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Code for this lecture

• Code will be found in  
–https://github.com/ubsuny/CompPhys/tree/main/

DataAnalysis/Fitting 
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https://github.com/ubsuny/CompPhys/tree/main/DataAnalysis/Fitting
https://github.com/ubsuny/CompPhys/tree/main/DataAnalysis/Fitting


Some documentation for you for today’s class

• Statistics derivation is best described in the Particle Data 
Group :  
–http://pdg.lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf 

• You can also check the Numerical Recipes if you want 
(although not necessary, strictly speaking):  
–http://apps.nrbook.com/empanel/index.html
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http://pdg.lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf
http://apps.nrbook.com/empanel/index.html#


First Example : Hubble’s Law

• As a first physics application, we will study Hubble's Law, 
and learn how to perform a least squares fit to Edwin 
Hubble's measurements on extra-galactic nebulae given 
in his 1929 article. 

• This is a linear fit, which will give us some intuition about 
fitting in general
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http://en.wikipedia.org/wiki/Hubble's_law
http://www.pnas.org/content/15/3/168.full.pdf


Hubble’s Law
• Galaxies are collections of 

hundreds of billions of stars 
–Very enormous! 

• Here’s a picture from the Hubble 
telescope released in 2012 showing 
lots of different galaxies from the 
Hubble extreme Deep Field 

• http://en.wikipedia.org/wiki/
Hubble_Extreme_Deep_Field 

• This is a photo of an event 13.2 
billion years ago, just after the 
universe underwent inflation! 

• And for a comical perspective : 

5

http://en.wikipedia.org/wiki/Hubble_Extreme_Deep_Field
http://en.wikipedia.org/wiki/Hubble_Extreme_Deep_Field
http://www.youtube.com/watch?v=buqtdpuZxvk


Hubble’s Law

• We’re going to analyze the data from the original 1929 paper 
• Local Group Galaxy NGC 6822  (Barnard’s Galaxy) 
• r = 0.214 Mpc (1 Mega-parsec = 3.086x1019 km) moving 

towards us with speed  v = 130 km/s.
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http://apod.nasa.gov/apod/ap020123.html


Hubble’s Law

• Hubble used this equation to determine a linear 
relationship :  

• Plotting the data : 
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Hubble’s Law
• How do we get the luminosity for distant 

objects?  
• Use Cepheid Variables! 

–http://en.wikipedia.org/wiki/Cepheid_variable  
• Luminosity of the star can be estimated from its 

period! 
–Period is very easy to measure 
–Convert to luminosity 

• For instance : Delta Cephei:  
–http://en.wikipedia.org/wiki/Delta_Cephei 
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http://en.wikipedia.org/wiki/Cepheid_variable
http://en.wikipedia.org/wiki/Delta_Cephei


Hubble’s Law

• Why do we expect that the further the distance of the 
galaxy, the faster they should be moving away from us? 

• A priori, no reason 
• It just happens to be so in our universe! 

• So, now for a bit of general relativity and cosmology
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General Relativity

• http://en.wikipedia.org/wiki/General_relativity 

• Relates gravity to the curvature of space-time! 

• Objects with mass or energy distort space-time, and this 
induces a gravitational field
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http://en.wikipedia.org/wiki/General_relativity


General Relativity

• Space-time is a tensor 
• So gravity is a tensor  

• Einstein’s equations :
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General Relativity

• That’s a huge set of nonlinear partial differential equations, 
and can be arbitrarily complicated (       has no constraint 
to its format) 

• A few simple cases can be derived :  
– If spacetime is homogeneous and isotropic, this is the 

Robertson-Walker metric :  

–Assuming that the matter+radiation behave like a 
uniform perfect fluid with density     and pressure p, this 
is the Friedmann-Lamaitre equations:
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Supernovae
• Supernovae occur when a star 

exhausts its hydrogen fuel, and 
blows off the outer shell 

• It reduces in size, but the Pauli 
exclusion principle prevents 
collapse 
–White dwarf 

• White dwarf then accretes 
material from nearby stars 

• The core explodes in a 
thermonuclear  event 

• That’s the supernova! 
• This emits light at specific 

frequencies, which can be used 
to estimate the distance!
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SN 1604 (discovered by Johannes Kepler)



Supernovae
• Supernovae occur when a star exhausts its hydrogen fuel, and blows 

off the outer shell 
• It reduces in size, but the Pauli exclusion principle prevents collapse 

–White dwarf 

• White dwarf then 
accretes material 
from nearby stars 

• The core explodes in 
a thermonuclear  
event 

• That’s the supernova! 
• This emits light 

at specific frequencies, 
which can be used to 
estimate the distance!

14http://chandra.harvard.edu/photo/2013/g19/g19_BU_sm_web.mov

http://chandra.harvard.edu/photo/2013/g19/g19_BU_sm_web.mov


Supernovae

• PDG’s Review of big bang cosmology has a nice set of data 
:  

• http://pdg.lbl.gov/2012/reviews/rpp2012-rev-bbang-
cosmology.pdf  

• Brightness is measured by absolute magnitude “M” 
• Apparent magnitude is “m”  
• M is equal to m at 10 pc 
• r is distance in pc 
• Distance modulus is :  

• Luminosity distance is : 
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http://pdg.lbl.gov/2012/reviews/rpp2012-rev-bbang-cosmology.pdf
http://pdg.lbl.gov/2012/reviews/rpp2012-rev-bbang-cosmology.pdf


Supernovae
• The distance modulus is approximately (for distant SN’s) 

• Combine with G.R. doppler shift :  

• We conclude that faster objects  
have more redshift! 

• There is a linear relationship  
between brightness and redshift  
for supernovae! 
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(Careful : we will use the distance 
modulus and not luminosity distance 
since that’s what we have data for )

http://dark.dark-cosmology.dk/~tamarad/SN/

http://dark.dark-cosmology.dk/~tamarad/SN/


Supernovae

• Specifics don’t matter here, but we just want to state the 
relation of redshifts of galaxies to their velocities 

• Obtained from G.R. doppler shift! 
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Frequency when emitted 
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Redshift Speed of the 
galaxy relative to 
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I don’t expect you to be able to derive this, but 
we’ll just fit the data



Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Linear fits

• Want to fit a line to a bunch of points 
• Let’s think for a bit about what this means and how we 

should expect to implement it
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Linear fits

• Think about the simplest case : 1 point. 

–What happens here? 
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Linear fits

• Think about the simplest case : 1 point. 

–What happens here?  

• Nothing! You can’t fit a line to a point.  
–So, this should be checked before we attempt to 

fit anything
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Linear fits

• OK, next simplest case : 2 points 

–What happens here? 
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Linear fits

• OK, next simplest case : 2 points 

–What happens here?  

• That’s easy too : there’s no fit, you just draw a line
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Linear fits

• What about 3 points? 
–Now this gets interesting! 

• There’s degeneracy that you can exploit 

• If the three points are colinear, this works
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Linear fits

• What about 3 points? 
–Now this gets interesting! 

• There’s degeneracy that you can exploit 

• If the three points are colinear, this works 
• Otherwise, it doesn’t!
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Cannot draw a line to connect these three!



Linear fits

• So what do we do? We can’t just give up! 

• Very important aspect to remember :  
–These points are not points : they are actually 

ellipses! 
–They come with  

uncertainties!

26



Linear fits

• The uncertainties can come from two sources :  
–Statistical sampling 

–Systematic effects
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Uncertainty

• The uncertainties can come from two sources :  
–Statistical sampling 

• From variations in repeated trials 
• Mathematically “well-behaved” 
• Easy to estimate 

–Systematic effects 
• Intrinsic uncertainty from non-deterministic sources 
• Not mathematically “well-behaved” 
• Difficult to estimate
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Uncertainty

• Example : measuring distance with a ruler 
–Systematic limitation : ruler has finite width of the lines, 

and finite number of lines to measure! 

–Statistical variation : you can try to repeat the same 
measurement over and over to get a better estimate of 
the “true” value
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Uncertainty

• Easy one first : statistical uncertainties 

• Problem stated :  
–We have a true value 

–We have several measured values  

–How well can we estimate      given                                ?
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Uncertainty

• Central limit theorem! 
–http://en.wikipedia.org/wiki/Central_limit_theorem 

• If your measurements are uncorrelated :  
–As you make more measurements, they follow a 

Gaussian (or “normal”, or bell-shaped curve) distribution 
–http://en.wikipedia.org/wiki/Normal_distribution
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Increasing 
number 

of measurements
Called a “probability 
distribution function” 

(or PDF)

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Normal_distribution


Uncertainty

• So, the distribution of values will follow a Gaussian 
distribution for statistical uncertainties 

• We usually quote the “sigma” (  ) of the Gaussian as the 
uncertainty band 

• What about systematic effects?  
–If you repeat the trial again and again, what happens?  
–It’s a systematic effect, so you actually get basically the 

same thing!
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Uncertainty
• Systematic uncertainties are very hard to estimate 

• Typically we (as scientists) “reckon” them in some way 
–Control samples 
–Minimum resolution of your device 
–And so on 

• So, the probability distribution function for these are basically FLAT 
–You don’t know where it is, but it’s somewhere within that range
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Uncertainty

• You now say : “Sal, I thought you were supposed to teach 
me about programming? I haven’t seen a line of code yet!” 

• “Ah, my good students,” I reply. “But remember we must 
understand what we’re doing!”
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Uncertainty

• So why am I telling you all of this? 

–The systematic effects don’t follow a mathematical 
formalism  

–The statistical effects do follow a mathematical formalism 

–So, we usually just pretend that systematic effects are 
like statistical effects, and assume Gaussian 
uncertainties too!
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Linear fits

• So, back to linear fits! 
• What the heck are these circles? 

–They’re the uncertainties! 

• We’ll just pretend that they’re statistical 
–Scientists usually pretend they’re Gaussian anyway!

36



Linear fits

• So now, what do we actually want to do? 

• We want to draw the line that intersects all of the 
possible uncertainty ellipses :
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Linear fits

• So now, what do we actually want to do? 

• We want to draw the line that intersects all of the 
possible uncertainty ellipses :
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BAD : we’re ignoring the third point 
entirely! So what to do? 



Linear fits

• So now, what do we actually want to do? 

• We want to draw the line that intersects all of the 
possible uncertainty ellipses :
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BAD : we’re ignoring the third point 
entirely! So what to do? 

Minimize the least-squares distance!



Linear fits

• So now, what do we actually want to do? 

• We want to draw the line that intersects all of the 
possible uncertainty ellipses :
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Minimize the least-squares distance!



Linear fits

• So what exactly do we want to compute, and what do we 
want to minimize? 

• Assume the data are described by  

• Presume first that all of the uncertainties are exactly the 
same 

• Then you just have to minimize the distance :
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Linear fits

• At the minimum, the derivatives are zero:  

• Can solve these simultaneously for the two unknowns a 
and b 
–Two equations, two unknowns! 

• Define the quantities : 
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Average of xi Average of yi Standard deviation of xi cross-term



Linear fits

• With this definition, can compute a and b :  

–This algorithm is discussed in Section 15.2: Fitting data 
to a straight line of Numerical Recipes. 

–(you can access a certain number of pages per month 
for free... but in any case, you don’t need this if you don’t 
want to use it)
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http://apps.nrbook.com/c/index.html
http://apps.nrbook.com/c/index.html
http://www.nr.com/


Linear fits

• But! We’re not quite done.  
• What are the uncertainties on a and b? 
• Actually, what we want is the uncertainty per degree of 

freedom of the fit 
• Degrees of freedom is : 

       number of data points  -  number of constraints 

• For a linear fit we have two constraints 

• Variance is therefore : 
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Linear fits

• What if the uncertainties are not all equal? 

• The same principle applies, but instead of minimizing the 
mean-squared distance : 

• You instead minimize the “chi-squared” which is the 
distance divided by the uncertainty :  

45
Note : This is only strictly true for GAUSSIAN uncertainties!



Linear fits

• How does this help? 

• It “ignores” values with large uncertainties  : 

• The two points on the ends are very precise 
• The third point in the middle is not precise 
• Good point to check for a unit test!
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Linear fits

• So how does this get modified? 
• Parameters and uncertainties are : 

• Where : 
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Linear fits

• With uncertainties on the inputs, you can compute 
“goodness of fit” 

• Why do you care?  
• All of these have the same fit : 
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Obviously, several 
of these are bad!



Linear fits
• The chi-squared per degree of freedom is what we’re looking for 

here 

• Roughly speaking, it’s the number of “standard deviations” that 
you’re “off” in the fit 

• If you’ve estimated your  
uncertainties correctly, it  
should follow a distribution  
of values called the  
“chi-squared” distribution :  

• http://en.wikipedia.org/wiki/Chi-squared_distribution 
• http://pdg.lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf 
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About 1 S.D. off :

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://pdg.lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf


Linear fits

• OK : moment of truth 

• We have two cases : with, and without uncertainties 

• Let’s do without first, it’s easier
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Pseudocode : No uncertainties
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input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   s_x += x_i 
   s_y += y_i 
   s_xx += x_i**2 
   s_xy += x_i*y_i 
den = n * s_xx - s_x*s_x 
if abs( den ) < 0.000001 :  
   print ‘Error! Denominator is zero!’ 
   return 
a = (s_xx * s_y - s_x * s_xy) / den 
b = (n*s_xy - s_x * s_y) / den    
for i = 0... N-1 : 
  sigma2 += (y_i - (a*x_i+b))**2 
sigma2 = sigma2 / (n-2)



Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Write code : No uncertainties
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Pseudocode

input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   s_x += x_i 
   s_y += y_i 
   s_xx += x_i**2 
   s_xy += x_i*y_i 
den = n * s_xx - s_x*s_x 
if abs( den ) < 0.000001 :  
   print ‘Error! Denominator is zero!’ 
   return 
a = (s_xx * s_y - s_x * s_xy) / den 
b = (n*s_xy - s_x * s_y) / den    
for i = 0... N-1 : 
  sigma2 += (y_i - (a*x_i+b))**2 
sigma2 = sigma2 / (n-2)

python



Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Hands-on!
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Pseudocode : With uncertainties

• Effectively the same as without uncertainties, with a few 
minor modifications
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Pseudocode : With uncertainties
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Compute S, Sx, Sy: 

Compute ti and S_tt

Compute a and b, and uncertainties :

Compute chi-squared :

input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   if abs( sigma_i ) < 0.00001 :  
      return 
   S += 1.0 / sigma_i**2 
   s_x += x_i / sigma_i**2 
   s_y += y_i / sigma_i**2 
for i = 0... N-1 :  
   t_i = 1.0 / sigma_i * (x_i-s_x/S) 
   s_tt = t_i**2 
   b += t_i * y_i / sigma_i 
if abs( S ) < 0.000001 :  
   return 
a = (s_y - s_x * b) / S 
b = b / s_tt 
sigma_a2 = (1 + s_x**2/S*s_tt) / S 
sigma_b2 = 1.0 / s_tt 
for i = 0... N-1 :  
   chi2 += ((y_i - a - b*x_i)/sigma_i)**2



Pseudocode : With uncertainties
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Compute S, Sx, Sy: 

Compute ti and S_tt

Compute a and b, and uncertainties :

Compute chi-squared :

input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   if abs( sigma_i ) < 0.00001 :  
      return 
   S += 1.0 / sigma_i**2 
   s_x += x_i / sigma_i**2 
   s_y += y_i / sigma_i**2 
for i = 0... N-1 :  
   t_i = 1.0 / sigma_i * (x_i-s_x/S) 
   s_tt = t_i**2 
   b += t_i * y_i / sigma_i 
if abs( S ) < 0.000001 :  
   return 
a = (s_y - s_x * b) / S 
b = b / s_tt 
sigma_a2 = (1 + s_x**2/S*s_tt) / S 
sigma_b2 = 1.0 / s_tt 
for i = 0... N-1 :  
   chi2 += ((y_i - a - b*x_i)/sigma_i)**2

Where did I mess up here!?!?!



Pseudocode : With uncertainties
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Compute S, Sx, Sy: 

Compute ti and S_tt

Compute a and b, and uncertainties :

Compute chi-squared :

input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   if abs( sigma_i ) < 0.00001 :  
      return 
   S += 1.0 / sigma_i**2 
   s_x += x_i / sigma_i**2 
   s_y += y_i / sigma_i**2 
for i = 0... N-1 :  
   t_i = 1.0 / sigma_i * (x_i-s_x/S) 
   s_tt = t_i**2 
   b += t_i * y_i / sigma_i 
if abs( S ) < 0.000001 :  
   return 
a = (s_y - s_x * b) / S 
b = b / s_tt 
sigma_a2 = (1 + s_x**2/S*s_tt) / S 
sigma_b2 = 1.0 / s_tt 
for i = 0... N-1 :  
   chi2 += ((y_i - a - b*x_i)/sigma_i)**2



Pseudocode : With uncertainties
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Compute S, Sx, Sy: 

Compute ti and S_tt

Compute a and b, and uncertainties :

Compute chi-squared :

input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   if abs( sigma_i ) < 0.00001 :  
      return 
   S += 1.0 / sigma_i**2 
   s_x += x_i / sigma_i**2 
   s_y += y_i / sigma_i**2 
for i = 0... N-1 :  
   t_i = 1.0 / sigma_i * (x_i-s_x/S) 
   s_tt = t_i**2 
   b += t_i * y_i / sigma_i 
if abs( S ) < 0.000001 :  
   return 
a = (s_y - s_x * b) / S 
b = b / s_tt 
sigma_a2 = (1 + s_x**2/S*s_tt) / S 
sigma_b2 = 1.0 / s_tt 
for i = 0... N-1 :  
   chi2 += ((y_i - a - b*x_i)/sigma_i)**2

Unlikely to happen, but good to be paranoid anyway!



Write code : With uncertainties

64

Pseudocode python
input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   if abs( sigma_i ) < 0.00001 :  
      return 
   S += 1.0 / sigma_i**2 
   s_x += x_i / sigma_i**2 
   s_y += y_i / sigma_i**2 
for i = 0... N-1 :  
   t_i = 1.0 / sigma_i * (x_i-s_x/S) 
   s_tt = t_i**2 
   b += t_i * y_i / sigma_i 
if abs( S ) < 0.000001 :  
   return 
a = (s_y - s_x * b) / S 
b = b / s_tt 
sigma_a2 = (1 + s_x**2/S*s_tt) / S 
sigma_b2 = 1.0 / s_tt 
for i = 0... N-1 :  
   chi2 += ((y_i - a - b*x_i)/sigma_i)**2



Write code : With uncertainties
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C++ tip : assert yourself!

• If you have a condition that your algorithm must fulfill, you 
can use a few C++ mechanisms to handle this.  

• Python handles exceptions on its own. 
• C++ behavior there is undefined, and compiler dependent! 
• So, you can use a simple “assert(condition)” to make sure 

it’s true 
• Alternatively you can use exception handling but that can 

get a little hairy. I won’t cover it in this class much (if at all). 
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Hands-on!
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 
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Recall : Development
• Step 1 : Write the algorithm down on paper 
• Step 2 :  

– If you don’t understand everything : goto step 1 
–else : continue 

• Step 3 : write pseudocode 
• Step 4 : continue 

–If you don’t understand everything : goto step 3 
–else : continue 

• Step 5 : write code 
• Step 6 : check code with unit tests 

–Check “pass” criterion 
–Check “fail” criterion 
–If unit test fails : goto Step 5 
–else : continue 

• Step 7 : Publish! 

70



Fitting curves

• What if we want to fit something besides a line? 

• Well, there are a few cases :  
1. Does change of variables in x and y make it a line? 
2. Everything else 

• In the first case, it’s actually easiest to just fit a line again 
–In fact, you’re technically doing this in your homework 

example! 

• In the second case, it’s also not much harder conceptually, 
but is more computationally intensive
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First case : transform to linear

• Say we have a model like  

• What do we do? 

• Take the logarithm of both sides!
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y = A eBx

ln y = lnA+Bx



First case : transform to linear

• OK, but what if I do a base-10 logarithm instead of natural? 

• Not a problem, just transform!  

• So in this case : 
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logb (x) =
logd (x)

logd (b)



First case : transform to linear

• OK, but what if I do a base-10 logarithm instead of natural? 

• Not a problem, just transform!  

• So in this case : 
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logb (x) =
logd (x)

logd (b)



First case : transform to linear

• Now try  

• Take the logarithm of both sides : 
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y = A xN

log y = logA+N log x



First case : transform to linear

• What about the uncertainties?  
• We did a change of variables :  

• So, propagating the uncertainties, we get : 

• So you just have to remember this in the chi-squared 
minimization 

• Example :
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y0 = f(y)

�2
y0 =

✓
@f

@y

◆2

�2
y

y0 = ln y = lnA+Bx

(Note : In Assignment 1 you’re already given         so you don’t have to worry!�y0

�y0 =
�y

|y|



First case : transform to linear

• Modulo that, it’s already a “solved problem” 
• You should be doing this in your homeworks already! 

77



Earthquakes

• Earthquakes occur when tectonic plates of the earth move 
relative to one another
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Earthquakes

• Earthquakes occur when tectonic plates of the earth move 
relative to one another
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No, not THAT Ring of Fire!



Earthquakes

• When they rub against each other, can get stuck! 
• Builds pressure, then slips, releasing a lot of energy 

• Seismographs can  
measure the  
vibrations on the  
surface
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Vectors show tectonic 
plate motion

H. Kanamori and E.E. Brodsky, The Physics of Earthquakes, Physics Today 54, 34-40 (2001) 
http://www.colorado.edu/physics/phys2900/homepages/Marianne.Hogan/graphs.html 

Magnitude is related to the squared  
amplitude over the event!

http://dx.doi.org/10.1063/1.1387590
http://www.colorado.edu/physics/phys2900/homepages/Marianne.Hogan/graphs.html


Earthquakes
• The “Richter scale” was developed by Richter in the 1930’s 
• Relates the LOCAL magnitude scale 

–Defined by the amount of amplitude variation on a 
seismograph 

• Replaced in the 1970’s by the MOMENT magnitude scale 

• Gutenberg-Richter Law Model :  
–Frequency (N) of earthquakes of magnitude (M) : 

defined as number of events with magnitude >= M 
–Empirical model : 
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ML

M0 = µSD

rigidity (stiffness module) area of fault

displacement of the plate

logN = a� bM

M ⇠ logM0



Earthquakes

• Frequency vs magnitude plot of earthquakes between 
1904 and 2000 : 

82H. Kanamori and E.E. Brodsky, The Physics of Earthquakes, Physics Today 54, 34-40 (2001)

http://dx.doi.org/10.1063/1.1387590


Earthquakes

• Get data from :  
–http://earthquake.usgs.gov/earthquakes/eqarchives/epic/  

• Many formats for the data file : 
–Map & List 
–CSV (comma-separated values) 
–KML (google-based geographical data representation) 
–QuakeML (XML for earthquakes) 
–GeoJSON (JSON for earthquakes) 

• We’ll go for CSV :
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:time,latitude,longitude,depth,mag,magType,nst,gap,dmin,rms,net,id,updated,place,type 
2010-01-01T02:33:42.590Z,32.476,-115.19,1.5,3.2,ml,22,175.8,,,pde,pde20100101023342590_1,2013-03-16T01:48:06.208Z,"Baja California, Mexico",earthquake 
2010-01-01T02:55:04.280Z,35.979,-117.321,0.8,2.8,ml,17,51.2,,,pde,pde20100101025504280_0,2013-03-16T01:48:06.336Z,"Central California",earthquake 
2010-01-01T03:25:29.970Z,36.031,-117.784,3.2,2.9,ml,13,50.8,,,pde,pde20100101032529970_3,2013-03-16T01:48:06.354Z,"Central California",earthquake 
2010-01-01T14:06:45.100Z,32.474,-115.215,8,3.1,ml,7,176.3,,,pde,pde20100101140645100_8,2013-03-16T01:48:06.753Z,"Baja California, Mexico",earthquake 
2010-01-02T03:15:45.200Z,33.576,-118.889,11.4,2.8,ml,7,252.5,,,pde,pde20100102031545200_11,2013-03-16T01:48:07.298Z,"Channel Islands region,

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/


Earthquakes

• Example : 
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Earthquakes

• The data we’ll fit : all earthquakes in southern California 
from 1973 until today
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The big picture
• Read in earthquake data 

• Compute N( >= M) 

• Transform to linear form 

• Fit via least-squares
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input data 
n = size of data 
if n < 2 :  
   print ‘Error! Not enough data!’ 
   return 
for i = 0... N-1 :  
   s_x += x_i 
   s_y += y_i 
   s_xx += x_i**2 
   s_xy += x_i*y_i 
den = n * s_xx - s_x*s_x 
if abs( den ) < 0.000001 :  
   print ‘Error! Denominator is zero!’ 
   return 
a = (s_xx * s_y - s_x * s_xy) / den 
b = (n*s_xy - s_x * s_y) / den    
for i = 0... N-1 : 
  sigma2 += (y_i - (a*x_i+b))**2 
sigma2 = sigma2 / (n-2)

open file 
get lines 
if error : exit 
else :  
  for line in lines : 
     parse value 
     record number, magnitude

for each number,magnitude pair :  
   y = log(number) 
   x = magnitude

N(M) = number with magnitude >= M



Numerical issues : logarithms

• Logarithms cannot be <= 0 
• Always need to check this! 
• Other than that, very nice  

because it transforms  
multiplication into addition!
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log x⇥ y = log x+ log y



Binning!

• Be sure to be careful about fitting binned data!

88

 least_squares fit to data: 
 slope b = -0.657 +-  0.014 
 intercept a =  4.914 +-  0.036 
 log_10(N) error bar =  0.214

 least_squares fit to data: 
 slope b = -0.795 +-  0.019 
 intercept a =  5.349 +-  0.084 
 log_10(N) error bar =  0.271



General fitting of curves

• For general curve-fitting, it’s not conceptually more difficult 

• However, it is computationally more difficult
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General fitting of curves

• Define the function and its parameters as :  

• Rewrite our chi-squred expression :  

• Now this actually should be obvious!  

• This completely generalizes to nonlinear y(x)
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�2(~a) ⌘
n�1X

i=0

✓
yi � y(x;~a)

�i

◆2

{a, b} ! ~a y = y(x;~a)

“y is a function of x, with parameters a”



General fitting of curves

• Still just minimizing the distance within the uncertainties
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General fitting of curves

• Still just minimizing the distance within the uncertainties
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General fitting of curves

• Same strategy as before : minimize the chi2! 

• So, let’s say that y(x) is some expansion of functions 
Yk(x) : 

• Then the chi2 is : 

93

�2(~a) ⌘
n�1X

i=0

✓
yi � y(x;~a)

�i

◆2

�2(x,~a) =
n�1X

i=0

1

�2
i

"
yi �

m�1X

k=0

akYk(x)

#2

y(x;~a) =
m�1X

k=0

akYk(x)

General fitting of curves



General fitting of curves

• We minimize :  

• Taking the derivative :  

• The 2*a_j cancels. Then we multiply the sum through, and 
bring over the second term, so we get : 
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General fitting of curves

• This is a matrix equation, so we define the “design matrix” :  

• Then our chi2 minimization becomes : 

• so :
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A =

2

4
Y1(x1)/�1 Y2(x1)/�1 . . .
Y1(x2)/�2 Y2(x2)/�2 . . .
. . . . . . . . .

3

5

Aij =
Yj(xi)

�i

(ATA)~a = AT~b

~a = (ATA)�1AT~b



General fitting of curves

• If we define the “correlation matrix” : 

• Then the uncertainty on aj is : 
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C = (ATA)�1

�aj =
p

Cjj



General fitting of curves

• As a first example, let’s look at polynomial fits 

• Slight generalization of the linear fit we did previously 
• General solution is to minimize the chi2 :  

• In this case : 
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�2(~a) ⌘
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i=0
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General fitting of curves

• Our design matrix is therefore :  

• Caveat : This oftentimes is ill-formed, so don’t go too crazy 
here. Typically we do quadratic, cubic, quartic, but above 
that it strains credibility. 
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Aij = xj
i/�i



General Fitting of Curves

• Will return to this after we do some linear algebra!
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