PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Code for this lecture

- Code will be found in
-https://github.com/ubsuny/CompPhys/tree/main/ DataAnalysis/Fitting

Some documentation for you for today's class

- Statistics derivation is best described in the Particle Data Group :
-http://pdg.|lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf
- You can also check the Numerical Recipes if you want (although not necessary, strictly speaking):
-http://apps.nrbook.com/empanel/index.html

First Example : Hubble's Law

- As a first physics application, we will study Hubble's Law, and learn how to perform a least squares fit to Edwin Hubble's measurements on extra-galactic nebulae given in his 1929 article.
- This is a linear fit, which will give us some intuition about fitting in general

Hubble's Law

- Galaxies are collections of hundreds of billions of stars
-Very enormous!
- Here's a picture from the Hubble telescope released in 2012 showing lots of different galaxies from the Hubble extreme Deep Field
- http://en.wikipedia.org/wiki/ Hubble Extreme Deep Field
- This is a photo of an event 13.2 billion years ago, just after the universe underwent inflation!

- And for a comical perspective :

Hubble's Law

- We're going to analyze the data from the original 1929 paper
- Local Group Galaxy NGC 6822 (Barnard's Galaxy)
- $r=0.214 \mathrm{Mpc}\left(1 \mathrm{Mega-parsec}=3.086 \times 10^{19} \mathrm{~km}\right)$ moving towards us with speed $v=130 \mathrm{~km} / \mathrm{s}$.

TABLE 1
Nebulae Whose Distances Have Bebn Estimated from Stars Involved or from

Hubble's Law

- Hubble used this equation to determine a linear relationship :

- Plotting the data :

Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble's Law

- How do we get the luminosity for distant objects?
- Use Cepheid Variables!
-http://en.wikipedia.org/wiki/Cepheid_variable
- Luminosity of the star can be estimated from its period!
-Period is very easy to measure
-Convert to luminosity
- For instance : Delta Cephei:
-http://en.wikipedia.org/wiki/Delta_Cephei

Hubble's Law

- Why do we expect that the further the distance of the galaxy, the faster they should be moving away from us?
- A priori, no reason
- It just happens to be so in our universe!
- So, now for a bit of general relativity and cosmology

General Relativity

- http://en.wikipedia.org/wiki/General relativity
- Relates gravity to the curvature of space-time!

- Objects with mass or energy distort space-time, and this induces a gravitational field

General Relativity

- Space-time is a tensor
- So gravity is a tensor

Stress-energy tensor (energy and momentum density of matter + radiation)

- Einstein's equations :

General Relativity

- That's a huge set of nonlinear partial differential equations, and can be arbitrarily complicated ($T_{\mu \nu}$ has no constraint to its format)
- A few simple cases can be derived :
-If spacetime is homogeneous and isotropic, this is the
Robertson-Walker metric :
Cosmological scale factor
$d s^{2} \equiv \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu \nu} d x^{\mu} d x^{\nu}=c^{2} d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$,
-Assuming that the matter+radiation behave like a uniform perfect fluid with density ρ and pressure p , this is the Friedmann-Lamaitre equations:

$$
H^{2} \equiv\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi G_{\mathrm{N}} \rho}{3}-\frac{k c^{2}}{R^{2}}+\frac{\Lambda c^{2}}{3}, \quad \frac{\ddot{R}}{R}=-\frac{4 \pi G_{\mathrm{N}}}{3}(\rho+3 p)+\frac{\Lambda c^{2}}{3}
$$

Hubble parameter: $\mathrm{H}(\mathrm{t} 0)=72 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ at present time

Supernovae

- Supernovae occur when a star exhausts its hydrogen fuel, and blows off the outer shell

SN 1604 (discovered by Johannes Kepler)

- It reduces in size, but the Pauli exclusion principle prevents collapse
-White dwarf
- White dwarf then accretes material from nearby stars
- The core explodes in a thermonuclear event
- That's the supernova!
- This emits light at specific frequencies, which can be used to estimate the distance!

Supernovae

- Supernovae occur when a star exhausts its hydrogen fuel, and blows off the outer shell
- It reduces in size, but the Pauli exclusion principle prevents collapse -White dwarf
- White dwarf then accretes material from nearby stars
- The core explodes in a thermonuclear event
- That's the supernova!
- This emits light at specific frequencies, which can be used to estimate the distance!

Supernovae

- PDG's Review of big bang cosmology has a nice set of data :
- http://pdg.lbl.gov/2012/reviews/rpp2012-rev-bbangcosmology.pdf
- Brightness is measured by absolute magnitude " M "
- Apparent magnitude is "m"
- M is equal to m at 10 pc
- r is distance in $p c$
- Distance modulus is :

$$
\mu \equiv m-M=5 \log _{10} r-5
$$

- Luminosity distance is :

$$
D_{L}=10^{\frac{(m-M)}{5}+1}
$$

Supernovae

- The distance modulus is approximately (for distant SN's)

$$
\mu=25+5 \log _{10}\left(\frac{c z}{H_{0}}\right)+1.086\left(1-q_{0}\right) z+\ldots
$$

- Combine with G.R. doppler shift :

$$
z+1=\frac{\nu_{1}}{\nu_{2}}=\frac{R_{2}}{R_{1}} \simeq 1+\frac{\nu_{12}}{c}
$$

- We conclude that faster objects have more redshift!
- There is a linear relationship between brightness and redshift for supernovae!

http://dark.dark-cosmology.dk/~tamarad/SN/
(Careful : we will use the distance modulus and not luminosity distance since that's what we have data for)

Supernovae

- Specifics don't matter here, but we just want to state the relation of redshifts of galaxies to their velocities
- Obtained from G.R. doppler shift!

> I don't expect you to be able to derive this, but we'll just fit the data

Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Linear fits

- Want to fit a line to a bunch of points
- Let's think for a bit about what this means and how we should expect to implement it

Cepheid variables

Velocity-Distance Relation among Extra-Galactic Nebulae.

Supernovae

Linear fits

- Think about the simplest case : 1 point.
-What happens here?

Linear fits

- Think about the simplest case : 1 point.
-What happens here?
- Nothing! You can't fit a line to a point.
-So, this should be checked before we attempt to fit anything

Linear fits

- OK, next simplest case : 2 points
-What happens here?

Linear fits

- OK, next simplest case : 2 points
-What happens here?
- That's easy too : there's no fit, you just draw a line

Linear fits

-What about 3 points?
-Now this gets interesting!

- There's degeneracy that you can exploit
- If the three points are colinear, this works

Linear fits

-What about 3 points?
-Now this gets interesting!

- There's degeneracy that you can exploit
- If the three points are colinear, this works
- Otherwise, it doesn't!

Cannot draw a line to connect these three!

Linear fits

- So what do we do? We can't just give up!
- Very important aspect to remember :
-These points are not points : they are actually ellipses!
-They come with uncertainties!

Linear fits

- The uncertainties can come from two sources :
-Statistical sampling
-Systematic effects

Uncertainty

- The uncertainties can come from two sources :
-Statistical sampling
- From variations in repeated trials
- Mathematically "well-behaved"
- Easy to estimate
-Systematic effects

- Intrinsic uncertainty from non-deterministic sources
- Not mathematically "well-behaved"
- Difficult to estimate

Uncertainty

- Example : measuring distance with a ruler
-Systematic limitation : ruler has finite width of the lines, and finite number of lines to measure!

-Statistical variation : you can try to repeat the same measurement over and over to get a better estimate of the "true" value

Uncertainty

- Easy one first : statistical uncertainties
- Problem stated :
-We have a true value \tilde{x}
-We have several measured values $x_{0}, x_{1}, \ldots x_{n-1}$
-How well can we estimate \tilde{x} given $x_{0}, x_{1}, \ldots x_{n-1}$?

Uncertainty

- Central limit theorem!
-http://en.wikipedia.org/wiki/Central limit theorem
- If your measurements are uncorrelated :
-As you make more measurements, they follow a Gaussian (or "normal", or bell-shaped curve) distribution
-http://en.wikipedia.org/wiki/Normal distribution

Called a "probability distribution function" (or PDF)

Uncertainty

- So, the distribution of values will follow a Gaussian distribution for statistical uncertainties
- We usually quote the "sigma" (σ) of the Gaussian as the uncertainty band

- What about systematic effects?
-If you repeat the trial again and again, what happens?
-It's a systematic effect, so you actually get basically the same thing!

Uncertainty

- Systematic uncertainties are very hard to estimate
- Typically we (as scientists) "reckon" them in some way -Control samples -Minimum resolution of your device -And so on
- So, the probability distribution function for these are basically FLAT -You don't know where it is, but it's somewhere within that range

Uncertainty

- You now say : "Sal, I thought you were supposed to teach me about programming? I haven't seen a line of code yet!"
- "Ah, my good students," I reply. "But remember we must understand what we're doing!"

Uncertainty

- So why am I telling you all of this?
-The systematic effects don't follow a mathematical formalism
-The statistical effects do follow a mathematical formalism
-So, we usually just pretend that systematic effects are like statistical effects, and assume Gaussian uncertainties too!

Linear fits

- So, back to linear fits!
- What the heck are these circles?
-They're the uncertainties!

- We'll just pretend that they're statistical
-Scientists usually pretend they're Gaussian anyway!

Linear fits

- So now, what do we actually want to do?
- We want to draw the line that intersects all of the possible uncertainty ellipses :

Linear fits

- So now, what do we actually want to do?
- We want to draw the line that intersects all of the possible uncertainty ellipses :

BAD : we're ignoring the third point entirely! So what to do?

Linear fits

- So now, what do we actually want to do?
- We want to draw the line that intersects all of the possible uncertainty ellipses :

BAD : we're ignoring the third point entirely! So what to do?

Minimize the least-squares distance!

Linear fits

- So now, what do we actually want to do?
- We want to draw the line that intersects all of the possible uncertainty ellipses :

Minimize the least-squares distance!

Linear fits

- So what exactly do we want to compute, and what do we want to minimize?
- Assume the data are described by

$$
y(x)=a+b x
$$

- Presume first that all of the uncertainties are exactly the same
- Then you just have to minimize the distance :

$$
f(a, b) \equiv \sum_{i=0}^{n-1}\left(y_{i}-a-b x_{i}\right)^{2}
$$

Linear fits

- At the minimum, the derivatives are zero:

$$
\frac{\partial f}{\partial a}=-2 \sum_{i=0}^{n-1}\left(y_{i}-a-b x_{i}\right)=0, \quad \text { and } \quad \frac{\partial f}{\partial b}=-2 \sum_{i=0}^{n-1} x_{i}\left(y_{i}-a-b x_{i}\right)=0
$$

- Can solve these simultaneously for the two unknowns a and b
-Two equations, two unknowns!
- Define the quantities :

Linear fits

- With this definition, can compute a and b :

$$
a=\frac{s_{x x} s_{y}-s_{x} s_{x y}}{n s_{x x}-s_{x}^{2}}, \quad b=\frac{n s_{x y}-s_{x} s_{y}}{n s_{x x}-s_{x}^{2}}
$$

-This algorithm is discussed in Section 15.2: Fitting data to a straight line of Numerical Recipes.

- (you can access a certain number of pages per month for free... but in any case, you don't need this if you don't want to use it)

Linear fits

- But! We're not quite done.
- What are the uncertainties on a and b ?
- Actually, what we want is the uncertainty per degree of freedom of the fit
- Degrees of freedom is :
number of data points - number of constraints
- For a linear fit we have two constraints
- Variance is therefore :

$$
\sigma^{2} \equiv \frac{f(a, b)}{\nu}=\frac{1}{n-2} \sum_{i=0}^{n-1}\left(y_{i}-y\left(x_{i}\right)\right)^{2}
$$

Linear fits

- What if the uncertainties are not all equal?
- The same principle applies, but instead of minimizing the mean-squared distance :

$$
f(a, b) \equiv \sum_{i=0}^{n-1}\left(y_{i}-a-b x_{i}\right)^{2}
$$

- You instead minimize the "chi-squared" which is the distance divided by the uncertainty :

$$
\chi^{2}(a, b) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
$$

Note : This is only strictly true for GAUSSIAN uncertainties!

Linear fits

- How does this help?
- It "ignores" values with large uncertainties :

- The two points on the ends are very precise
- The third point in the middle is not precise
- Good point to check for a unit test!

Linear fits

- So how does this get modified?
- Parameters and uncertainties are :

$$
b=\frac{1}{S_{t t}} \sum_{i=0}^{n-1} \frac{t_{i} y_{i}}{\sigma_{i}}, \quad a=\frac{S_{y}-S_{x} b}{S} \quad \sigma_{a}^{2}=\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right), \quad \sigma_{b}^{2}=\frac{1}{S_{t t}} .
$$

- Where :

$$
\begin{gathered}
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad S_{t t}=\sum_{i=0}^{n-1} t_{i}^{2}, \\
S=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=0}^{n-1} \frac{x_{i}}{\sigma_{i}^{2}}, \quad S_{y}=\sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}^{2}} .
\end{gathered}
$$

Linear fits

- With uncertainties on the inputs, you can compute "goodness of fit"
- Why do you care?
- All of these have the same fit :

Obviously, several of these are bad!

Linear fits

- The chi-squared per degree of freedom is what we're looking for here

$$
\chi^{2} / \text { d.o.f } \equiv \frac{1}{n-2} \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2} \approx 1
$$

- Roughly speaking, it's the number of "standard deviations" that you're "off" in the fit About 1 S.D. off :

- If you've estimated your uncertainties correctly, it should follow a distribution of values called the "chi-squared" distribution :

Figure 36.1: One minus the χ^{2} cumulative distribution, $1-F\left(\chi^{2} ; n\right)$, for n degrees of freedom. This gives the p-value for the χ^{2} goodness-of-fit test as well as one minus the coverage probability for confidence regions (see Sec. 36.3.2.4).

- http://en.wikipedia.org/wiki/Chi-squared_distribution
- http://pdg.lbl.gov/2013/reviews/rpp2012-rev-statistics.pdf

Linear fits

- OK : moment of truth
- We have two cases : with, and without uncertainties
- Let's do without first, it's easier

Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Pseudocode : No uncertainties

$$
\begin{aligned}
& s_{x} \equiv \sum_{i=0}^{n-1} x_{i}, \quad s_{y} \equiv \sum_{i=0}^{n-1} y_{i} \\
& s_{x x} \equiv \sum_{i=0}^{n-1} x_{i}^{2}, \quad s_{x y} \equiv \sum_{i=0}^{n-1} x_{i} y_{i} \\
& a=\frac{s_{x x} s_{y}-s_{x} s_{x y}}{n s_{x x}-s_{x}^{2}} \\
& b=\frac{n s_{x y}-s_{x} s_{y}}{n s_{x x}-s_{x}^{2}} \\
& \text { input data } \\
& n=\text { size of data } \\
& \text { if } n<2 \text { : } \\
& \text { print 'Error! Not enough data!' } \\
& \text { for } i=0 \ldots N-1 \text { : } \\
& \begin{array}{l}
\text { s_x }+=x \text { _i } \\
\text { s_y }+=y_{-i}
\end{array} \\
& \text { s_xx += } \bar{x} \text { _i**2 } \\
& \text { s_xy }+=x \text { _i*y_i } \\
& \text { den }=n{ }^{*} s_{2} x x-s^{*} x^{*} s _x \\
& \text { if abs (den }{ }^{-} \text {) }<0 . \overline{0} 000 \overline{0} 1 \text { : } \\
& \text { print 'Error! Denominator is zero!' } \\
& \text { return } \\
& a=\left(s _x x * s^{2} y-s_{-} x * s^{*} x y\right) / \text { den } \\
& b=\left(n^{*} s _x y-s _x * s^{*} _y\right) / d e n \\
& \text { for } i=0 \ldots N-1 \text { : }
\end{aligned}
$$

Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
- f you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
- lse : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Write code : No uncertainties

Pseudocode

```
input data
n = size of data
if n < 2 :
    print 'Error! Not enough data!'
    return
for i = 0... N-1 :
    s_x += x_i
    s_y += Y_i
    s_xx += \overline{x_i**2}
    s_xy += x_i*y_i
den =n * s_xx - s_x*s_x
if abs( den ) < 0.000001 :
    print 'Error! Denominator is zero!'
    return
a = (s_xx * s_y - s_x * s_xy) / den
b = (n*}\mp@subsup{\mp@code{S_xy - - s_x *' s_y) / / den}}{~}{\prime
for i = 0... N-\overline{1}}\mathrm{ :
    sigma2 += (y_i - (a*x_i+b))**2
sigma2 = sigma\overline{2}/ (n-2)
```


python

```
n = len(x) # number of galaxies
```

n = len(x) \# number of galaxies
if n<= 2 :
if n<= 2 :
print ('Error! Need at least two data points!')
print ('Error! Need at least two data points!')
exit()
exit()

Compute all of the stat. variables we need

Compute all of the stat. variables we need

s_x = np.sum(x)
s_x = np.sum(x)
s_y = np.sum(y)
s_y = np.sum(y)
s_xx = np.sum(x**2)
s_xx = np.sum(x**2)
s_xy = np.sum(x*y)
s_xy = np.sum(x*y)
denom = n * s_xx - s_x**2
denom = n * s_xx - s_x**2
if abs(denom}\mp@subsup{}{}{-})<0.\overline{0}00001
if abs(denom}\mp@subsup{}{}{-})<0.\overline{0}00001
print ('Error! Denomominator is zero!')
print ('Error! Denomominator is zero!')
exit()
exit()

Compute y-intercept and slope

Compute y-intercept and slope

a = (s_xx * s_y - s_x * s_xy) / denom
a = (s_xx * s_y - s_x * s_xy) / denom
b = (n*s_xy - s_x * s_y) / denom
b = (n*s_xy - s_x * s_y) / denom

Compute uncertainties

Compute uncertainties

if n > 2 :
if n > 2 :
sigma = np.sqrt(np.sum((y - (a+b*x))**2) / (n-2))
sigma = np.sqrt(np.sum((y - (a+b*x))**2) / (n-2))
sigma_a = np.sqrt(sigma**2 * s_xx / denom)
sigma_a = np.sqrt(sigma**2 * s_xx / denom)
sigma_b = np.sqrt(sigma**2 * n / denom)
sigma_b = np.sqrt(sigma**2 * n / denom)
else :
else :
sigma = 0.
sigma = 0.
sigma_a = 0.
sigma_a = 0.
sigma_b = 0.
sigma_b = 0.
return [a, b, sigma, sigma_a, sigma_b]

```
return [a, b, sigma, sigma_a, sigma_b]
```


Recall : Development

- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

Hands-on!

Pseudocode : With uncertainties

- Effectively the same as without uncertainties, with a few minor modifications

Pseudocode : With uncertainties

Compute S, Sx, Sy:

$$
S=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=0}^{n-1} \frac{x_{i}}{\sigma_{i}^{2}}, \quad S_{y}=\sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}^{2}} .
$$

Compute ti and S_tt

$$
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad S_{t t}=\sum_{i=0}^{n-1} t_{i}^{2}
$$

Compute a and b, and uncertainties :

$$
\begin{aligned}
b & =\frac{1}{S_{t t}} \sum_{i=0}^{n-1} \frac{t_{i} y_{i}}{\sigma_{i}}, \quad a=\frac{S_{y}-S_{x} b}{S} \\
\sigma_{a}^{2} & =\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right), \quad \sigma_{b}^{2}=\frac{1}{S_{t t}}
\end{aligned}
$$

Compute chi-squared :

$$
\chi^{2}(a, b) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
$$

$$
\begin{aligned}
& \text { input data } \\
& \mathrm{n}=\text { size of data } \\
& \text { if } n<2 \text { : } \\
& \text { print 'Error! Not enough data!' } \\
& \text { return } \\
& t _i=1.0 / \text { sigma_i } *\left(x _i-s _x / S\right) \\
& \text { s_tt }=t i^{* * * 2} \\
& \text { b }+=t^{-} i^{-} \text {* } y_{-}{ }^{i} / \operatorname{sigma}{ }^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ta}_{\mathrm{a}}=\left(\mathrm{s} _y-\mathrm{s}_{-} \mathrm{x} * \mathrm{~b}\right) / \mathrm{s} \\
& \mathrm{~b}=\mathrm{b} / \mathrm{s} \mathrm{~s}_{\mathrm{t}} \mathrm{t} \\
& \text { sigma_a } 2=\left(1+s _x * * 2 / s * s _t t\right) / s \\
& \text { sigma_b2 }=1.0 / \text { s_tt } \\
& \text { for } i=0 \ldots \mathrm{~N}-1 \text { : } \\
& \text { chi2 += ((y_i - a - b*x_i)/sigma_i)**2 }
\end{aligned}
$$

Pseudocode : With uncertainties

Compute S, Sx, Sy:

```
input data
```

```
    \(\mathrm{n}=\) size of data
```

 \(\mathrm{n}=\) size of data
 if $n<2$:
if $n<2$:
print 'Error! Not enough data!'
print 'Error! Not enough data!'
return

```
\(S=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=0}^{n-1} \frac{x_{i}}{\sigma_{i}^{2}}, \quad S_{y}=\sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}^{2}}\).
Compute ti and S_tt
\[
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad S_{t t}=\sum_{i=0}^{n-1} t_{i}^{2}
\]

Compute a and b, and uncertainties :
\[
\begin{aligned}
b & =\frac{1}{S_{t t}} \sum_{i=0}^{n-1} \frac{t_{i} y_{i}}{\sigma_{i}}, \quad a=\frac{S_{y}-S_{x} b}{S} \\
\sigma_{a}^{2} & =\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right), \quad \sigma_{b}^{2}=\frac{1}{S_{t t}}
\end{aligned}
\]
for Where did I mess up herel?!?!
\[
s^{-} t t=t \_i * * 2
\]
\[
b^{-}+=t_{-} i^{-} y_{-i} / \text { sigma_i }
\]
\[
\begin{aligned}
& \text { if } \begin{array}{l}
\text { abs }\left(\mathrm{S}^{-}\right)<0.000001: \\
\text { return }
\end{array} .
\end{aligned}
\]
\[
y a=\left(s_{1} y-s_{-} x * b\right) / s
\]

Compute chi-squared :
\[
\chi^{2}(a, b) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
\]
\[
\mathrm{b}=\mathrm{b} \overline{\mathrm{/}} \mathrm{~s} \_\mathrm{tt}
\]
sigma_a2 = (1 + s_x**2/S*s_tt) / s
\[
\text { sigma_-b2 }=1.0 / \bar{s} \_t t
\]
\[
\text { for } i^{-}=0 \ldots \text { N-1 : }
\]
\[
\text { chi2 }+=\left(\left(y_{-} i-a-b * x \_i\right) / s i g m a \_i\right) * * 2
\]

\section*{Pseudocode : With uncertainties}

Compute S, Sx, Sy:
```

input data

```
```

 n = size of data
    ```
    n = size of data
if n< 2 :
if n< 2 :
    print 'Error! Not enough data!'
```

 print 'Error! Not enough data!'
    ```
\(S=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=0}^{n-1} \frac{x_{i}}{\sigma_{i}^{2}}, \quad S_{y}=\sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}^{2}}\).
    return

Compute ti and S_tt
\[
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad S_{t t}=\sum_{i=0}^{n-1} t_{i}^{2}
\]
\[
S+=1.0 / \text { sigma_i**2 }
\]

Compute a and b, and uncertainties :
\[
\mathrm{C}=0 \ldots \mathrm{~N}-1:
\]
\[
\begin{aligned}
& \text { if abs( sigma_i ) < } 0.00001 \text { : } \\
& \text { return }
\end{aligned}
\]
\[
\text { s_x }+=x_{-} \text {/ sigma_i**2 }
\]
\[
s_{-}-y+=y \_i / \text { sigma_i**2 }
\]
\[
\begin{gathered}
b=\frac{1}{S_{t t}} \sum_{i=0}^{n-1} \frac{t_{i} y_{i}}{\sigma_{i}}, \quad a=\frac{S_{y}-S_{x} b}{S} \\
\sigma_{a}^{2}=\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right), \quad \sigma_{b}^{2}=\frac{1}{S_{t t}}
\end{gathered}
\]
\[
t \_i=1.0 / \text { sigma_i } *\left(x \_i-s \_x / S\right)
\]
\[
s_{-}^{-} t t=t \_i * * 2
\]
\[
\mathrm{b}^{-}+=\mathrm{t}^{\mathrm{i}^{\star}} \mathrm{y}^{i} / \text { sigma_i }
\]
\[
\text { if } \mathrm{abs}\left(\mathrm{~S}^{-}\right)<0.000001:
\]
\[
\begin{aligned}
& \quad \text { return } \\
& \mathrm{a}=\left(\mathrm{s}_{-} y-s_{-} \mathrm{x} * \mathrm{~b}\right) / \mathrm{s}, \mathrm{l}, \mathrm{l}
\end{aligned}
\]

Compute chi-squared :
\[
\mathrm{b}=\mathrm{b} / \overline{\mathrm{s}} \mathrm{~s}_{-} \mathrm{t} t
\]
\[
\chi^{2}(a, b) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
\]
\[
\text { for } i^{-}=0 \ldots N^{-1}:
\]
\[
\text { chi2 }+=\left(\left(y_{-} i-a-b * x \_i\right) / s i g m a \_i\right) * * 2
\]

\section*{Pseudocode : With uncertainties}

Compute S, Sx, Sy:
```

input data

```
```

$$
\mathrm{n}=\text { size of data }
$$

$$
\text { if } n<2 \text { : }
$$

print 'Error! Not enough data!'

```
\(S=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=0}^{n-1} \frac{x_{i}}{\sigma_{i}^{2}}\),
\[
S_{y}=\sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}^{2}}
\]
return

Compute ti and S_tt
\[
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad S_{t t}=\sum_{i=0}^{n-1} t_{i}^{2}
\]
\[
\text { if abs( sigma_i) }<0.00001 \text { : }
\]
\[
S_{\_} x+=x_{i} / \text { sigma_i**2}
\]

Compute a and b , and uncertainties :
\[
\text { for } i=0 \ldots N-1:
\]
return
\[
S+=1.0 / \text { sigma_i**2 }
\]
\[
S_{-} Y+=Y_{-} / \text {sigma_i} * * 2
\]
\[
\begin{gathered}
b=\frac{1}{S_{t t}} \sum_{i=0}^{n-1} \frac{t_{i} y_{i}}{\sigma_{i}}, \quad a=\frac{S_{y}-S_{x} b}{S} \\
\sigma_{a}^{2}=\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right), \quad \sigma_{b}^{2}=\frac{1}{S_{t t}} .
\end{gathered}
\]
\[
\text { for } \bar{i}=0 \ldots N-1:
\]
\[
t \_i=1.0 / \text { sigma_i } *\left(x \_i-s \_x / S\right)
\]
\[
s_{-}^{-} t t=t \_i * * 2
\]
\[
b^{-}+=t^{-} i^{-} \text {y_i / sigma_i }
\]
\[
\begin{aligned}
& \text { if } \begin{array}{l}
\text { abs }\left(\mathrm{S}^{-}\right)<0.000001: \\
\\
\text { return }
\end{array}, \quad \text { c }
\end{aligned}
\]

Compute chi-squared :
\[
\begin{aligned}
& \text { return } \\
\mathrm{a}= & \left(s_{-} y-s_{-} x * b\right) \\
b= & s
\end{aligned}
\]
\[
\mathrm{b}=\mathrm{b} / \overline{\mathrm{L}}^{y} \mathrm{tt}
\]
\[
\chi^{2}(a, b) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2} .
\]
\[
\begin{aligned}
& \mathrm{b}=\mathrm{b} / \mathrm{s}=t \mathrm{t} \\
& \text { sigma_a2 }=\left(1+\mathrm{s} x^{\left.* * 2 / s^{*} s \_t t\right)} / \mathrm{S}\right. \\
& \text { sigma_b2 }=1.0 \mathrm{~s}+t \mathrm{t} \\
& \text { for } i=0 \ldots \mathrm{~N}-1:
\end{aligned}
\]
\[
\text { chi2 }+=\left(\left(y_{\sim} i-a-b^{*} x \_i\right) / s i g m a \_i\right) * * 2
\]

Unlikely to happen, but good to be paranoid anyway!

\section*{Write code : With uncertainties}

\section*{Pseudocode}

\section*{python}
```

input data
n = size of data
if n < 2 :
print 'Error! Not enough data!'
return
for i = 0... N-1 :
if abs(sigma_i) < 0.00001 :
return
S += 1.0 / sigma_i**2
s_x += x_i / sigma_i**2
s_y += y_i / sigma_i**2
for i = 0... N-1 :
t_i = 1.0 / sigma_i * (x_i-s_x/S)
s_tt = t_i**2
b += t_i * y_i / sigma_i
if abs(S) < 0.000001 :
return
a = (s_y - s_x * b) / s
b = b / s_tt
sigma_a2 = (1 + s_x**2/S*s_tt) / S
sigma_b2 = 1.0 / s_tt
for i- = 0...N-1 :
chi2 += ((y_i - a - b*x_i)/sigma_i)**2

```
```

```
import numpy as np
```

```
import numpy as np
def chi_square_fit(x, y, err):
def chi_square_fit(x, y, err):
    n = len(x)
    n = len(x)
    if n< 2 :
    if n< 2 :
        print ('Error! Need at least 2 data points!')
        print ('Error! Need at least 2 data points!')
        exit()
        exit()
    S = np.sum(1/err**2)
    S = np.sum(1/err**2)
    if abs(S) < 0.00001 :
    if abs(S) < 0.00001 :
        print ('Error! Denominator S is too small!')
        print ('Error! Denominator S is too small!')
        exit()
        exit()
    S_x = np.sum(x/err**2)
    S_x = np.sum(x/err**2)
    S_y = np.sum(y/err**2)
    S_y = np.sum(y/err**2)
    t = (x - S_x/S) / err
    t = (x - S_x/S) / err
    S_tt = np.sum(t**2)
    S_tt = np.sum(t**2)
    if abs (S_tt) < 0.00001 :
    if abs (S_tt) < 0.00001 :
        print ('Error! Denominator S is too small!')
        print ('Error! Denominator S is too small!')
        exit()
        exit()
    b = np.sum(t*y/err) / S_tt
    b = np.sum(t*y/err) / S_tt
    a = (S_y - S_x * b) / s
    a = (S_y - S_x * b) / s
    sigma_a2 = (1 + S_x**2/s/s_tt) / s
    sigma_a2 = (1 + S_x**2/s/s_tt) / s
    sigma_b2 = 1/S_tt
    sigma_b2 = 1/S_tt
    if sigma_a2 < 0.0 or sigma_b2 < 0.0 :
    if sigma_a2 < 0.0 or sigma_b2 < 0.0 :
        print ('Error! About to pass a negative to sqrt')
        print ('Error! About to pass a negative to sqrt')
        exit()
        exit()
    sigma_a = np.sqrt(sigma_a2)
    sigma_a = np.sqrt(sigma_a2)
    sigma_b = np.sqrt(sigma_b2)
    sigma_b = np.sqrt(sigma_b2)
    chi_square = np.sur|(( (y- ( a - b*x) / erx)**2)
    chi_square = np.sur|(( (y- ( a - b*x) / erx)**2)
    return(a, b, sigma_a, sigma_b, chi_square)
```

```
    return(a, b, sigma_a, sigma_b, chi_square)
```

```

\section*{Write code : With uncertainties}
```

void chi_square_fit(
// makes a linear chi-square fit
const vector<double>\& x, // vector of x values - input
const vector<double>\& y, // vector of y values - input
const vector<double>\& err, // vector of y error values - input
double\& a, // fitted intercept - output
double\& b, // fitted slope - output
double\& sigma_a, // estimated error in intercept - output
double\& sigma_b, // estimated error in slope - output
double\& chi_square) // minimized value of chi-square sum - output
{
int n = x.size();
assert(n >= 2);
double S = 0, S_x = 0, S_y = 0;
for (int i = 0; i < n; i++) {
assert (fabs(err[i]) >= 0.000001);
S += 1 / err[i] / err[i];
S_x += x[i] / err[i] / err[i];
S_y += y[i] / err[i] / err[i];
}
vector<double> t(n);
for (int i = 0; i < n; i++)
t[i] = (x[i] - S_x/S) / err[i];
double S_tt = 0;
for (int i = 0; i < n; i++)
S_tt += t[i] * t[i];
b = 0;
for (int i = 0; i < n; i++)
b += t[i] * y[i] / err[i];
assert(fabs(S_tt) > 0.00001);
b /= S_tt;
assert(fabs(S) > 0.00001);
a = (S_y - S_x * b) / S;
sigma_\overline{a}= sqrt((1 + S_x * S_x / S / S_tt) / S);
sigma_b = sqrt(1 / S_tt);
chi_square = 0;
for (int i = 0; i < n; i++) {
double diff = (y[i] - a - b * x[i]) / err[i];
chi_square += diff * diff;
}

```

\section*{C++ tip : assert yourself!}
- If you have a condition that your algorithm must fulfill, you can use a few C++ mechanisms to handle this.
- Python handles exceptions on its own.
- C++ behavior there is undefined, and compiler dependent!
- So, you can use a simple "assert(condition)" to make sure it's true
- Alternatively you can use exception handling but that can get a little hairy. I won't cover it in this class much (if at all).

Hands-on!

\section*{Recall : Development}
- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

\section*{Recall : Development}
- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

\section*{Recall : Development}
- Step 1 : Write the algorithm down on paper
- Step 2 :
-If you don't understand everything : goto step 1
-else : continue
- Step 3 : write pseudocode
- Step 4 : continue
-If you don't understand everything : goto step 3
-else : continue
- Step 5 : write code
- Step 6 : check code with unit tests
-Check "pass" criterion
-Check "fail" criterion
-If unit test fails : goto Step 5
-else : continue
- Step 7 : Publish!

\section*{Fitting curves}
- What if we want to fit something besides a line?
- Well, there are a few cases :
1. Does change of variables in \(x\) and \(y\) make it a line?
2. Everything else
- In the first case, it's actually easiest to just fit a line again -In fact, you're technically doing this in your homework example!
- In the second case, it's also not much harder conceptually, but is more computationally intensive

First case : transform to linear
- Say we have a model like \(y=A e^{B x}\)
-What do we do?
- Take the logarithm of both sides! \(\ln y=\ln A+B x\)

Semi-log plot


First case : transform to linear
- OK, but what if I do a base-10 logarithm instead of natural?
- Not a problem, just transform! \(\quad \log _{b}(x)=\frac{\log _{d}(x)}{\log _{d}(b)}\)
- So in this case :

Semi-log plot


\section*{First case : transform to linear}
- OK, but what if I do a base-10 logarithm instead of natural?
- Not a problem, just transform! \(\log _{b}(x)=\frac{\log _{d}(x)}{\log _{d}(b)}\)
- So in this case :
Semi-log plot


First case : transform to linear
- Now try \(y=A x^{N}\)
- Take the logarithm of both sides :
\[
\log y=\log A+N \log x
\]

Log -log plot


\section*{First case : transform to linear}
-What about the uncertainties?
- We did a change of variables :
\[
y^{\prime}=f(y)
\]
- So, propagating the uncertainties, we get :
\[
\sigma_{y^{\prime}}^{2}=\left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2}
\]
- So you just have to remember this in the chi-squared minimization
- Example :
\[
y^{\prime}=\ln y=\ln A+B x
\]

(Note : In Assignment 1 you're already given \(\sigma_{y^{\prime}}\) so you don't have to worry!

\section*{First case : transform to linear}
- Modulo that, it's already a "solved problem"
- You should be doing this in your homeworks already!

\section*{Earthquakes}
- Earthquakes occur when tectonic plates of the earth move relative to one another


\section*{Earthquakes}
- Earthquakes occur when tectonic plates of the earth move relative to one another


\section*{Earthquakes}
- When they rub against each other, can get stuck!
- Builds pressure, then slips, releasing a lot of energy
- Seismographs can measure the vibrations on the


Magnitude is related to the squared amplitude over the event!

\section*{Earthquakes}
- The "Richter scale" was developed by Richter in the 1930's
- Relates the LOCAL magnitude scale \(M_{L}\)
-Defined by the amount of amplitude variation on a seismograph
- Replaced in the 1970's by the MOMENT magnitude scale

- Gutenberg-Richter Law Model :
-Frequency ( N ) of earthquakes of magnitude (M) : defined as number of events with magnitude >= M
-Empirical model :
\[
\begin{aligned}
\log N & =a-b M \\
M & \sim \log M_{0}
\end{aligned}
\]

\section*{Earthquakes}
- Frequency vs magnitude plot of earthquakes between 1904 and 2000 :


\section*{Earthquakes}
- Get data from :
-http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
- Many formats for the data file :
-Map \& List
-CSV (comma-separated values)
-KML (google-based geographical data representation)
-QuakeML (XML for earthquakes)
-GeoJSON (JSON for earthquakes)
- We'll go for CSV :

\footnotetext{
:time,latitude, longitude, depth, mag, magType, nst,gap, dmin, rms, net,id, updated, place, type
2010-01-01T02:33:42.590Z,32.476,-115.19,1.5,3.2,ml,22,175.8,, ,pde,pde20100101023342590_1,2013-03-16T01:48:06.208Z,"Baja Californ 2010-01-01T02:55:04.2802,35.979,-117.321,0.8,2.8,ml,17,51.2,, pde,pde20100101025504280_0,2013-03-16T01:48:06.3362,"Central Calif
2010-01-01T03: 25:29.970Z, 36.031,-117.784,3.2,2.9, ml, 13, 50.8, , pde, pde20100101032529970_3,2013-03-16T01:48:06.354Z, "Central Calif
2010-01-01T14:06:45.100Z, 32.474,-115.215, 8, 3.1,ml, 7,176.3,, pde,pde20100101140645100_8,2013-03-16T01:48:06.753Z,"Baja California
2010-01-02T03:15:45.200Z,33.576,-118.889,11.4,2.8,ml,7,252.5,,,pde,pde20100102031545200 11,2013-03-16T01:48:07.298Z,"Channel Is
}

\section*{Earthquakes}

\section*{- Example :}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & & \multicolumn{3}{|l|}{} & USGS Home Contact USGS Search USGS \\
\hline \multicolumn{3}{|l|}{Farthquake Harards Program} & Home & About Us & Contact Us & \\
\hline EARTHQUAKES & HAZARDS & LEARN & PRE & & MONI & RESEARCH \\
\hline
\end{tabular}

Earthquake Archive Search \& URL Builder

\author{
Search results are limted to 20,000 events. \\ - Help \\ - About ComCat Earthquake Catalog \\ - Search for Single Event by Event ID
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Basic Search Options} \\
\hline \multicolumn{2}{|l|}{DATE \& TIME} \\
\hline Start (UTC) & End (UTC) \\
\hline 2010-01-01 00:00:00 & 2013-09-04 23:59:59 \\
\hline \multicolumn{2}{|l|}{MAGNITUDE} \\
\hline Minimum & Maximum \\
\hline 3 (6) & 10 ( \\
\hline \multicolumn{2}{|l|}{GEOGRAPHIC REGION} \\
\hline \multicolumn{2}{|l|}{Currenty searching custom region Clear Re} \\
\hline \multicolumn{2}{|l|}{Rectangle} \\
\hline \multicolumn{2}{|l|}{Decimal degree coordinates. Noth must be greater than South East must be greater than West.} \\
\hline \multicolumn{2}{|r|}{North} \\
\hline 38 & ( \()\) \\
\hline West & East \\
\hline 238 (6) & 246 (6) \\
\hline \multicolumn{2}{|r|}{South} \\
\hline & (6) \\
\hline
\end{tabular}

Advanced Search Options
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DEPTH (KM)} \\
\hline Minimum & Maximum \\
\hline (6) & (6) \\
\hline \multicolumn{2}{|l|}{AZIMUTHAL GAP} \\
\hline Minimum & Maximum \\
\hline (6) & (6) \\
\hline
\end{tabular}

Output Options

\section*{FORMAT}

REVIEW STATUS
\(\odot\) Any
Automatic
Reviewed
- EVENT TYPE
\(\nabla\) Earthquakes
VEarthquake
- Map \& Lis csv KML QuakeML GeolsON

ORDER BY
Time - Newest Firs
\(\odot\) Time - Oldest First
Magnitude - Largest First Magnitude - Smallest First

\section*{LIMIT RESULTS}

Number of Events
Non-Earthquakes
\(\square\) Explosion
- Mine Collapse \({ }_{3.1}\) sountrern Cannorna

2010-01-11 19:24:00
3.2 Southern Calitomia \(\begin{aligned} & \text { 2010.-11 1933:52 UTC. -4.40 }\end{aligned}\)
4.3 Southern Calitornia
2010-01-11 2236.08 UTC.04:00
\({ }_{5}\) Central California
3.5 Central California
.2 Central Califormia
Cortal Ciltin
3.4 Central California \(\begin{aligned} & \text { 2010-01-14 09.37.00 UTC.-04.0 }\end{aligned}\)
3.1 Southern Calliomia

Southern Califormia


\section*{Earthquakes}

\section*{- The data we'll fit : all earthquakes in southern California from 1973 until todav \\ 

Earthquake Archive Search \& URL Builder
```

Search results are limited to 20,000 events.
-Help
- About ComCat Earthquake Catalog
- Search for Single Event by Event ID

```


\section*{The big picture}
- Read in earthquake data
open file
get lines
if error : exit
else :
for line in lines :
parse value
record number, magnitude
\(\mathrm{N}(\mathrm{M})=\) number with magnitude \(>=\mathrm{M}\)
- Compute N( >= M)

- Transform to linear form for each number, magnitude pair :
\[
y=\log (\text { number })
\]
\[
\mathrm{x}=\text { magnitude }
\]


\section*{Numerical issues : logarithms}
- Logarithms cannot be <= 0
- Always need to check this!
- Other than that, very nice because it transforms multiplication into addition!
\[
\log x \times y=\log x+\log y
\]


\section*{Binning!}

\section*{- Be sure to be careful about fitting binned data!}


\section*{General fitting of curves}
- For general curve-fitting, it's not conceptually more difficult
- However, it is computationally more difficult

\section*{General fitting of curves}
- Define the function and its parameters as:
\[
\{a, b\} \rightarrow \vec{a} \quad y=\underset{\boldsymbol{K}_{\text {" }} \mathrm{y} \text { is a function of } \mathrm{x}, \text { with parameters a" }}{ } \quad \begin{aligned}
& y ; \vec{a}) \\
&
\end{aligned}
\]
- Rewrite our chi-squred expression :
\[
\chi^{2}(\vec{a}) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-y(x ; \vec{a})}{\sigma_{i}}\right)^{2}
\]
- Now this actually should be obvious!
- This completely generalizes to nonlinear \(\mathrm{y}(\mathrm{x})\)

\section*{General fitting of curves}
- Still just minimizing the distance within the uncertainties


\section*{General fitting of curves}
- Still just minimizing the distance within the uncertainties


\section*{General fitting of curves}
- Same strategy as before : minimize the chi2!
\[
\chi^{2}(\vec{a}) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-y(x ; \vec{a})}{\sigma_{i}}\right)^{2}
\]
- So, let's say that \(\mathrm{y}(\mathrm{x})\) is some expansion of functions \(Y_{k}(x)\) :
\[
y(x ; \vec{a})=\sum_{k=0}^{m-1} a_{k} Y_{k}(x)
\]
- Then the chi2 is :
\[
\chi^{2}(x, \vec{a})=\sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}\left[y_{i}-\sum_{k=0}^{m-1} a_{k} Y_{k}(x)\right]^{2}
\]

\section*{General fitting of curves}
- We minimize :
\[
\frac{\partial \chi^{2}}{\partial a_{j}}=\frac{\partial}{\partial a_{j}} \sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}}\left[y_{i}-\sum_{k=0}^{m-1} a_{k} Y_{k}(x)\right]^{2}=0
\]
- Taking the derivative :
\[
2 a_{j} \sum_{i=0}^{n-1} \frac{1}{\sigma_{i}^{2}} Y_{j}(x)\left[y_{i}-\sum_{k=0}^{m-1} a_{k} Y_{k}(x)\right]=0
\]
- The 2*a j cancels. Then we multiply the sum through, and bring over the second term, so we get :
\[
\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{Y_{j}\left(x_{i}\right) Y_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} a_{k}=\sum_{i=0}^{n-1} \frac{Y_{j}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
\]

\section*{General fitting of curves}
- This is a matrix equation, so we define the "design matrix" :
\[
\begin{gathered}
A_{i j}=\frac{Y_{j}\left(x_{i}\right)}{\sigma_{i}} \\
\mathbf{A}=\left[\begin{array}{lll}
Y_{1}\left(x_{1}\right) / \sigma_{1} & Y_{2}\left(x_{1}\right) / \sigma_{1} & \ldots \\
Y_{1}\left(x_{2}\right) / \sigma_{2} & Y_{2}\left(x_{2}\right) / \sigma_{2} & \ldots \\
\cdots & \cdots & \cdots
\end{array}\right]
\end{gathered}
\]
- Then our chi2 minimization becomes :
\[
\left(\mathbf{A}^{T} \mathbf{A}\right) \vec{a}=\mathbf{A}^{T} \vec{b}
\]
- SO:
\[
\vec{a}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \vec{b}
\]

\section*{General fitting of curves}
- If we define the "correlation matrix" :
\[
\mathbf{C}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}
\]
- Then the uncertainty on \(\mathrm{a}_{\mathrm{j}}\) is :
\[
\sigma_{a_{j}}=\sqrt{C_{j j}}
\]

\section*{General fitting of curves}
- As a first example, let's look at polynomial fits
\[
y=\sum_{k=0}^{m-1} a_{k} x^{k}
\]
- Slight generalization of the linear fit we did previously
- General solution is to minimize the chi2 :
\[
\chi^{2}(\vec{a}) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-y(x ; \vec{a})}{\sigma_{i}}\right)^{2}
\]
- In this case :
\[
\chi^{2}(\vec{a})=\sum_{i=0}^{n-1}\left(\frac{y_{i}-\sum_{j=0}^{M} a_{j} x^{j}}{\sigma_{i}}\right)^{2}
\]

\section*{General fitting of curves}
- Our design matrix is therefore :
\[
A_{i j}=x_{i}^{j} / \sigma_{i}
\]
- Caveat : This oftentimes is ill-formed, so don't go too crazy here. Typically we do quadratic, cubic, quartic, but above that it strains credibility.

\section*{General Fitting of Curves}
- Will return to this after we do some linear algebra!```

