappoccio

1



Vectorization

• Example in the “Vectorization” directory 

• “Advanced” topic, but critical for numeric programming 
these days

2



Flynn’s Taxonomy

• Up until now, we have basically assumed we have a 
single instruction, single data (SISD) model: 

• 1 CPU processes data  
from 1 location 

• Parallelization 
is achieved by just repeating 
this: 
–Single program, multiple data (SPMD)

3https://en.wikipedia.org/wiki/Flynn%27s_taxonomy



Flynn’s Taxonomy

4

Single instruction Multiple instruction

Single data

Multiple data



Flynn’s Taxonomy

5

=

=



SIMD

• SIMD has become more popular 
because of vectorized processing 
units 
–GPUs 
–New CPUs 

• Vector units do N identical 
operations in the same amount of 
time that it takes to do one of them, 
on different addresses in memory 

• Speed comes from data access  
–“Get me N ints” versus “Get me 

an int”, N times
6



Architecture of processors
• Processing units now 

contain caches of memory 
with fast access. 

• Can have different levels of 
cache (small but fast versus 
large but slow) 

• Then memory 
• Then disk 

• Accessing cache is much 
faster than accessing 
memory 

• Accessing memory is much 
faster than accessing disk

7
https://en.wikipedia.org/wiki/Cache_hierarchy



Architecture of processors
• Cooking analogy:

8

CPU Cache

Memory Disk



Vector processing

• Same operation done many times over a vector of data 
(SIMD!) 

• Traditionally: done with loops 
• Now: done with vector unit, if possible

9

 for (i = 0; i < 1024; i++)
    C[i] = A[i]*B[i];

    C = A*B;

Get next bread. 
Slice. 
Get next bread. 
Slice. 
Get next bread. 
Slice.

Slice all the bread.

https://en.wikipedia.org/wiki/Vector_processor



Unrolling loops

• There are also advantages to unrolling loops:

10

 for (i = 0; i < 1024; i++)
    C[i] = A[i]*B[i];

Get next bread. 
Slice. 
Get next bread. 
Slice. 
Get next bread. 
Slice.

 for (i = 0; i < 1024; i+=4){
    C[i+0] = A[i+0]*B[i+0];
    C[i+1] = A[i+1]*B[i+1];
    C[i+2] = A[i+2]*B[i+2];
    C[i+3] = A[i+3]*B[i+3];
 }

Get four slices of bread. 
Slice.

https://en.wikipedia.org/wiki/Loop_unrolling



Vectorization in Practice

• Scalar: 

• Vectorized:

11

 for (i = 0; i < 1024; i++)
    C[i] = A[i]*B[i];

  for (i = 0; i < 1024; i+=4)
     C[i:i+3] = A[i:i+3]*B[i:i+3];

https://en.wikipedia.org/wiki/Automatic_vectorization

Implicitly or explicitly unrolling loops can  
allow the compiler to appropriately vectorize the operation



Test case

• We will use the simple addition of two large vectors 
(100000 elements) as a demonstration in various 
scenarios: 
–C++ without optimization 
–C++ with non-vectorization optimizations 
–C++ adding vectorization optimizations 
–Python itself 
–Numpy within python

12



Comparisons

13

C++, -O0 C++, -O1 C++, -O2 python python+ 
numpy

Vector, 
unknown 
size

825 585 150 31862 460

Vector, 
known size 736 564 93

Static array 576 564 525

Static array, 
manual 
unroll

132 97 93


