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Spectral Analysis

• You should be familiar with 
Fourier transforms : 
–http://en.wikipedia.org/wiki/

Fourier_transform 
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Continuous
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j=0

yj+1e
�2⇡ijk/N

Discrete

http://en.wikipedia.org/wiki/Fourier_transform
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Spectral Analysis

• Fourier was looking to solve the heat conduction equation :  

–We’ll actually do this later in the class 

• The solution can be expanded as a sum of trigonometric 
functions : 
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Spectral Analysis
• Fourier was also 

credited with the 
discovery of the 
Greenhouse effect! 
–http://

en.wikipedia.org/
wiki/
Greenhouse_effect  

• So, we’ll combine 
these two things!
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http://en.wikipedia.org/wiki/Greenhouse_effect
http://en.wikipedia.org/wiki/Greenhouse_effect
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Fk =
2

N

N�1X

j=1

Tj sin
⇡kj

N

Discrete Fourier Transform

• Suppose you take a rod and measure the temperature at N 
equally spaced points : 

• Then the temperatures can be expressed as :  

• With coefficients :
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xj = j
L

N
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• Write this in matrix form : 

• where the components of S are 

• There are N-1 coefficients 
• Each is a representation of N-1 terms 

• So the total is (N-1)2 operations

Discrete Fourier Transform
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~T = S~F

Sjk = sin
⇡jk

N

~F =
2

N
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“Big-Ohh” Notation

• The “big-ohh” notation stands for “order” 

• O(N2) operations means “the leading coefficient in the 
number of operations scales like N2” 

• Remember, “operations” here really means 
“multiplications”... addition is cheap! 

• In computing, we want to minimize this as much as 
possible since the computational time scales the same 
way
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Discrete Fourier Transform

• Loop over the indices of the Fourier series (0...N-1) 
–For each, compute each coefficient :  

• Loop over the indices of the expansion (0...N-1) 
• Compute the angle 
• Add to the transform
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def sine_transform(data):
    """Return Fourier sine transform of a real data vector"""
    N = len(data)
    transform = [ 0 ] * N
    for k in range(N):
        for j in range(N):
            angle = math.pi * k * j / N
            transform[k] += data[j] * math.sin(angle)
    return transform



Fast Fourier Transforms

• Can we do any better? 

• Heck  yes! 

• Divide et impera! (divide and conquer) 
–“Cooley-Tukey” method 

• Divide the sampling into some number 2n 
• Then you can do half at a time and add them together at 

the end
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Fast Fourier Transforms

• So, the discrete Fourier transform can be written as 

• But let’s work instead in binary : 

• So the coefficients in binary format are : 
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Yk+1 =
N�1X

j=0

yj+1W
kj

x =
X

a

2axa xa = (0, 1)

yj+1 = y({xa})

W = e�2⇡i/NW = e�2⇡i/N

“Roots of unity”

(example: x = 101 = 5 decimal)



Fast Fourier Transform

• Take a concrete example of N=23 = 8 
• Then we have :  

• We now define :  

• The DFT now becomes : 
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j = 4j2 + 2j1 + j0

k = 4k2 + 2k1 + k0

yj+1 = y(j2, j1, j0) Yk+1 = Y (k2, k1, k0)

Y (k2, k1, k0) =
1X

j0=0

1X

j1=0

1X

j2=0

y(j2, j1, j0)W
(4k2+2k1+k0)(4j2+2j1+j0)



Fast Fourier Transform

• Notice now that W8 = W16 = ... = 1  since  
and 

• So if you separate this out you can notice : 
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e�2⇡in = 1
W = e�2⇡i/8

W (4k2+2k1+k0)4j2 = W 4k0j2

W (4k2+2k1+k0)2j1 = W (2k1+k0)2j1

Danielson-Lanczos lemma



Fast Fourier Transform

• Can now compute this recursively! 

• Reverse the order of the bits (“bit unscrambling”) and you 
get Y!
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y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y3(k0, k1, k2) = y2(k0, k1, 0) + y2(k0, k1, 1)W
(4k2+2k1+k0)

Y (k2, k1, k0) = y3(k0, k1, k2)



Fast Fourier Transform

• Can now compute this recursively! 

• Reverse the order of the bits (“bit unscrambling”) and you 
get Y!
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y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y3(k0, k1, k2) = y2(k0, k1, 0) + y2(k0, k1, 1)W
(4k2+2k1+k0)

Y (k2, k1, k0) = y3(k0, k1, k2)

N complex multiplications, N complex additions

log2(N) 
layers

N complex multiplications, N complex additions

N complex multiplications, N complex additions

N log2(N) operations!



Fast Fourier Transform
• Input data in 

space domain 

• break into even 
and odd bits 

• use the 
recursion 
relation to solve 
each half 
individually
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y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

Cooley/Tukey algorithm



Timing of Fourier Transforms
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Fast Fourier Transform
• Input data in 

space domain 

• break into even 
and odd bits 

• use the 
recursion 
relation to solve 
each half 
individually
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fft ( x ) :  
   n = size of data 
   recursively call fft(even x’s) 
   recursively call fft(odd x’s) 
   combine results



Fast Fourier Transform
• Input data in 

space domain 

• break into even 
and odd bits 

• use the 
recursion 
relation to solve 
each half 
individually
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fft ( x ) :  
   n = size of data 
   recursively call fft(even x’s) 
   recursively call fft(odd x’s) 
   combine results

from cmath import exp, pi
 
def fft(x):
    N = len(x)
    if N <= 1: return x
    even = fft(x[0::2])
    odd =  fft(x[1::2])
    return [even[k] + exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)] + \
           [even[k] - exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)]
 
print fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

Note! This very simple form only works if N = 2n, so be careful!

http://rosettacode.org/wiki/Fast_Fourier_transform#Python


Fast Fourier Transform

• Does it work? 

• Let’s test it out : 

• What do we expect?

19

yk = sin (
2⇡f

N
k)



Fast Fourier Transform

• Does it work? 

• Let’s test it out : 

• What do we expect?
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yk = sin (
2⇡f

N
k)

At frequency of “f”, we’ll get a spike!



Fast Fourier Transform
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Fast Fourier Transform
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Fast Fourier Transform
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Fast Fourier Transform
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Yay! 
Sinusoid, 
freq. 10/N



Fast Fourier Transform
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Yay! 
Spike at 10

Yay! 
Sinusoid, 
freq. 10/N



Fast Fourier Transform
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Yay! 
Spike at 10

Errrrr... 
huh?

Yay! 
Sinusoid, 
freq. 10/N



Fast Fourier Transform

• Aliasing! 

• This relates to the “Nyquist frequency” (half of the 
sampling rate) 

• The upper half of the spectrum is a mirror image of the 
lower half, separated by the Nyquist frequency 
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Fast Fourier Transform

• Choosing the right interval depends on the structure that 
you expect your signal to have 

• If your signal is the red, these four are bad! 

• If you increase the sampling, you can distinguish and 
remove the aliasing :
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Fast Fourier Transform

• Typically if you expect your signal to have the highest 
frequency f, you should have a sampling of at least 2f or 4f 
(higher is better, of course)
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Fast Fourier Transform
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Global Warming
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[Humans] have now all but destroyed this once salubrious  
planet as a life-support system in fewer than 200 years,  
mainly by making thermodynamic whoopee with fossil fuels. 
              -- Kurt Vonnegut



Global Warming
• Solar energy incident on Earth's is partially reflected back into space as 

lower wavelength infrared radiation 
• CO2 in the atmosphere tends to trap this radiation and is an important 

factor in the phenomenon of global warming. Global warming has important 
consequences for the biosphere and human society.  

• Interested parties should read the reports of the Intergovernmental Panel 
on Climate Change http://www.ipcc.ch/.
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http://www.ipcc.ch/


Global Warming

• Situated at 11,135 ft on the north flank of the Mauna Loa volcano on the Big 
Island of Hawaii, the National Oceanic and Atmospheric Administration's Mauna 
Loa Observatory http://www.mlo.noaa.gov/ has been monitoring the level of 
carbon dioxide in Earth's atmosphere for over 50 years. The levels of this 
greenhouse gas have been rising steadily during this observation period. 

• Globally we’re at the highest point in hundreds of thousands of years 
–Can read ice core data from Vostok, Antarctica  
–http://cdiac.ornl.gov/trends/co2/vostok.html 
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http://www.mlo.noaa.gov/
http://cdiac.ornl.gov/trends/co2/vostok.html


Global Warming
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420
Today



Analyze the data!

• We already have our fft code, we just have to read in the 
spectrum and perform the transformation
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What do we expect?

• Remember, we’re performing the 
transform as :  

• There are two features in our data 
:  
–Overall rise 
–Seasonal trends (12 months) 

• How will they manifest?  

–Take 5 minutes and think about 
it!
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yk = sin (
2⇡f

N
k)



Power Spectrum
• We want to define the 

“power spectrum” (or 
“periodogram”) 

• This is a better way to 
represent the “readable” 
signal, because otherwise 
it’s a complex function that 
we have to take the 
magnitude of 

• This also has Nyquist 
frequency issues!
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More on FFT’s

• What about N != 2n? 

• Signal processing 

• Sampling rate
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More on FFT’s

• First, let’s take a look at a generalization of our previous 
program :  

• If the number is even :  
–use the Cooley/Tukey algorithm we discussed last time 

• If the number is odd :  
–use the discrete Fourier transform, not the FFT 

• The same code works for both! Since it’s recursive, it will 
do the bits that are 2n quickly and the bits that are not 2n 
very, very slowly
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Recall : FFT’s from Danielson-Lanczos 
• Input data in 

space domain 

• break into even 
and odd bits 

• use the 
recursion 
relation to solve 
each half 
individually
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fft ( x ) :  
   n = size of data 
   recursively call fft(even x’s) 
   recursively call fft(odd x’s) 
   combine results

from cmath import exp, pi
 
def fft(x):
    N = len(x)
    if N <= 1: return x
    even = fft(x[0::2])
    odd =  fft(x[1::2])
    return [even[k] + exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)] + \
           [even[k] - exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)]
 
print fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

Note! This very simple form only works if N = 2n, so be careful!

http://rosettacode.org/wiki/Fast_Fourier_transform#Python


More on FFT’s

• New code, which can handle N odd : 
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More on FFT’s

• Implement timing from the python code : 
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Time this step!

Vary N

N time (seconds)
1024 0.037
1023 9.75
1022 4.62
1021 9.51
1020 2.29



More on FFT’s

• So what did we see? 

• N = 2n   : lightening fast 

• N odd    : snail’s pace 

• N even   : fast, but not remotely as fast as N=2n 

• OK, so let’s go through that bit reversal thing once again!
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FFT’s : Go back to N=2n

• Take a concrete example of N=23 = 8 
• Then we have :  

• We now define :  

• The DFT now becomes : 
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j = 4j2 + 2j1 + j0

k = 4k2 + 2k1 + k0

yj+1 = y(j2, j1, j0) Yk+1 = Y (k2, k1, k0)

Y (k2, k1, k0) =
1X

j0=0

1X

j1=0

1X

j2=0

y(j2, j1, j0)W
(4k2+2k1+k0)(4j2+2j1+j0)

See Garcia Section 5.2!



FFT : Tricks and Tips

• So, we’ve seen that this “bit reversal” magic really does 
pay off a lot 

• What happens if N != 2n?  

• Well, as we saw, we can solve the problem, but it’s 
complicated 

• Trick : if N != 2n, then pad with zeros 
–However, then you’ve actually got to massage the output 

a bit so you get what you want
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FFT : Padding

• So when we “pad”, what do we really mean here? 
• We’re adding a “DC” offset, but can basically pick what we 

want : 
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Pad with 300.0 ppmPad with 0.0 ppm



FFT : Padding

• Adding more cycles makes the peaks narrower and 
sharper, but if you have to pad, it adds these “echoes”
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Pad with 300.0 ppmCutoff series at 256



FFT : Windowing
• Can we get rid of this “ringing” ? 
• This is related to “windowing” :  

–http://en.wikipedia.org/wiki/Window_function 
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http://en.wikipedia.org/wiki/Window_function


FFT : Windowing
• For the “padding”, this is equivalent to a rectangular 

window cut : 
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This is the form of the “ringing” you will 
observe in your transform, convolved 

with your desired transform! 

Sidelobes fall 
off as 1/N2



FFT : Windowing
• There are many other 

possibilities that you 
may want to try, 
depending on your 
application  

• Some examples : 
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FFT : Windowing

• To implement this :  
–You MODIFY the series in the time(/space) domain 
–This manifests in a cleaner signature in the frequency domain 

• Example : 
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FFT : Windowing

• Take the effect of this from a “clipping” of our simple 
sinusoidal example
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No padding Padding with no window

“Ringing” induced from the box window!



FFT : Windowing

• Take the effect of this from a “clipping” of our simple 
sinusoidal example
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No padding Padding with Hann window

“Ringing” now much reduced!



FFT : Windowing

• Now look at our actual CO2 data
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Padding Padding with Hann window

Considerably reduced “ringing” again!



FFT : Windowing

• So, for our example, and the Henn window :  
–From “fft_padding.ipynb” 

• Don’t forget! In this case we added a linear term 
–Can “window” on this or not, if you want, but it depends 

on the use case
55

No window

Window function



Inverse FFT

• In order to get your signal properly “cleaned up”, we need 
to also know the inverse Fourier transform (IFT): 
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F.T.

I.F.T.



Inverse FFT

• A few tricks to compute this :  
–http://www.embedded.com/design/embedded/4210789/

DSP-Tricks--Computing-inverse-FFTs-using-the-forward-
FFT  

• The easiest way :
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http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT
http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT
http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT


Inverse FFT

• So, in pseudocode :  
–Compute conjugate 
–Compute FFT 
–Compute conjugate again 
–Divide by N 

• In python : 

58



Finally back to some physics

• Can also use the FFT to take a look at sunspots 
• They have been known for a long time (364 BC from 

comments from Chinese astronomer Gan De 
• Magnetic activity causes a temperature decrease locally, 

manifests in a slightly darker spot
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Sunspots

• Can get some data on sunspots from the SIDC (Solar 
Influences Data Analysis Center): 
–http://sidc.be 

• Can find some data :https://www.sidc.be/silso/newdataset  
• For instance :
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http://www.sidc.be/sunspot-index-graphics/wolfmms.php

https://www.sidc.be/silso/newdataset
http://www.sidc.be/sunspot-index-graphics/wolfmms.php


Sunspots

• To get the data :  
–http://www.sidc.be/DATA/monthssn.dat 

• The format is :  

• Looks like : 
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Year+Month
Sunspot  
number

174901  1749.049    58.0   
174902  1749.129    62.6   
174903  1749.210    70.0   
174904  1749.294    55.7   
174905  1749.377    85.0   
174906  1749.461    83.5   
174907  1749.544    94.8    81.6   
174908  1749.629    66.3    82.8   
174909  1749.713    75.9    84.1   
174910  1749.796    75.5    86.3   
174911  1749.880   158.6    87.8   
174912  1749.963    85.2    88.7   
175001  1750.048    73.3    89.0   

Sunspot  
number 
(smoothed)

(in decimal)

http://www.sidc.be/DATA/monthssn.dat


Sunspots

• So let’s have some fun with that! 

• Say we want to have the data, but get rid of the high-
frequency jiggles 

• This is not the smoothing that they apply (they apply a 
Kalman filter) but we’ll use the FFT, a transform, and the 
IFFT instead
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Hands on!

• Sunspots! 

• Exceptions :  
–http://docs.python.org/2/tutorial/errors.html 
–http://docs.python.org/2/library/exceptions.html#bltin-

exceptions 
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