
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Spectral Analysis

• You should be familiar with
Fourier transforms :
–http://en.wikipedia.org/wiki/

Fourier_transform

2

Continuous

Yk+1 =
n�1X

j=0

yj+1e
�2⇡ijk/N

Discrete

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Fourier_transform

Spectral Analysis

• Fourier was looking to solve the heat conduction equation :

–We’ll actually do this later in the class

• The solution can be expanded as a sum of trigonometric
functions :

3

Spectral Analysis
• Fourier was also

credited with the
discovery of the
Greenhouse effect!
–http://

en.wikipedia.org/
wiki/
Greenhouse_effect

• So, we’ll combine
these two things!

4

http://en.wikipedia.org/wiki/Greenhouse_effect
http://en.wikipedia.org/wiki/Greenhouse_effect
http://en.wikipedia.org/wiki/Greenhouse_effect
http://en.wikipedia.org/wiki/Greenhouse_effect

Fk =
2

N

N�1X

j=1

Tj sin
⇡kj

N

Discrete Fourier Transform

• Suppose you take a rod and measure the temperature at N
equally spaced points :

• Then the temperatures can be expressed as :

• With coefficients :

5

xj = j
L

N

T (xj)� T (0) = Tj =
N�1X

k=1

Fk sin
⇡kj

N

• Write this in matrix form :

• where the components of S are

• There are N-1 coefficients
• Each is a representation of N-1 terms

• So the total is (N-1)2 operations

Discrete Fourier Transform

6

~T = S~F

Sjk = sin
⇡jk

N

~F =
2

N
S�1 ~T

“Big-Ohh” Notation

• The “big-ohh” notation stands for “order”

• O(N2) operations means “the leading coefficient in the
number of operations scales like N2”

• Remember, “operations” here really means
“multiplications”... addition is cheap!

• In computing, we want to minimize this as much as
possible since the computational time scales the same
way

7

Discrete Fourier Transform

• Loop over the indices of the Fourier series (0...N-1)
–For each, compute each coefficient :

• Loop over the indices of the expansion (0...N-1)
• Compute the angle
• Add to the transform

8

def sine_transform(data):
 """Return Fourier sine transform of a real data vector"""
 N = len(data)
 transform = [0] * N
 for k in range(N):
 for j in range(N):
 angle = math.pi * k * j / N
 transform[k] += data[j] * math.sin(angle)
 return transform

Fast Fourier Transforms

• Can we do any better?

• Heck yes!

• Divide et impera! (divide and conquer)
–“Cooley-Tukey” method

• Divide the sampling into some number 2n
• Then you can do half at a time and add them together at

the end

9

Fast Fourier Transforms

• So, the discrete Fourier transform can be written as

• But let’s work instead in binary :

• So the coefficients in binary format are :

10

Yk+1 =
N�1X

j=0

yj+1W
kj

x =
X

a

2axa xa = (0, 1)

yj+1 = y({xa})

W = e�2⇡i/NW = e�2⇡i/N

“Roots of unity”

(example: x = 101 = 5 decimal)

Fast Fourier Transform

• Take a concrete example of N=23 = 8
• Then we have :

• We now define :

• The DFT now becomes :

11

j = 4j2 + 2j1 + j0

k = 4k2 + 2k1 + k0

yj+1 = y(j2, j1, j0) Yk+1 = Y (k2, k1, k0)

Y (k2, k1, k0) =
1X

j0=0

1X

j1=0

1X

j2=0

y(j2, j1, j0)W
(4k2+2k1+k0)(4j2+2j1+j0)

Fast Fourier Transform

• Notice now that W8 = W16 = ... = 1 since
and

• So if you separate this out you can notice :

12

e�2⇡in = 1
W = e�2⇡i/8

W (4k2+2k1+k0)4j2 = W 4k0j2

W (4k2+2k1+k0)2j1 = W (2k1+k0)2j1

Danielson-Lanczos lemma

Fast Fourier Transform

• Can now compute this recursively!

• Reverse the order of the bits (“bit unscrambling”) and you
get Y!

13

y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y3(k0, k1, k2) = y2(k0, k1, 0) + y2(k0, k1, 1)W
(4k2+2k1+k0)

Y (k2, k1, k0) = y3(k0, k1, k2)

Fast Fourier Transform

• Can now compute this recursively!

• Reverse the order of the bits (“bit unscrambling”) and you
get Y!

14

y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y3(k0, k1, k2) = y2(k0, k1, 0) + y2(k0, k1, 1)W
(4k2+2k1+k0)

Y (k2, k1, k0) = y3(k0, k1, k2)

N complex multiplications, N complex additions

log2(N)
layers

N complex multiplications, N complex additions

N complex multiplications, N complex additions

N log2(N) operations!

Fast Fourier Transform
• Input data in

space domain

• break into even
and odd bits

• use the
recursion
relation to solve
each half
individually

15

y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

y2(k0, k1, j0) = y1(k0, 0, j0) + y1(k0, 1, j0)W
(4k1+2k0)

y1(k0, j1, j0) = y(0, j1, j0) + y(1, j1, j0)W
4k0

Cooley/Tukey algorithm

Timing of Fourier Transforms

16

Fast Fourier Transform
• Input data in

space domain

• break into even
and odd bits

• use the
recursion
relation to solve
each half
individually

17

fft (x) :
 n = size of data
 recursively call fft(even x’s)
 recursively call fft(odd x’s)
 combine results

Fast Fourier Transform
• Input data in

space domain

• break into even
and odd bits

• use the
recursion
relation to solve
each half
individually

18

fft (x) :
 n = size of data
 recursively call fft(even x’s)
 recursively call fft(odd x’s)
 combine results

from cmath import exp, pi

def fft(x):
 N = len(x)
 if N <= 1: return x
 even = fft(x[0::2])
 odd = fft(x[1::2])
 return [even[k] + exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)] + \
 [even[k] - exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)]

print fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

Note! This very simple form only works if N = 2n, so be careful!

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

Fast Fourier Transform

• Does it work?

• Let’s test it out :

• What do we expect?

19

yk = sin (
2⇡f

N
k)

Fast Fourier Transform

• Does it work?

• Let’s test it out :

• What do we expect?

20

yk = sin (
2⇡f

N
k)

At frequency of “f”, we’ll get a spike!

Fast Fourier Transform

21

Fast Fourier Transform

22

Fast Fourier Transform

23

Fast Fourier Transform

24

Yay!
Sinusoid,
freq. 10/N

Fast Fourier Transform

25

Yay!
Spike at 10

Yay!
Sinusoid,
freq. 10/N

Fast Fourier Transform

26

Yay!
Spike at 10

Errrrr...
huh?

Yay!
Sinusoid,
freq. 10/N

Fast Fourier Transform

• Aliasing!

• This relates to the “Nyquist frequency” (half of the
sampling rate)

• The upper half of the spectrum is a mirror image of the
lower half, separated by the Nyquist frequency

27

Fast Fourier Transform

• Choosing the right interval depends on the structure that
you expect your signal to have

• If your signal is the red, these four are bad!

• If you increase the sampling, you can distinguish and
remove the aliasing :

28

Fast Fourier Transform

• Typically if you expect your signal to have the highest
frequency f, you should have a sampling of at least 2f or 4f
(higher is better, of course)

29

Fast Fourier Transform

30

Global Warming

31

[Humans] have now all but destroyed this once salubrious
planet as a life-support system in fewer than 200 years,
mainly by making thermodynamic whoopee with fossil fuels.
 -- Kurt Vonnegut

Global Warming
• Solar energy incident on Earth's is partially reflected back into space as

lower wavelength infrared radiation
• CO2 in the atmosphere tends to trap this radiation and is an important

factor in the phenomenon of global warming. Global warming has important
consequences for the biosphere and human society.

• Interested parties should read the reports of the Intergovernmental Panel
on Climate Change http://www.ipcc.ch/.

32

http://www.ipcc.ch/

Global Warming

• Situated at 11,135 ft on the north flank of the Mauna Loa volcano on the Big
Island of Hawaii, the National Oceanic and Atmospheric Administration's Mauna
Loa Observatory http://www.mlo.noaa.gov/ has been monitoring the level of
carbon dioxide in Earth's atmosphere for over 50 years. The levels of this
greenhouse gas have been rising steadily during this observation period.

• Globally we’re at the highest point in hundreds of thousands of years
–Can read ice core data from Vostok, Antarctica
–http://cdiac.ornl.gov/trends/co2/vostok.html

33

http://www.mlo.noaa.gov/
http://cdiac.ornl.gov/trends/co2/vostok.html

Global Warming

34

420
Today

Analyze the data!

• We already have our fft code, we just have to read in the
spectrum and perform the transformation

35

What do we expect?

• Remember, we’re performing the
transform as :

• There are two features in our data
:
–Overall rise
–Seasonal trends (12 months)

• How will they manifest?

–Take 5 minutes and think about
it!

36

yk = sin (
2⇡f

N
k)

Power Spectrum
• We want to define the

“power spectrum” (or
“periodogram”)

• This is a better way to
represent the “readable”
signal, because otherwise
it’s a complex function that
we have to take the
magnitude of

• This also has Nyquist
frequency issues!

37

More on FFT’s

• What about N != 2n?

• Signal processing

• Sampling rate

38

More on FFT’s

• First, let’s take a look at a generalization of our previous
program :

• If the number is even :
–use the Cooley/Tukey algorithm we discussed last time

• If the number is odd :
–use the discrete Fourier transform, not the FFT

• The same code works for both! Since it’s recursive, it will
do the bits that are 2n quickly and the bits that are not 2n
very, very slowly

39

Recall : FFT’s from Danielson-Lanczos
• Input data in

space domain

• break into even
and odd bits

• use the
recursion
relation to solve
each half
individually

40

fft (x) :
 n = size of data
 recursively call fft(even x’s)
 recursively call fft(odd x’s)
 combine results

from cmath import exp, pi

def fft(x):
 N = len(x)
 if N <= 1: return x
 even = fft(x[0::2])
 odd = fft(x[1::2])
 return [even[k] + exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)] + \
 [even[k] - exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)]

print fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

Note! This very simple form only works if N = 2n, so be careful!

http://rosettacode.org/wiki/Fast_Fourier_transform#Python

More on FFT’s

• New code, which can handle N odd :

41

More on FFT’s

• Implement timing from the python code :

42

Time this step!

Vary N

N time (seconds)
1024 0.037
1023 9.75
1022 4.62
1021 9.51
1020 2.29

More on FFT’s

• So what did we see?

• N = 2n : lightening fast

• N odd : snail’s pace

• N even : fast, but not remotely as fast as N=2n

• OK, so let’s go through that bit reversal thing once again!

43

FFT’s : Go back to N=2n

• Take a concrete example of N=23 = 8
• Then we have :

• We now define :

• The DFT now becomes :

44

j = 4j2 + 2j1 + j0

k = 4k2 + 2k1 + k0

yj+1 = y(j2, j1, j0) Yk+1 = Y (k2, k1, k0)

Y (k2, k1, k0) =
1X

j0=0

1X

j1=0

1X

j2=0

y(j2, j1, j0)W
(4k2+2k1+k0)(4j2+2j1+j0)

See Garcia Section 5.2!

FFT : Tricks and Tips

• So, we’ve seen that this “bit reversal” magic really does
pay off a lot

• What happens if N != 2n?

• Well, as we saw, we can solve the problem, but it’s
complicated

• Trick : if N != 2n, then pad with zeros
–However, then you’ve actually got to massage the output

a bit so you get what you want

45

FFT : Padding

• So when we “pad”, what do we really mean here?
• We’re adding a “DC” offset, but can basically pick what we

want :

46

Pad with 300.0 ppmPad with 0.0 ppm

FFT : Padding

• Adding more cycles makes the peaks narrower and
sharper, but if you have to pad, it adds these “echoes”

47

Pad with 300.0 ppmCutoff series at 256

FFT : Windowing
• Can we get rid of this “ringing” ?
• This is related to “windowing” :

–http://en.wikipedia.org/wiki/Window_function

48

http://en.wikipedia.org/wiki/Window_function

FFT : Windowing
• For the “padding”, this is equivalent to a rectangular

window cut :

49

This is the form of the “ringing” you will
observe in your transform, convolved

with your desired transform!

Sidelobes fall
off as 1/N2

FFT : Windowing
• There are many other

possibilities that you
may want to try,
depending on your
application

• Some examples :

50

FFT : Windowing

• To implement this :
–You MODIFY the series in the time(/space) domain
–This manifests in a cleaner signature in the frequency domain

• Example :

51

FFT : Windowing

• Take the effect of this from a “clipping” of our simple
sinusoidal example

52

No padding Padding with no window

“Ringing” induced from the box window!

FFT : Windowing

• Take the effect of this from a “clipping” of our simple
sinusoidal example

53

No padding Padding with Hann window

“Ringing” now much reduced!

FFT : Windowing

• Now look at our actual CO2 data

54

Padding Padding with Hann window

Considerably reduced “ringing” again!

FFT : Windowing

• So, for our example, and the Henn window :
–From “fft_padding.ipynb”

• Don’t forget! In this case we added a linear term
–Can “window” on this or not, if you want, but it depends

on the use case
55

No window

Window function

Inverse FFT

• In order to get your signal properly “cleaned up”, we need
to also know the inverse Fourier transform (IFT):

56

F.T.

I.F.T.

Inverse FFT

• A few tricks to compute this :
–http://www.embedded.com/design/embedded/4210789/

DSP-Tricks--Computing-inverse-FFTs-using-the-forward-
FFT

• The easiest way :

57

http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT
http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT
http://www.embedded.com/design/embedded/4210789/DSP-Tricks--Computing-inverse-FFTs-using-the-forward-FFT

Inverse FFT

• So, in pseudocode :
–Compute conjugate
–Compute FFT
–Compute conjugate again
–Divide by N

• In python :

58

Finally back to some physics

• Can also use the FFT to take a look at sunspots
• They have been known for a long time (364 BC from

comments from Chinese astronomer Gan De
• Magnetic activity causes a temperature decrease locally,

manifests in a slightly darker spot

59

Sunspots

• Can get some data on sunspots from the SIDC (Solar
Influences Data Analysis Center):
–http://sidc.be

• Can find some data :https://www.sidc.be/silso/newdataset
• For instance :

60

http://www.sidc.be/sunspot-index-graphics/wolfmms.php

https://www.sidc.be/silso/newdataset
http://www.sidc.be/sunspot-index-graphics/wolfmms.php

Sunspots

• To get the data :
–http://www.sidc.be/DATA/monthssn.dat

• The format is :

• Looks like :

61

Year+Month
Sunspot
number

174901 1749.049 58.0
174902 1749.129 62.6
174903 1749.210 70.0
174904 1749.294 55.7
174905 1749.377 85.0
174906 1749.461 83.5
174907 1749.544 94.8 81.6
174908 1749.629 66.3 82.8
174909 1749.713 75.9 84.1
174910 1749.796 75.5 86.3
174911 1749.880 158.6 87.8
174912 1749.963 85.2 88.7
175001 1750.048 73.3 89.0

Sunspot
number
(smoothed)

(in decimal)

http://www.sidc.be/DATA/monthssn.dat

Sunspots

• So let’s have some fun with that!

• Say we want to have the data, but get rid of the high-
frequency jiggles

• This is not the smoothing that they apply (they apply a
Kalman filter) but we’ll use the FFT, a transform, and the
IFFT instead

62

Hands on!

• Sunspots!

• Exceptions :
–http://docs.python.org/2/tutorial/errors.html
–http://docs.python.org/2/library/exceptions.html#bltin-

exceptions

63

