PY410 / 505 Computational Physics 1

Salvatore Rappoccio

Derivatives + Integrals

- One of the most obvious things in computational physics is to look at computation of derivatives and integrals
- You probably can guess how much of this is already known to you, since this is how you learned to do these things anyway!
- The "hard" part for you in calculus was probably getting your brain around taking the limits of the "simpler" things when the step size went to zero
- Well, that part is also hard for computers!
 - -So, you have to think a little differently here, and go back to discrete derivatives and integrals

Derivatives + Integrals

- Conceptually this is probably the easiest chapter
- The devil is in the details, however

The devil in the details

- Short discussion in Chapter 1 of Garcia
- Also parts are addressed in Chapter 2 of Garcia

- We've now seen several differentials in the previous discussion
- We need to be able to compute the differential numerically, so as we mentioned, we take a step back :

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

• First we take the "forward difference" :

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \frac{h}{2}f''(x) + \mathcal{O}(h^2) .$$

• But we could equally have taken the "backward difference":

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{(-h)}{2}f''(x) + \mathcal{O}(h^2) .$$
(4)

• But! Here's the first devil :)

 Combine the forward and backward differences to get a symmetric difference!

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)$$

Recall: "Big-Ohh" Notation

- The "big-ohh" notation stands for "order"
- O(N²) operations means "the leading coefficient in the number of operations scales like N²"
- Remember, "operations" here really means "multiplications"... addition is cheap!
- In computing, we want to minimize this as much as possible since the computational time scales the same way

• Since "h" is small, the error that we make is smaller (h²) :

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)$$
.

- We want to make the error that we make as small as possible!
- Simple thing : reduce h
 - -But! This has a bit of a problem because it increases the computational time (ouch)
- Can we do better?

- Absolutely!
- Can try with a "five point stencil": <u>http://en.wikipedia.org/wiki/Five-point_stencil</u>
- Consider the five points : $\{x 2h, x h, x, x + h, x + 2h\}$.
- Then the derivative looks like :

$$f'(x) = \frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h} + \mathcal{O}(h^4)$$

 Five-point derivative method is simple enough to just write it down

```
def diff_fivepoint( f, x, h) :
    ''' f    : name of function to be differentiated
        x    : the point at which df/dx is required
        h        : step size
    '''
    dfdx = ( f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2*h)) / (12*h)
    return dfdx
```

- What if we don't know the functional form of the derivative?
- We have to use some approximate functional form of the data points to handle this
- One popular method is to use polynomial interpolation and extrapolation

$$f(x) \simeq \sum_{i=0}^{n} a_{i} x^{n} ,$$
$$f'(x) \simeq \sum_{i=1}^{n} a_{i} n x^{n-1}$$

Ridder's method

 Chapter 5, Section 7 of Numerical Recipes recommends Ridder's algorithm :

-Advances in Engineering Software, 4 75-76 (1978)

- Uses Ridder's polynomial extrapolation.
- This relies on the so-called "Neville's algorithm" to compute the polynomial extrapolation, then computes the derivative

Neville's Algorithm

- Derived to compute polynomial interpolation <u>http://en.wikipedia.org/wiki/Neville's_algorithm</u>
- Given n data points, you can construct the n-dimensional polynomial (which is unique) as follows :
 - Let p_{i,j} denote the polynomial of degree j i which goes through the points (x_k,y_k) for k=i..j.
 - $-The p_{i,j}$ satisfy :

$$p_{i,i}(x) = y_i, \qquad \qquad 0 \le i \le n,$$

$$p_{i,j}(x) = \frac{(x_j - x)p_{i,j-1}(x) + (x - x_i)p_{i+1,j}(x)}{x_j - x_i}, \quad 0 \le i < j \le n.$$

Neville's Algorithm

 So, we can fill a tableau to compute this from the left to the right :

$$\begin{array}{l} p_{0,0}(x) = y_0 \\ p_{0,1}(x) \\ p_{1,1}(x) = y_1 \\ p_{1,2}(x) \\ p_{1,2}(x) \\ p_{0,3}(x) \\ p_{2,2}(x) = y_2 \\ p_{1,3}(x) \\ p_{1,4}(x) \\ p_{2,3}(x) \\ p_{2,3}(x) \\ p_{2,3}(x) \\ p_{2,4}(x) \\ p_{3,4}(x) \\ p_{3,4}(x) \\ p_{4,4}(x) = y_4 \end{array}$$

Ridder's method

- Start with the symmetric difference
- Compute polynomial extrapolations for n=10 polynomials
 - -Reduce the step size for each n
 - -Compute symmetric difference at smaller step size. Store the result.
 - -Compute extrapolations for n-1 with Neville's algorithm
 - -Compare each new extrapolation to one order lower at this step size, and the previous one
 - If error is smaller, keep the improvement
 - else, continue

If you have lots of derivatives, over the entire time this can save you a lot of CPU's

Ridder's Method

Input value
Initialize 10x10 array
Compute symmetric difference differential
for each polynomial extrapolation :
 reduce step size
 compute symmetric difference differential
 store results
 compute error to previous step size
 if error is better, keep it
 else, continue

Ridder's method

```
if h == 0.0 :
   print "diff Ridders: h must be non-zero"
    exit
           # dimension of extrapolation table
n = 10
a = array( [[0.0] * n] *n ) # extrapolation table
a[0][0] = (f(x + h) - f(x - h)) / (2 * h)
answer = 0.0
error = nan_to_num( inf ) / 2.0 # get a large value for the error
for i in xrange(n) :
   h /= 1.4
   a[0][i] = (f(x + h) - f(x - h)) / (2 * h)
   fac = 1.4 * 1.4
   for j in range(1,i+1) ;
       a[j][i]=(a[j-1][i] * fac - a[j-1][i-1]) / (fac - 1)
       fac *= 1.4 * 1.4
       err = max(abs(a[j][i] - a[j-1][i]),
                 abs(a[j][i] - a[j-1][i-1]))
       if err <= error :
           error = err
           answer = a[j][i]
   if abs(a[i][i] - a[i-1][i-1]) >= 2 * error :
       break
return answer, error
```

- docker pull srappoccio/compphys:latest
- cd results/CompPhys/
- git pull origin master

- Covered (cursorily) in Garcia Chapter 10.2
- Also covered in Numerical Recipes Chapter 4
 - -(The C version is online for free :)
 - -http://apps.nrbook.com/c/index.html

- We've done derivatives. Now on to integration.
- Recall your high-school (ish) calculus class :
 - -http://en.wikipedia.org/wiki/Integral

- To first order, that's all we're going to do for computations of integrals
 - There are fancier, faster, better methods, but they are successive approximations of this kind of thing except one (Monte Carlo integration)
 - -We'll first consider the class of problems called "quadrature" in numerical analysis
 - See Chapter 4 of "Numerical Recipes" (C version online for free from their website)

• Consider the integral :

$$I = \int_{a}^{b} dx f(x) \; .$$

• Then define :

$$y(x) \equiv \int_{a}^{x} dx' f(x') .$$

• Thus :

$$\frac{dy}{dx} = f(x)$$
, $y(a) = 0$, $y(b) = I$.

- We COULD solve this as a differential equation!
- But instead we'll start with the "bare bones" approximations that you learned in high school/freshman calculus

- The rectangle sum is a slightly-less-than-wonderful approximation of the integral
- The trapezoid sum is actually much better <u>http://en.wikipedia.org/wiki/Trapezoidal_rule</u>
- You compute the integral by approximating it as a trapezoid :

$$\int_{a}^{b} f(x) dx \approx (b-a) \left[\frac{f(a) + f(b)}{2} \right].$$

22

- How accurate? Define h = (b-a) as our "small" parameter
- Approximate the integral by :

$$I = \int_{a}^{b} dx \, f(x) \simeq (b-a) f(x_0) = h f(x_0) \,,$$

• We Taylor-expand f(x) :

$$f(x) - f(x_0) = (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(x_0) + \dots ,$$

• The error in the estimate is :

$$I - (b - a)f(x_0) = f'(x_0) \int_a^b dx \, (x - x_0) + \frac{1}{2} f''(x_0) \int_a^b dx \, (x - x_0)^2 + \dots$$

= $f'(x_0) \left[\frac{b + a}{2} - x_0 \right] \frac{b - a}{2}$
+ $\frac{1}{6} f''(x_0) \left[(b - x_0)^3 - (a - x_0)^3 \right]$
= $\mathcal{O}(h^2)$.

- Notice a trick we can play!
- If we choose x₀ = (b+a) / 2, then we get down to O(h³) instead of O(h²)!
 - -"Midpoint rule" :

$$I \simeq T = \frac{h}{2} \left[f(a) + f(b) \right] \,.$$

$$\begin{split} I &= \int_{a}^{b} dx \left[f(a) + (x - a)f'(a) + \frac{1}{2}(x - a)^{2}f''(a) + \dots \right] \\ &= hf(a) + \frac{h^{2}}{2}f'(a) + \frac{h^{3}}{6}f''(a) + \dots \\ T &= \frac{h}{2} \left[f(a) + f(a) + hf'(a) + \frac{h^{2}}{2}f''(a) \right] \dots \\ I - T &= -\frac{h^{3}}{12}f''(a) + \dots = \mathcal{O}(h^{3}) \;. \end{split}$$

- Then can break the integral into a bunch of trapezoids
- This is also related to "polygon tessellation" in computer graphics, to compute (or display) the area in a 2-d image :

-http://en.wikipedia.org/wiki/Polygon_triangulation

- Easier and faster than computing the area in a more complicated way!
- Almost all of your modern computer games will allow you to set the amount of tessellation to optimize performance or beauty depending on your taste

Graphics	Display	102		
Advanced Network Languages Sound Voice	Display Mode	Fullscreen 🗣	Monitor	Primary 💽
	Resolution	5760×1080 (🔹	Multisampling	8x 💽
	Refresh Rate	60.0Hz 🔹	Vertical Sync	Disabled 🔶
		TEDE: ZINGO	16	
	Graphics	THE REAL PROPERTY OF		
			1. A.	* 1
	Low	Fair Good	High	ل Ultra
	Textures		Effects	
They're using	Texture Resolution	High 🔸	Shadow Quality	Ultra 💽
tessellation here	Texture Filtering	16x Anisotropic 💽	Liquid Detail	Ultra 💽
	Projected Textures	Enabled 🗣	Sunshafts	High 💽
	Environment	Kan	Particle Density	Ultra 💽
	View Distance	Ultra 💽		
	Environment Detail	Ultra 🗣		
	Ground Clutter	Ultra 💽		
				P P Sty

Now you can guess what to do, we have successive approximations :

$$\int_{a}^{b} dx f(x) = \sum_{i=1}^{N-1} \int_{x_{i}}^{x_{i+1}} dx f(x) ,$$

• The uncertainty here is :

$$I \simeq I_T \equiv \sum_{i=1}^{N-1} \frac{x_{i+1} - x_i}{2} \left[f(x_{i+1}) + f(x_i) \right] ,$$
$$I - I_T \sim \mathcal{O}\left((N-1)h^3 \right) \sim \mathcal{O}\left((b-a)h^2 \right) ,$$

 Can therefore pick N,h to desired accuracy (same deal as in tessellation!)

```
def trapezoidal_rule(f, a, b, n):
    """Approximates the definite integral of f from a to b by
    the composite trapezoidal rule, using n subintervals"""
    h = (b - a) / n
    s = f(a) + f(b)
    for i in xrange(1, n):
        s += 2 * f(a + i * h)
    return s * h / 2
```

Integration : Simpson's Rule

- This is more accurate than the Trapezoidal rule, and not really slower :
 - -<u>http://en.wikipedia.org/wiki/Simpson's_rule</u>
- Instead of approximating by a trapezoid, use a parabola!
- This is a "three-point" rule, similar to that we saw last class for the derivatives with the "symmetric" derivative

Integration : Simpson's Rule

• The approximation is thus :

$$I = \int_{a}^{b=a+2h} dx \, f(x) = \frac{h}{3} \left[f(a) + 4f(a+h) + f(b) \right] + \mathcal{O}(h^5)$$

 Similarly to above, we can divide into intervals of size 2h if we have a large area :

$$\begin{aligned} \int_{a}^{b} dx \, f(x) &= \frac{h}{3} \left[f(a) + 4f(a+h) + 2f(a+2h) \right. \\ &+ 4f(a+3h) + 2f(a+4h) + \cdots \\ &+ 2f(b-2h) + 4f(b-h) + f(b) \right] + \mathcal{O}\left((b-a)h^4 \right) \end{aligned}$$

 This particular implementation requires an EVEN number of intervals, and that the function is evaluated at an ODD number of points (need three points on each!)

Integration : Simpson's Rule

```
def simpson(f, a, b, n):
    """Approximates the definite integral of f from a to b by
    the composite Simpson's rule, using n subintervals"""
    h = (b - a) / n
    s = f(a) + f(b)
    for i in range(1, n, 2):
        s += 4 * f(a + i * h)
    for i in range(2, n-1, 2):
        s += 2 * f(a + i * h)
    return s * h / 3
```

Integration : For your homeworks!

 In your homeworks (assigned Monday) you will go through the same exercise of examining numerical precision of integration, like we did for derivatives.

Integration : Adaptive methods

- Can often adapt the algorithm to a desired precision by iterating
- This improves the accuracy dynamically, saving time when the function is fairly linear

Integration : Adaptive methods

• So, pseudocode is :

Choose N and compute h Set h --> h/2 Compute $\Delta I \equiv |I_T(h) - I_T(2h)|$ If $\Delta I > \epsilon$ repeat

 Can also reuse the computations as we did in our previous example to speed up computational time :

Integration : Adaptive methods

```
def adaptive trapezoid(f, a, b, acc, output=False):
    .....
   Uses the adaptive trapezoidal method to compute the definite integral
   of f from a to b to desired accuracy acc.
    ....
   old s = -1e-30
   h = b - a
   n = 1
   s = (f(a) + f(b)) / 2
   if output --- True :
       print "N = " + str(n+1) + ", Integral = " + str( h*s )
   while abs(h * (old_s - s/2)) > acc :
       old s = s
       for i in xrange(n) ;
            s += f(a + (i + 0.5) * h)
       n *= 2
       h /= 2
       if output -- True :
           print "N = " + str(n+1) + ", Integral = " + str( h*s )
    return h * s
```

Next up: Root finding

- The next issue is to find the roots of a function f(x)
- That is, $\{x|f(x)=0\}$
- Lots of issues, not only computational!

-May not have a root

- -May have imaginary roots
- May have a large number of roots
- Section 4.3 in Garcia, Chapter 9 in Numerical Recipes

- But, given those caveats, once again it is very straightforward logic here
- You've probably already seen Newton's method in your mathematics classes
 - -http://en.wikipedia.org/wiki/Newton's_method
- Guess at the answer
- Find derivative
- Use it to get successively better approximations

Newton's Method

- A very simple version (not yet Newton's version) :
- Choose accuracy you want : ϵ
- Guess x and dx, then $f_0 = f(x)$
- Step is : $x \to x + dx$
- Check to see if you've passed the root : $f_0 \times f(x)$ - If negative, you changed sign so, reverse : $x \to x - dx$ and reduce your step : $dx \to dx/2$
- If $\left| dx \right| < \epsilon \quad \text{or} \quad f(x) = 0 \ \text{, you're done}$
- Otherwise, iterate steps

- The above assumes that the function f(x) is continuously differentiable with at least one real root
- Much of the complications arise when this is not the case :
 - -Kinks
 - -Discontinuities
 - -No real roots

- So, we usually put in protections against this, and eventually the code will give up and print a failure message
- Even still, can have pathologies!

• So, the code for our simple root finding is here :

- Problem! We already need to know the structure pretty specifically of the function before we find the root
- So, the code will happily continue until infinity if we give it a guess in the wrong direction
- This is a bit of a pain, so we need something better

- The next idea is to find a window within which the root will fall : bisection method
 - -http://en.wikipedia.org/wiki/Bisection_method
- Utilizes the intermediate value theorem!

 Assumes that the function has exactly one root between x0,x1, at which point it changes sign

- Repeatedly bisects the interval :
- Let $x_{\frac{1}{2}} = (x_0 + x_1)/2$ be the bisection point
- Compute : $f(x_0) \times f(x_{\frac{1}{2}})$
 - -If positive, then x_0 and $x_{1/2}$ are on the same side of the root, and $x_{1/2}$ is closer, so replace $x_0 \rightarrow x_{\frac{1}{2}}$
 - -Else, they're on opposite sides, so refine interval: $x_1 \rightarrow x_{\frac{1}{2}}$
- If $|x_1 x_0| < \epsilon$ or if $f(x_{\frac{1}{2}}) = 0$ then we have the root with sufficient precision

- OK, much better, we just have to find a bounding interval
- Usually a lot easier than having to remember what the function actually looks like

• One problem : It's pretty darned slow.

- Let's estimate the convergence rate :
 - Number of iterations needed before root is located with some desired accuracy
 - -Either $dx < \epsilon$ or $f(x) < \alpha$
 - -We usually do the former, not the latter
- Look at bisection.
 - -After n bisection steps, then dx_n is given by :

$$|dx_{n}| = |x_{1} - x_{0}| \quad \text{after } n \text{ iterations}$$

$$= \frac{1}{2} |dx_{n-1}| = \frac{1}{2^{2}} |dx_{n-2}| = \dots = \frac{1}{2^{n}} |dx_{0}| ,$$

$$-\text{So}, \quad \frac{1}{2^{n}} |dx_{0}| \le \epsilon ,$$

$$-\text{or}: \quad n \ge \log_{2} \left[\frac{|dx_{0}|}{\epsilon} \right] = \frac{\log_{10} \left[\frac{|dx_{0}|}{\epsilon} \right]}{0.3010 \dots} .$$

Can also represent as

$$|dx_n| \simeq C_F |dx_{n-1}|^{\alpha} ,$$

where C_F is a constant "convergence factor"

 α is the "order of convergence"

- For bisection :
$$C_F = rac{1}{2}, lpha = 1$$

• For the simple step-halving :

$$C_F \in [\frac{1}{2}, 1], \alpha = 1$$

- Both of these are pretty darned slow to converge
- Can we do better?

- Two better options :
 - -Secant method
 - <u>http://en.wikipedia.org/wiki/Secant_method</u>
 - –Newton's method (or Newton-Raphson, or "tangent" method"
 - <u>http://en.wikipedia.org/wiki/Newton's_method</u>

- Secant method (secare : Latin, "to cut"... think "section")
- Choose the secant, the line between x0 and x1 that intersects f(x)

• Equation is :
$$s(x) = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1)$$
.

- Can utilize x0 as the initial guess, and then specify the initial window (dx = x1 x0)
 - -The next step is therefore chosen at where the secant intersects f(x) = 0:

$$s(x_{\text{new}}) = 0 \quad \Rightarrow \quad x_{\text{new}} = x_1 - (x_1 - x_0) \frac{f(x_1)}{f(x_1) - f(x_0)} \equiv x_1 + dx_{\text{new}}$$

• Then iterate

- So, pseudocode is :
 - -choose x0 and x1 "near" the root, dx = x1 x0
 - -If either f(x0) = f(x1) then the method fails, so re-guess
 - -Replace :

$$dx \to dx_{\text{new}}, x_0 \to x_1, x_1 \to x_{\text{new}}$$

- -Check if: $|dx_{new}| < \epsilon$
 - If so, desired accuracy reached.
 - Otherwise, iterate

• Here's the code for the secant method :

- If a few conditions are met, then this is much faster than bisection :
 - -If f(x) is smooth near the root
 - -If x0 and x1 are close enough to the root
 - -Given these two, a Taylor expansion should be a good approximation
- Assume that the root is at zero (for simplicity, but without loss of generality, you can always do a change of variables to make this at some other x)
- Then, in the expansion :

$$f(x) \simeq xf' + \frac{x^2}{2}f'' = xf' \left[1 + x\frac{f''}{2f'}\right],$$

• we have written simply f'(0) = f', f''(0) = f''

• Then we can plug this into the secant approximation to get : $(m, m) = f' \begin{bmatrix} 1 & m \\ f'' \end{bmatrix}$

$$\begin{aligned} x_{\text{new}} &\simeq x_1 - \frac{(x_1 - x_0)x_1 f' \left[1 + x_1 \frac{f'}{2f'}\right]}{(x_1 - x_0)f' + \frac{x_1^2 - x_0^2}{2}f''} \\ &= x_1 \left[1 - \frac{1 + x_1 \frac{f''}{2f'}}{1 + (x_1 + x_0)\frac{f''}{2f'}}\right] \\ &\simeq x_1 x_0 \left(\frac{f''}{2f'}\right) , \end{aligned}$$

 To find the convergence, we rewrite x_new and x1 in terms of our convergence relation from above, and define C_F and alpha :

$$|x_{\text{new}}| = C_F |x_1|^{\alpha}, \qquad |x_1| = C_F |x_0|^{\alpha}.$$

• So, we do a little algebraic massaging and get :

$$|x_1|^{\alpha - 1 - \frac{1}{\alpha}} = \frac{\left|\frac{f''}{2f'}\right|}{C_F^{1 + \frac{1}{\alpha}}},$$

• The RHS is independent of x1, so we must have

$$\alpha - 1 - \frac{1}{\alpha} = 0 \qquad \Rightarrow \qquad \alpha = \frac{1 + \sqrt{5}}{2} = 1.618033988 \ldots = 1 + \frac{1}{\alpha}.$$

- I.e. the rate of convergence is equal to the golden mean!
- Faster than linear, but not quite quadratic
- But! Strong assumptions about behavior of f(x)

- Finally, Newton-Raphson method (or "tangent" method) is the fastest we will consider that has the smallest number of assumptions
- But this time, instead of the secant, we utilize the derivative ("tangent"!)

• Tangent is :
$$t(x) = f(x_0) + f'(x_0)(x - x_0)$$
,

• Then we see where the tangent intersects the x axis:

$$x_{\text{new}} = x_0 - \frac{f(x_0)}{f'(x_0)} \equiv x_0 + dx$$
.

- Similar to secant algorithm :
- Chose x0 near the root
- Check if f'(x0) = 0.
 - -If = 0, fails
 - -Else continue
- Compute dx, replace x0 by x_new
- Check if $|dx| < \epsilon$ or $f(x_{new}) = 0$
 - -If so, accuracy reached
 - -Else : iterate

- Two cases here :
 - -f' is analytic : rate of convergence is ~quadratic
 - -f' must be computed numerically : rate of convergence is ~secant method

• Tangent method is :

root_tangent(f, fp, x0, accuracy=1.0e-6, max_steps=20, root_debug=False): """Deturn oot of f(x) with derivative fp = df(x)/dxIf f' is analytic, given initial guess x0, with specified accuracy. use this Uses Newton-Raphson (tangent) root-finding algorithm. f0 = f(x0)fp0 = fp(x0)if fp0 --- 0.0: raise Exception(" root tangent df/dx = 0 algorithm fails") Compute f, f', dx dx = -f0 / fp0step = 0 if root debug: root print header ("Tangent Search", accuracy) root print step(step, x0, dx, f0) if f0 == 0.0: return x0 while True: fp0 = fp(x0)if fp0 == 0.0: raise Exception (" root tangent df/dx = 0 algorithm fails") dx = -f0 / fp0x0 += dxf0 = f(x0)Make replacements if abs(dx) <= accuracy or f0 == 0.0: return x0 step += 1 if step > max steps: root max steps("root tangent", max steps) if root_debug: Iterate until convergence root_print_step(step, x0, dx, f0) return x0

Application : Cross sections

You should have encountered cross sections in one of your classes :

Application : Cross sections

 You should have encountered cross sections in one of your classes :

- Happens a lot in physics
 - -Collision of galaxies
 - -Particle physics (ubiquitous!)
 - -Optical scattering
 - -Etc

- Take a simple case :
 - Particle of mass "m" scattering from an isotropic central force field
 - Examples : billiard balls, Rutherford scattering

$$\mathbf{F} = f(r)\hat{\mathbf{r}} = -\frac{dV(r)}{dr}\hat{\mathbf{r}} \,.$$

- Use conservation of linear and angular momenta to solve the problem
 - -This occurs in the plane of the scatter (2-d)

• Conservation of energy :

$$E = T + V = \frac{1}{2}m\left(\dot{r}^{2} + r^{2}\dot{\theta}^{2}\right) + V(r)$$

• Conservation of angular momentum (normal to plane) is:

$$\begin{array}{ll} L_z = mr\dot{\theta} \equiv m\ell \\ dr & dr \, d\theta \end{array}$$

- But we know : $\dot{r} = \frac{ar}{dt} = \frac{ar}{d\theta} \frac{a\theta}{dt}$
- So we can get rid of ALL of the time derivatives in the energy expression!

$$E = \frac{1}{2}m\ell^2 \left[\left(\frac{du}{d\theta} \right)^2 + u^2 \right] + V(1/u) , \qquad u \equiv \frac{1}{r}$$

Can then integrate this to get the trajectory in parametric form
 ⁶⁴

• So we're looking for an equation of the form :

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square repulsive force field of another charged particle.

Fowles and Cassiday, Analytical Mechanics

By conservation of angular + linear momenta and energy :

$$b = \frac{L}{mv_0} = \frac{L}{\sqrt{2mE}} = \frac{|\ell|}{\sqrt{2E/m}}$$

 Can solve the energy formula to get a parametric equation for r in terms of theta :

$$\frac{dr}{d\theta} = \pm \frac{r^2}{b} \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}$$

• At the point of closest approach (PCA) the derivative is zero, so define this as r_{min}.

- Typically we have experiments with many incident particles ("beam")
- Then we can consider a distribution of impact parameters with density $2\pi b \, db$
- Classically, given E and b, you can get the unique scattering angle theta
- Example : Lennard-Jones potential for interactions between pairs of neutral atoms or molecules

$$V(r) = 4V_0 \left[\left(\frac{r_0}{r}\right)^{12} - \left(\frac{r_0}{r}\right)^6 \right]$$

 Interesting bit is that more than one b can lead to the same theta!

• Consider a differential of the impact parameter. The scattering angles will therefore be in the range :

$$[\theta, \theta + d\theta] = \left[\theta(b, E), \theta(b, E) + \frac{d\theta(b, E)}{db}db\right]$$

- Typically detectors of particles are located "at infinity" (far away)
- They exist at some angle θ_{s} , and subtend some physical space (solid angle $d\Omega$)
- Thus we have :

(Incident particles per unit area per unit time) × Area = $2\pi \mathcal{I} b db$

• Now, consider the differential scattering cross section :

$$\sigma(\theta_s) = \frac{\text{Number detected per unit time}}{(\text{Incident Intensity}) \times d\Omega} = \frac{2\pi b \ db}{2\pi \sin \theta_s \ d\theta_s} = \frac{b}{\sin \theta_s} \left| \frac{d\theta_s}{db} \right|^{-1}$$

 Now, since many incident particles are detected in the same "slice" of the detector, define a deflection angle as the total number of radians that the position vector rotates along the trajectory :

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

• The scattering angle is related to the deflection angle:

$$0 \le \theta_s = \pm \Theta - 2n\pi \le \pi$$

• And the differential cross section is :

$d\sigma$ _	Number detected per unit time	$2\pi b \ db$	b	$d\theta_s \mid^{-1}$
$\overline{d\Omega}$ -	(Incident Intensity) $\times d\Omega$	$\overline{2\pi\sin\theta_s\ d\theta_s}$	$\sin\theta_s$	db

Hey look! A discrete sum!

Scattering

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square repulsive force field of another charged particle.

• We have shown : $\frac{dr}{d\theta} = \pm \frac{r^2}{b} \sqrt{1 - \frac{b^2}{r^2}} - \frac{V(r)}{E}$

–RHS is zero at r_min (Yay! It's a root!)

• Also recall the differential cross section :

$$\frac{d\sigma}{d\Omega} = \frac{\text{Number detected per unit time}}{(\text{Incident Intensity}) \times d\Omega} = \frac{2\pi b \ db}{2\pi \sin \theta_s \ d\theta_s} = \frac{b}{\sin \theta_s} \left| \frac{d\theta_s}{db} \right|^{-1}$$

- If we can compute dtheta/db, we can get the scattering cross section
- Example : hard sphere
- So, we have

$$b(\theta) = R \sin \alpha = R \sin \left(\frac{\pi - \theta}{2}\right) = -R \cos(\theta/2)$$

• Thus: $\frac{db}{d\theta_s} = \frac{R}{2} \sin\left(\frac{\theta_s}{2}\right)$

• Example : Rutherford Scattering : EM scattering of object with charge q1 off of an object with charge q2

• Look at the change in momentum : $\Delta \mathbf{p} = \mathbf{p}' - \mathbf{p}$

• We know that $|\mathbf{p}'| = |\mathbf{p}|$

so we can write

 $|\Delta \mathbf{p}| = 2p\sin\theta/2$

• We get an isosceles triangle :

75

- But, we know from Newton's second law: $\Delta \mathbf{p} = \int \mathbf{F} \Delta t$
- Since F is in the direction of u, we perform this in one dimension: $\int_{-\infty}^{\infty}$

$$\Delta \mathbf{p} = \int_{-\infty}^{\infty} |\mathbf{F}_{\mathbf{u}}| \Delta t$$

• The components of the integral cancel except for the force in the u direction, so investigating this again:

• Thus :

$$|\Delta \mathbf{p}| = \int_{-\infty}^{\infty} \frac{kq_1q_2}{r^2} \cos\psi dt$$

• Now use a trick :

$$\dot{\psi} = \frac{d\psi}{dt}$$

$$dt = \frac{d\psi}{\dot{\psi}}$$

• Can use conservation of angular momentum to solve for $\dot{\psi}$

 $d\psi$

• Solving for the magnitude of L₂ :

• Tangential velocity is:

$$v = r \frac{d\psi}{dt}$$

• So

$$|\mathbf{L_2}| = mr^2 \frac{d\psi}{dt} = mr^2 \dot{\psi}$$

• Finally can substitute this into the integral:

$$|\Delta \mathbf{p}| = \int_{-\infty}^{\infty} \frac{kq_1q_2}{r^2} \cos\psi dt = \int \frac{kq_1q_2}{r^2} \cos\psi \frac{d\psi}{bp/mr^2}$$

• Simplifying :

$$= \int_{-\psi_0}^{\psi_0} \frac{kq_1q_2m}{bp} \cos\psi d\psi$$

• And doing the integral, we get :

$$|\Delta \mathbf{p}| = \frac{2kq_1q_2m}{bp}\cos\theta/2$$
 and $|\Delta \mathbf{p}| = 2p\sin\theta/2$

• We solve for b:

$$|\Delta \mathbf{p}| = \frac{2kq_1q_2m}{bp}\cos\theta/2 = 2p\sin\theta/2$$
$$b = \frac{kq_1q_2}{mv^2}\cot\theta/2$$

79

- Can finally put it together and compute scattering cross section:
- $\frac{d\sigma}{d\Omega} = \frac{\text{Number detected per unit time}}{(\text{Incident Intensity}) \times d\Omega} = \frac{2\pi b \ db}{2\pi \sin \theta_s \ d\theta_s} = \frac{b}{\sin \theta_s} \left| \frac{d\theta_s}{db} \right|^{-1}$
 - in this case :

$$\frac{d\sigma}{d\Omega} = \left(\frac{kq_1k_2}{4E\sin^2\theta/2}\right)^2$$

• Finally consider the Lennard-Jones potential:

$$V(r) = 4V_0 \left[\left(\frac{r_0}{r}\right)^{12} - \left(\frac{r_0}{r}\right)^6 \right]$$

- How would we go about computing this?
- Of course, we need to do it numerically!
- Or rather : you'll compute it numerically in your homework!
- Let's sketch it out

• Critical bit is here :

$$|\Delta \mathbf{p}| = \int_{-\infty}^{\infty} \frac{kq_1q_2}{r^2} \cos\psi dt = \int \frac{kq_1q_2}{r^2} \cos\psi \frac{d\psi}{bp/mr^2}$$

- We had the force in the integrand, but the factors of r canceled fortuitously
- Can use another (less fortuitous) trick, though. Limits of integration were $\pm\psi_0$

 \sim

• However, this is

$$\psi_0 = \int_0^\infty \dot{\psi} dt$$

• We can use the same trick:

$$\psi_0 = \int_{r_{\min}}^{\infty} \frac{\dot{\psi}}{\dot{r}} dr$$
83

 Rewriting all of this in terms of E, v, and the potential, this is our total deflection angle:

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- In order to plot the differential cross section, we : —Compute this integral numerically for several b's
 - -Compute the derivative $\frac{d\Theta}{db}$ numerically for those b's –We'd then have

$$\frac{d\sigma}{d\Omega} = \frac{\text{Number detected per unit time}}{(\text{Incident Intensity}) \times d\Omega} = \frac{2\pi b \ db}{2\pi \sin \theta_s \ d\theta_s} = \frac{b}{\sin \theta_s} \left| \frac{d\theta_s}{db} \right|^{-1}$$

• To do this, we must compute the deflection angle :

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Given r_min, we can compute the integral
- Therefore, this is a two-step problem :
 - Compute r_min numericallyCompute integral

- Our overall plan is thus :
 - -Set up scattering problem (E, b)
 - -Find r_min numerically
 - -Integrate dtheta/dr(b,E) numerically, given r_min

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Our overall plan is thus :
 - -Set up scattering problem (E, b)
 - -Find r_min numerically
 - -Integrate dtheta/dr(b,E) numerically, given r_min

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Our overall plan is thus :
 - -Set up scattering problem (E, b)
 - -Find r_min numerically
 - -Integrate dtheta/dr(b,E) numerically, given r_min

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Find r_min numerically :
 - -Recall:
 - $-r_{min}$ is defined by dr/dtheta = 0
 - -Function is:

- Integrate dtheta/dr numerically :
 - -Find r_min (from previous)
 - -Initialize to pi
 - -Integrate over a small "dTheta" with Trapezoid rule
 - -Add up the dTheta's to get total

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Integrate dtheta/dr numerically :
 - -Find r_min (from previous)
 - -Initialize to pi
 - -Integrate over a small "dTheta" with Trapezoid rule
 - -Add up the dTheta's to get total

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Integrate dtheta/dr numerically :
 - -Find r_min (from previous)
 - -Initialize to pi
 - -Integrate over a small "dTheta" with Trapezoid rule
 - -Add up the dTheta's to get total

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Integrate dtheta/dr numerically :
 - -Find r_min (from previous)
 - -Initialize to pi
 - -Integrate over a small "dTheta" with Trapezoid rule
 - -Add up the dTheta's to get total

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

- Integrate dtheta/dr numerically :
 - -Find r_min (from previous)
 - -Initialize to pi
 - -Integrate over a small "dTheta" with Trapezoid rule
 - -Add up the dTheta's to get total

$$\Theta(b,E) = \theta(-\infty) - \int_{-\infty}^{+\infty} \frac{d\theta(t)}{dt} dt = \pi - 2b \int_{r_{\min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$$

Orbiting

- As you know, oftentimes in scattering, the potentials are attractive and the incoming particle can orbit the other
 - -Gravitational capture
 - -Electron capture
- We can also investigate orbiting in our example
- We're computing the deflection angle Theta, but if you're orbiting, this can go completely nuts (somewhat obviously)

Orbiting

 Define the effective potential for scattering as the sum of the actual potential, and the centrifugal potential (from angular momentum of the incoming particle) :

$$V_{\rm eff}(r) = V(r) + E\left(\frac{b}{r}\right)^2$$

- Then this looks something like : Lennard-Jones Potential V₀ = 1, r₀ = 1, E = 0.5, Eb² = 1.1
- Orbiting occurs when E equals the max of the effective potential

$$\frac{dV_{\text{eff}}(r)}{dr}\Big|_{r=r_{\text{max}}} = 0$$
$$V_{\text{eff}}(r_{\text{max}}) = E$$

Scattering Pseudocode

- Integrate dtheta/dr numerically :
- -Initialize to pi -
- -Find r_min (from previous)
- Integrate over a small
 "dTheta" with Trapezoid
 rule
- –Add up the dTheta's to get total

```
trajectory( self ) :
# Define theta step :
dtheta = -1.0 * asin( self.b / self.r_max )
# To return : list of trajectories
rtheta = [self.r_max, pi + dtheta]
traj = [ array( rtheta ) ]
# To return : Total deflection
deflection = pi - 2*dtheta
```

Find the distance of closest approach with the "root_simple" method dr = -1.0 * self.r_max / 100 r_max = self.r_max r_min = root_simple(self.f_r_min, r_max, dr)

```
# Integrate to find successive changes in theta :
dr = (r_max - r_min) / self.steps
accuracy = 1e-6
for i in xrange(self.steps) :
    r_upper = traj[i][0]
    r_lower = r_upper - dr
    itheta = traj[i][1]
    dtheta = -self.b * adaptive_trapezoid( self.dTheta_dr, r_lower, r_upper, accuracy )
    rtheta[0] -= dr
    rtheta[1] += dtheta
    traj.append( array( rtheta ) )
    deflection += 2 * dtheta
```

```
# Use symmetry to get the outgoing trajectory points
for i in range( self.steps-1, 0, -1) :
    rtheta[0] += dr
    dtheta = traj[i][1] - traj[i-1][1]
    rtheta[1] += dtheta
    traj.append( array( rtheta ) )
```

```
return [deflection, traj]
```

Scattering Pseudocode

- For each value of b:
 - Calculate deflection angle
 - Plot x vs y of scatter

 Be careful about rmax!
 Make sure it makes sense!

int main()

```
stringstream sstream;
sstream << "trajfile_cpp_" << i << ".data";
ofstream file(sstream.str().c_str());
```

```
b = b_min + i * db;
std::vector< std::pair<double,double> > trajectory;
double deflection = 0.0;
Theta<lennard_jones> theta( lj, E, b, 3.5, 100 );
theta.trajectory(deflection, trajectory,,
std::cout << " " << b << "\t\t" << deflection << std::endl;
for (int i = 0; i < trajectory.size(); i++) {
    double r = trajectory[i].first;
    double theta = trajectory[i].second;
    char buff[1000];
    sprintf(buff, "%8.4f %8.4f", r*cos(theta), r*sin(theta));
    file << buff << std::endl;</pre>
```

file << std::endl;

file.close();