PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Derivatives + Integrals

- One of the most obvious things in computational physics is to look at computation of derivatives and integrals
- You probably can guess how much of this is already known to you, since this is how you learned to do these things anyway!
- The "hard" part for you in calculus was probably getting your brain around taking the limits of the "simpler" things when the step size went to zero
- Well, that part is also hard for computers!
-So, you have to think a little differently here, and go back to discrete derivatives and integrals

Derivatives + Integrals

- Conceptually this is probably the easiest chapter
- The devil is in the details, however

The devil in the details

- Short discussion in Chapter 1 of Garcia
- Also parts are addressed in Chapter 2 of Garcia

Derivatives

- We've now seen several differentials in the previous discussion
- We need to be able to compute the differential numerically, so as we mentioned, we take a step back :

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- First we take the "forward difference" :

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\frac{h}{2} f^{\prime \prime}(x)+\mathcal{O}\left(h^{2}\right)
$$

- But we could equally have taken the "backward difference":

$$
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\frac{(-h)}{2} f^{\prime \prime}(x)+\mathcal{O}\left(h^{2}\right)
$$

Derivatives

- But! Here's the first devil :)
- Combine the forward and backward differences to get a symmetric difference!

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right) .
$$

Recall : "Big-Ohh" Notation

- The "big-ohh" notation stands for "order"
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ operations means "the leading coefficient in the number of operations scales like N^{2} "
- Remember, "operations" here really means "multiplications"... addition is cheap!
- In computing, we want to minimize this as much as possible since the computational time scales the same way

Derivatives

- Since " h " is small, the error that we make is smaller $\left(\mathrm{h}^{2}\right)$:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right) .
$$

- We want to make the error that we make as small as possible!
- Simple thing : reduce h
-But! This has a bit of a problem because it increases the computational time (ouch)
- Can we do better?

Derivatives

- Absolutely!
- Can try with a "five point stencil":
-http://en.wikipedia.org/wiki/Five-point_stencil
- Consider the five points: $\{x-2 h, x-h, x, x+h, x+2 h\}$.
- Then the derivative looks like :

$$
f^{\prime}(x)=\frac{f(x-2 h)-8 f(x-h)+8 f(x+h)-f(x+2 h)}{12 h}+\mathcal{O}\left(h^{4}\right) .
$$

Derivatives

- Five-point derivative method is simple enough to just write it down

```
def diff_fivepoint( f, x, h) :
    "'f ; name of function to be differentiated
        x : the point at which df/dx is required
        h : step size
    dfdx = (f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2*h)) / (12*h)
    return dfdx
```


Derivatives

-What if we don't know the functional form of the derivative?

- We have to use some approximate functional form of the data points to handle this
- One popular method is to use polynomial interpolation and extrapolation

$$
\begin{aligned}
f(x) & \simeq \sum_{i=0}^{n} a_{i} x^{n} \\
f^{\prime}(x) & \simeq \sum_{i=1}^{n} a_{i} n x^{n-1}
\end{aligned}
$$

Ridder's method

- Chapter 5, Section 7 of Numerical Recipes recommends Ridder's algorithm :
-Advances in Engineering Software, 4 75-76 (1978)
- Uses Ridder's polynomial extrapolation.
- This relies on the so-called "Neville's algorithm" to compute the polynomial extrapolation, then computes the derivative

Neville's Algorithm

- Derived to compute polynomial interpolation -http://en.wikipedia.org/wiki/Neville's_algorithm
- Given n data points, you can construct the n -dimensional polynomial (which is unique) as follows :
-Let $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ denote the polynomial of degree j - i which goes through the points ($\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}$) for $\mathrm{k}=\mathrm{i} . . \mathrm{j}$.
-The $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ satisfy :

$$
\begin{array}{ll}
p_{i, i}(x)=y_{i}, & 0 \leq i \leq n, \\
p_{i, j}(x)=\frac{\left(x_{j}-x\right) p_{i, j-1}(x)+\left(x-x_{i}\right) p_{i+1, j}(x)}{x_{j}-x_{i}}, & 0 \leq i<j \leq n .
\end{array}
$$

Neville's Algorithm

- So, we can fill a tableau to compute this from the left to the right :

$$
\begin{aligned}
& p_{0,0}(x)=y_{0} \\
& p_{1,1}(x)=y_{0,1}(x) \quad p_{0,2}(x) \\
& p_{1,2}(x) \quad p_{0,3}(x) \\
& p_{2,2}(x)=y_{2} \quad p_{1,3}(x) \quad p_{2,3}(x) \quad p_{1,4}(x) \\
& p_{3,3}(x)=y_{3} p_{2,4}(x) \\
& p_{3,4}(x) \\
& p_{4,4}(x)=y_{4}
\end{aligned}
$$

Ridder's method

- Start with the symmetric difference
- Compute polynomial extrapolations for $\mathrm{n}=10$ polynomials
-Reduce the step size for each n
-Compute symmetric difference at smaller step size. Store the result.
-Compute extrapolations for n -1 with Neville's algorithm -Compare each new extrapolation to one order lower at this step size, and the previous one
- If error is smaller, keep the improvement
- else, continue

If you have lots of derivatives, over the entire time this can save you a lot of CPU's

Ridder's Method

```
Input value
Initialize 10x10 array
Compute symmetric difference differential
for each polynomial extrapolation :
    reduce step size
    compute symmetric difference differential
    store results
    compute error to previous step size
    if error is better, keep it
    else, continue
```


Ridder's method

```
if h == 0.0 :
    print "diff_Ridders: h must be non-zero"
    exit
n = 10 # dimension of extrapolation table
a = array( [[0.0] * n] *n ) # extrapolation table
a[0][0] = (f(x+h) - f(x - h)) / (2 * h)
answer = 0.0
error = nan_to_num( inf ) / 2.0 # get a large value for the error
for i in xrange(n) :
    h /= 1.4
    a[0][i] = (f(x + h) - f(x - h)) / (2 * h)
    fac = 1.4 * 1.4
    for j in range(1,i+1) :
        a[j][i]=(a[j-1][i] * fac - a[j-1][i-1]) / (fac - 1)
        fac *= 1.4 * 1.4
        err = max (abs (a[j][i] - a[j-1][i]),
            abs(a[j][i] - a[j-1][i-1]))
        if err <= error :
            error = err
            answer = a[j][i]
    if abs(a[i][i] - a[i-1][i-1]) >= 2 * error :
        break
return answer,error
```

- docker pull srappoccio/compphys:latest
- cd results/CompPhys/
- git pull origin master

Integration

- Covered (cursorily) in Garcia Chapter 10.2
- Also covered in Numerical Recipes Chapter 4
-(The C version is online for free :)
-http://apps.nrbook.com/c/index.html

Integration

- We've done derivatives. Now on to integration.
- Recall your high-school (ish) calculus class :
-http://en.wikipedia.org/wiki/Integral

Integration

- To first order, that's all we're going to do for computations of integrals
-There are fancier, faster, better methods, but they are successive approximations of this kind of thing except one (Monte Carlo integration)
-We'll first consider the class of problems called "quadrature" in numerical analysis
-See Chapter 4 of "Numerical Recipes" (C version online for free from their website)

Integration

- Consider the integral :

$$
I=\int_{a}^{b} d x f(x)
$$

- Then define :

$$
y(x) \equiv \int_{a}^{x} d x^{\prime} f\left(x^{\prime}\right) .
$$

- Thus :

$$
\frac{d y}{d x}=f(x), \quad y(a)=0, \quad y(b)=I .
$$

- We COULD solve this as a differential equation!
- But instead we'll start with the "bare bones" approximations that you learned in high school/freshman calculus

Integration : Trapezoidal Rule

- The rectangle sum is a slightly-less-than-wonderful approximation of the integral
- The trapezoid sum is actually much better -http://en.wikipedia.org/wiki/Trapezoidal_rule
- You compute the integral by approximating it as a trapezoid :

Integration : Trapezoidal Rule

- How accurate? Define $\mathrm{h}=(\mathrm{b}-\mathrm{a})$ as our "small" parameter
- Approximate the integral by :

$$
I=\int_{a}^{b} d x f(x) \simeq(b-a) f\left(x_{0}\right)=h f\left(x_{0}\right)
$$

- We Taylor-expand $\mathrm{f}(\mathrm{x})$:

$$
f(x)-f\left(x_{0}\right)=\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right)+\ldots,
$$

- The error in the estimate is :

$$
\begin{aligned}
I-(b-a) f\left(x_{0}\right)= & f^{\prime}\left(x_{0}\right) \int_{a}^{b} d x\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \int_{a}^{b} d x\left(x-x_{0}\right)^{2}+\ldots \\
= & f^{\prime}\left(x_{0}\right)\left[\frac{b+a}{2}-x_{0}\right] \frac{b-a}{2} \\
& \quad+\frac{1}{6} f^{\prime \prime}\left(x_{0}\right)\left[\left(b-x_{0}\right)^{3}-\left(a-x_{0}\right)^{3}\right] \\
= & \mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

Integration : Trapezoidal Rule

- Notice a trick we can play!
- If we choose $x_{0}=(b+a) / 2$, then we get down to $O\left(h^{3}\right)$ instead of $\mathrm{O}\left(\mathrm{h}^{2}\right)$!
-"Midpoint rule" :

$$
\begin{aligned}
I & \simeq T=\frac{h}{2}[f(a)+f(b)] . \\
I & =\int_{a}^{b} d x\left[f(a)+(x-a) f^{\prime}(a)+\frac{1}{2}(x-a)^{2} f^{\prime \prime}(a)+\ldots\right] \\
& =h f(a)+\frac{h^{2}}{2} f^{\prime}(a)+\frac{h^{3}}{6} f^{\prime \prime}(a)+\ldots \\
T & =\frac{h}{2}\left[f(a)+f(a)+h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a)\right] \ldots \\
I-T & =-\frac{h^{3}}{12} f^{\prime \prime}(a)+\ldots=\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Integration : Trapezoidal Rule

- Then can break the integral into a bunch of trapezoids
- This is also related to "polygon tessellation" in computer graphics, to compute (or display) the area in a 2-d image :
-http://en.wikipedia.org/wiki/Polygon triangulation
- Easier and faster than computing the area in a more complicated way!
- Almost all of your modern computer games will allow you to set the amount of tessellation to optimize performance or beauty depending on your taste

Integration : Trapezoidal Rule

Integration : Trapezoidal Rule

- Now you can guess what to do, we have successive approximations :

$$
\int_{a}^{b} d x f(x)=\sum_{i=1}^{N-1} \int_{x_{i}}^{x_{i+1}} d x f(x)
$$

- The uncertainty here is :

$$
\begin{aligned}
& I \simeq I_{T} \equiv \sum_{i=1}^{N-1} \frac{x_{i+1}-x_{i}}{2}\left[f\left(x_{i+1}\right)+f\left(x_{i}\right)\right], \\
& I-I_{T} \sim \mathcal{O}\left((N-1) h^{3}\right) \sim \mathcal{O}\left((b-a) h^{2}\right),
\end{aligned}
$$

- Can therefore pick N, h to desired accuracy (same deal as in tessellation!)

Integration : Trapezoidal Rule

```
def trapezoidal_rule(f, a, b, n) :
    """Approximates the definite integral of f from a to b by
    the composite trapezoidal rule, using n subintervals"""
    h = (b - a) / n
    s=f(a) + f(b)
    for i in xrange(1, n):
        s += 2 * f(a + i * h)
    return s * h / 2
```


Integration : Simpson's Rule

- This is more accurate than the Trapezoidal rule, and not really slower :
-http://en.wikipedia.org/wiki/Simpson's_rule
- Instead of approximating by a trapezoid, use a parabola!
- This is a "three-point" rule, similar to that we saw last class for the derivatives with the "symmetric" derivative

Integration : Simpson's Rule

- The approximation is thus :

$$
I=\int_{a}^{b=a+2 h} d x f(x)=\frac{h}{3}[f(a)+4 f(a+h)+f(b)]+\mathcal{O}\left(h^{5}\right)
$$

- Similarly to above, we can divide into intervals of size 2 h if we have a large area :

$$
\begin{aligned}
\int_{a}^{b} d x f(x)= & \frac{h}{3}[f(a)+4 f(a+h)+2 f(a+2 h) \\
& +4 f(a+3 h)+2 f(a+4 h)+\cdots \\
& +2 f(b-2 h)+4 f(b-h)+f(b)]+\mathcal{O}\left((b-a) h^{4}\right) .
\end{aligned}
$$

- This particular implementation requires an EVEN number of intervals, and that the function is evaluated at an ODD number of points (need three points on each!)

Integration : Simpson's Rule

```
def simpson(f, a, b, n):
    """Approximates the definite integral of f from a to b by
    the composite Simpson's rule, using n subintervals"""
    h = (b - a) / n
    s=f(a) +f(b)
    for i in range(1, n, 2):
    s += 4 * f(a + i * h)
for i in range(2, n-1, 2):
    s += 2 * f(a + i * h)
return s * h / 3
```


Integration : For your homeworks!

- In your homeworks (assigned Monday) you will go through the same exercise of examining numerical precision of integration, like we did for derivatives.

Integration : Adaptive methods

- Can often adapt the algorithm to a desired precision by iterating
- This improves the accuracy dynamically, saving time when the function is fairly linear

Integration : Adaptive methods

- So, pseudocode is :

$$
\begin{aligned}
& \text { Choose } \mathrm{N} \text { and compute } \mathrm{h} \\
& \text { Set } \mathrm{h}--\mathrm{h} / 2 \\
& \text { Compute } \Delta I \equiv\left|I_{T}(h)-I_{T}(2 h)\right| \\
& \text { If } \Delta I>\epsilon \text { repeat }
\end{aligned}
$$

- Can also reuse the computations as we did in our previous example to speed up computational time :

Integration : Adaptive methods

```
def adaptive_trapezoid(f, a, b, acc, output=False):
    ##1%
    Uses the adaptive trapezoidal method to compute the definite integral
    of f from a to b to desired accuracy acc.
    ##%
    old_s = -1e-30
    h = b - a
    n = 1
    s=(f(a) +f(b)) / 2
    if output == True :
        print "N = " + str(n+1) + ", Integral = " + str( h*s )
    while abs(h * (old_s - s/2)) > acc ;
    old_s = s
    for i in xrange(n) :
        s += f(a + (i + 0.5) * h)
        n *= 2
        h /= 2
        if output == True :
            print "N = " + str(n+1) + ", Integral = " + str( h*s )
    return h * s
```


Next up : Root finding

- The next issue is to find the roots of a function $f(x)$
- That is,

$$
\{x \mid f(x)=0\}
$$

- Lots of issues, not only computational!
-May not have a root
-May have imaginary roots
-May have a large number of roots
- Section 4.3 in Garcia, Chapter 9 in Numerical Recipes

$$
f(x)=\sin 1 / x
$$

Root finding

- But, given those caveats, once again it is very straightforward logic here
- You've probably already seen Newton's method in your mathematics classes
-http://en.wikipedia.org/wiki/Newton's method
- Guess at the answer
- Find derivative
- Use it to get successively better approximations

Root finding

Newton's Method

Root finding

- A very simple version (not yet Newton's version) :
- Choose accuracy you want : ϵ
- Guess x and dx , then $f_{0}=f(x)$
- Step is : $\quad x \rightarrow x+d x$
- Check to see if you've passed the root : $f_{0} \times f(x)$
-If negative, you changed sign so, reverse : $x \rightarrow x-d x$ and reduce your step : $d x \rightarrow d x / 2$
- If $|d x|<\epsilon$ or $f(x)=0$, you're done
- Otherwise, iterate steps

Root finding

- The above assumes that the function $f(x)$ is continuously differentiable with at least one real root
- Much of the complications arise when this is not the case :
-Kinks
-Discontinuities
-No real roots

- So, we usually put in protections against this, and eventually the code will give up and print a failure message
- Even still, can have pathologies!

Root finding

- So, the code for our simple root finding is here :

```
def f(x) :
    return exp (x) * log(x) - x * x;
```



```
step = 0
print ' {0:4.0f} {1:20.15f} {2:20.15f}'.format(step, x, dx)
f_old = f(x)
while abs(dx) > abs(acc) :
    x += dx
    if f_old * f(x) < 0 :
        x -= dx
        dx /= 2
    ++step
    print ' {0:4.0f} {1:20.15f} {2:20.15f}'.format(step, x, dx)
```


Root finding

- Problem! We already need to know the structure pretty specifically of the function before we find the root
- So, the code will happily continue until infinity if we give it a guess in the wrong direction
- This is a bit of a pain, so we need something better

Root finding

- The next idea is to find a window within which the root will fall : bisection method
-http://en.wikipedia.org/wiki/Bisection_method
- Utilizes the intermediate value theorem!
- Assumes that the function has exactly one root between $\times 0, \times 1$, at which point it changes sign

Root finding

- Repeatedly bisects the interval :
- Let $x_{\frac{1}{2}}=\left(x_{0}+x_{1}\right) / 2$ be the bisection point
- Compute : $f\left(x_{0}\right) \times f\left(x_{\frac{1}{2}}\right)$
-If positive, then x_{0} and $x_{1 / 2}$ are on the same side of the root, and $\mathrm{x}_{1 / 2}$ is closer, so replace $x_{0} \rightarrow x_{\frac{1}{2}}$
-Else, they're on opposite sides, so refine interval: $x_{1} \rightarrow x_{\frac{1}{2}}$
- If $\left|x_{1}-x_{0}\right|<\epsilon$ or if $f\left(x_{\frac{1}{2}}\right)=0$ then we have the root with sufficient precision

Root finding

- So, the code looks like this:

def root_bisection($f, x 1, x 2$, accuracy=1.0e-6, max_steps=1000, root_debug=False) : """Return root of $f(x)$ in bracketed by $x 1, x 2$ with specified accuracy. Assumes that $f(x)$ changes sign once in the bracketed interval. Uses bisection root-finding algorithm.
Compute bisection """
$\mathbf{f 1}=\mathbf{f}(\mathbf{x} 1)$
$\mathrm{f} 2=\mathrm{f}(\mathrm{x} 2)$
if $\mathbf{f 1}$ * $\mathbf{f} 2>0.0$:
raise Bxception("f(x1) * $\mathbf{f (x 2)}>0.0$ ")
$x_{\text {mid }}=(x 1+x 2) / 2.0$
$\mathrm{f}_{\text {_mid }}=\mathbf{f}\left(\mathrm{x}_{\text {_mid }}\right)$
$\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1$
If they're both on the same sign, then refine to $\left[\mathrm{x}_{1 / 2}, \mathrm{x}_{1}\right.$]
step $=0$
if root_debug:
root_print_header("Bisection Search", accuracy)
root_print_step (step, $x_{\text {_mid, }} \mathrm{dx}, \mathrm{f}$ mid)
while abs (dx) > accuracy;
$\mathrm{f}_{\text {_mid }}=0.0$:
$d x=0.0$
else:
if f1 * $f_{\text {_mid }}>0$:
$\mathrm{x}_{1}=\mathrm{x}$ _mid
f1 $=$ f_mid
Otherwise refine to $\left[\mathrm{x}_{0}, \mathrm{x}_{1 / 2}\right.$]
else:
$x^{2}=\times$ x_mid
$\mathrm{f}_{\mathrm{f}}=\mathrm{f}_{\text {_mid }}$
$x_{\text {mid }}=\left(x_{1}+x^{2}\right) / 2.0$
$\mathrm{f}_{\text {_mid }}=\mathrm{f}\left(\mathrm{x}_{\text {_mid }}\right)$
$\mathrm{dx}=\mathrm{x}^{2}-\mathrm{x} 1$
step $+=1$
if step > max_steps:
warning $=$ "Too many steps (" + repr (step) + ") in root bisection"
raise Exception(warning)
Iterate until the accuracy is achieved
root_print_step (step, $x_{\text {_mid, }} \mathrm{dx}, \mathrm{f}$ mid)
return x mid

Root finding

- OK, much better, we just have to find a bounding interval
- Usually a lot easier than having to remember what the function actually looks like
- One problem : It's pretty darned slow.

Root finding

- Let's estimate the convergence rate :
-Number of iterations needed before root is located with some desired accuracy
-Either $d x<\epsilon \quad$ or $\quad f(x)<\alpha$
-We usually do the former, not the latter
- Look at bisection.
-After n bisection steps, then $d x_{n}$ is given by :

$$
\begin{aligned}
\left|d x_{n}\right| & =\left|x_{1}-x_{0}\right| \quad \text { after } n \text { iterations } \\
& =\frac{1}{2}\left|d x_{n-1}\right|=\frac{1}{2^{2}}\left|d x_{n-2}\right|=\cdots=\frac{1}{2^{n}}\left|d x_{0}\right|
\end{aligned}
$$

-So, $\quad \frac{1}{2^{n}}\left|d x_{0}\right| \leq \epsilon$,
-or: $\quad n \geq \log _{2}\left[\frac{\left|d x_{0}\right|}{\epsilon}\right]=\frac{\log _{10}\left[\frac{\left|d x_{0}\right|}{\epsilon}\right]}{0.3010 \ldots}$.

Root finding

- Can also represent as

$$
\left|d x_{n}\right| \simeq C_{F}\left|d x_{n-1}\right|^{\alpha}
$$

where C_{F} is a constant "convergence factor"
α is the "order of convergence"

- For bisection :

$$
C_{F}=\frac{1}{2}, \alpha=1
$$

- For the simple step-halving :

$$
C_{F} \in\left[\frac{1}{2}, 1\right], \alpha=1
$$

- Both of these are pretty darned slow to converge
- Can we do better?

Root finding

- Two better options :
-Secant method
- http://en.wikipedia.org/wiki/Secant method
-Newton's method (or Newton-Raphson, or "tangent" method"
- http://en.wikipedia.org/wiki/Newton's method
- There are others, but we'll just use these

Root finding

- Secant method (secare : Latin, "to cut"... think "section")
- Choose the secant, the line between $x 0$ and $x 1$ that intersects $f(x)$
- Equation is: $s(x)=f\left(x_{1}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{1}\right)$.
- Can utilize $x 0$ as the initial guess, and then specify the initial window ($\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0$)
-The next step is therefore chosen at where the secant intersects $f(x)=0$:
$s\left(x_{\text {new }}\right)=0 \quad \Rightarrow \quad x_{\text {new }}=x_{1}-\left(x_{1}-x_{0}\right) \frac{f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)} \equiv x_{1}+d x_{\text {new }}$.
- Then iterate

Root finding

- So, pseudocode is :
-choose x 0 and x 1 "near" the root, $\mathrm{dx}=\mathrm{x} 1-\mathrm{x0}$
-If either $f(x 0)=f(x 1)$ then the method fails, so re-guess
-Replace :

$$
d x \rightarrow d x_{\text {new }}, x_{0} \rightarrow x_{1}, x_{1} \rightarrow x_{\text {new }}
$$

-Check if: $\quad\left|d x_{\text {new }}\right|<\epsilon$

- If so, desired accuracy reached.
- Otherwise, iterate

Root finding

- Here's the code for the secant method :

Root finding

- If a few conditions are met, then this is much faster than bisection :
-If $f(x)$ is smooth near the root
-If $x 0$ and $x 1$ are close enough to the root
-Given these two, a Taylor expansion should be a good approximation
- Assume that the root is at zero (for simplicity, but without loss of generality, you can always do a change of variables to make this at some other x)
- Then, in the expansion :

$$
f(x) \simeq x f^{\prime}+\frac{x^{2}}{2} f^{\prime \prime}=x f^{\prime}\left[1+x \frac{f^{\prime \prime}}{2 f^{\prime}}\right],
$$

- we have written simply $f^{\prime}(0)=f^{\prime}, f^{\prime \prime}(0)=f^{\prime \prime}$

Root finding

- Then we can plug this into the secant approximation to get:

$$
\begin{aligned}
x_{\mathrm{new}} & \simeq x_{1}-\frac{\left(x_{1}-x_{0}\right) x_{1} f^{\prime}\left[1+x_{1} \frac{f^{\prime \prime}}{2 f^{\prime}}\right]}{\left(x_{1}-x_{0}\right) f^{\prime}+\frac{x_{1}^{2}-x_{0}^{2}}{2} f^{\prime \prime}} \\
& =x_{1}\left[1-\frac{1+x_{1} \frac{f^{\prime \prime}}{2 f^{\prime}}}{1+\left(x_{1}+x_{0}\right) \frac{f^{\prime \prime}}{2 f^{\prime}}}\right] \\
& \simeq x_{1} x_{0}\left(\frac{f^{\prime \prime}}{2 f^{\prime}}\right)
\end{aligned}
$$

- To find the convergence, we rewrite x _new and x 1 in terms of our convergence relation from above, and define C_F and alpha:

$$
\left|x_{\mathrm{new}}\right|=C_{F}\left|x_{1}\right|^{\alpha}, \quad\left|x_{1}\right|=C_{F}\left|x_{0}\right|^{\alpha}
$$

Root finding

- So, we do a little algebraic massaging and get :

$$
\left|x_{1}\right|^{\alpha-1-\frac{1}{\alpha}}=\frac{\left|\frac{f^{\prime \prime}}{2 f^{\prime}}\right|}{C_{F}^{1+\frac{1}{\alpha}}}
$$

- The RHS is independent of $x 1$, so we must have

$$
\alpha-1-\frac{1}{\alpha}=0 \quad \Rightarrow \quad \alpha=\frac{1+\sqrt{5}}{2}=1.618033988 \ldots=1+\frac{1}{\alpha} .
$$

- I.e. the rate of convergence is equal to the golden mean!
- Faster than linear, but not quite quadratic
- But! Strong assumptions about behavior of $f(x)$

Root finding

- Finally, Newton-Raphson method (or "tangent" method) is the fastest we will consider that has the smallest number of assumptions
- But this time, instead of the secant, we utilize the derivative ("tangent"!)
- Tangent is : $t(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$,
- Then we see where the tangent intersects the x axis:

$$
x_{\mathrm{new}}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \equiv x_{0}+d x
$$

Root finding

- Similar to secant algorithm :
- Chose x0 near the root
- Check if $f^{\prime}(x 0)=0$.
-If = 0 , fails
-Else continue
- Compute dx, replace x0 by x_new
- Check if $\quad|d x|<\epsilon \quad$ or $\quad f\left(x_{\text {new }}\right)=0$
-If so, accuracy reached
-Else : iterate

Root finding

- Two cases here :
$-f^{\prime}$ is analytic : rate of convergence is $\sim q u a d r a t i c$
$-f$ ' must be computed numerically : rate of convergence is ~secant method

Root finding

- Tangent method is :

If f^{\prime} is analytic, use this

$$
\text { def root_tangent (} f, f \mathrm{f}, \mathrm{x} 0 \text {, accuracy=1.0e-6, max_steps=20, root_debug-False) : }
$$ given initial guess $x 0$, with specified accuracy.

Uses Newton-Raphson (tangent) root-finding algorithm.
" ${ }^{*}$
$\mathrm{f} 0=\mathrm{f}(\mathrm{x} 0)$
$\mathrm{fp}_{\mathrm{p}}=\mathrm{fp}_{\mathrm{p}}(\mathrm{x} 0)$
Compute f, f ', dx
if $\mathrm{fp} 0=0.0$:
$\mathrm{dx}=-\mathrm{f0} / \mathrm{fp} 0$
step $=0$
if root_debug:
root print header ("Iangent Search", accuracy)
root_print_step (step, $\mathbf{x 0} 0 \mathrm{dx}, \mathrm{f0}$)
if $\mathbf{f 0}=\mathbf{0 . 0}$:
return $\mathbf{x 0}$
while True:
$\mathrm{fp} 0=\mathrm{fp}(\mathrm{x} 0)$
if $\mathrm{fp} 0=0.0$:
raise Exception(" root_tangent $\mathrm{df} / \mathrm{dx}=0$ algorithm fails")
$\mathrm{dx}=-\mathrm{f0} / \mathrm{fp} 0$
$\mathbf{x} 0+=\mathrm{dx}$
Make replacements

Iterate until convergence
$\mathbf{f 0}=\mathbf{f}(\mathbf{x} \mathbf{0})$
if abs (dx) <= accuracy or $\mathrm{f0}=0.0$:
return $\mathbf{x} 0$
step $+=1$
if step > max_steps:
root_max_steps ("root_tangent", max_steps)
if root_debug:
root_print_step (step, $\mathbf{x 0} 0, \mathrm{dx}, \mathrm{f0}$)
return $\mathbf{x 0}$

Application : Cross sections

- You should have encountered cross sections in one of your classes:

Application : Cross sections

- You should have encountered cross sections in one of your classes:

Cross sections

- Happens a lot in physics
-Collision of galaxies
-Particle physics (ubiquitous!)
-Optical scattering
-Etc

Cross sections

- Take a simple case :
-Particle of mass "m" scattering from an isotropic central force field
- Examples : billiard balls, Rutherford scattering

$$
\mathbf{F}=f(r) \hat{\mathbf{r}}=-\frac{d V(r)}{d r} \hat{\mathbf{r}}
$$

- Use conservation of linear and angular momenta to solve the problem
-This occurs in the plane of the scatter (2-d)

Cross sections

- Conservation of energy :

$$
E=T+V=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+V(r)
$$

- Conservation of angular momentum (normal to plane) is:

$$
L_{z}=m r \dot{\theta} \equiv m \ell
$$

- But we know :

$$
\dot{r}=\frac{d r}{d t}=\frac{d r}{d \theta} \frac{d \theta}{d t}
$$

- So we can get rid of ALL of the time derivatives in the energy expression!

$$
E=\frac{1}{2} m \ell^{2}\left[\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right]+V(1 / u), \quad u \equiv \frac{1}{r}
$$

- Can then integrate this to get the trajectory in parametric form

Cross sections

- So we're looking for an equation of the form :

$$
r=r(\theta)
$$

- Define our axes :

Cross sections

- Define the "impact parameter" b

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square repulsive force field of another charged particle.

Fowles and Cassiday, Analytical Mechanics

- By conservation of angular + linear momenta and energy :

$$
b=\frac{L}{m v_{0}}=\frac{L}{\sqrt{2 m E}}=\frac{|\ell|}{\sqrt{2 E / m}}
$$

Cross sections

- Can solve the energy formula to get a parametric equation for r in terms of theta :

$$
\frac{d r}{d \theta}= \pm \frac{r^{2}}{b} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}
$$

- At the point of closest approach (PCA) the derivative is zero, so define this as $r_{\text {min }}$.

Cross sections

- Typically we have experiments with many incident particles ("beam")
- Then we can consider a distribution of impact parameters with density

$$
2 \pi b d b
$$

- Classically, given E and b, you can get the unique scattering angle theta
- Example : Lennard-Jones potential for interactions between pairs of neutral atoms or molecules

$$
V(r)=4 V_{0}\left[\left(\frac{r_{0}}{r}\right)^{12}-\left(\frac{r_{0}}{r}\right)^{6}\right]
$$

- Interesting bit is that more than one b can lead to the same theta!

Cross sections

- Consider a differential of the impact parameter. The scattering angles will therefore be in the range :

$$
[\theta, \theta+d \theta]=\left[\theta(b, E), \theta(b, E)+\frac{d \theta(b, E)}{d b} d b\right]
$$

- Typically detectors of particles are located "at infinity" (far away)
- They exist at some angle θ_{s}, and subtend some physical space (solid angle $d \Omega$)
- Thus we have :
(Incident particles per unit area per unit time) \times Area $=2 \pi \mathcal{I} b d b$

Cross sections

- Now, consider the differential scattering cross section :

$$
\sigma\left(\theta_{s}\right)=\frac{\text { Number detected per unit time }}{(\text { Incident Intensity }) \times d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta_{s} d \theta_{s}}=\frac{b}{\sin \theta_{s}}\left|\frac{d \theta_{s}}{d b}\right|^{-1}
$$

- Now, since many incident particles are detected in the same "slice" of the detector, define a deflection angle as the total number of radians that the position vector rotates along the trajectory :

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\min }}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Cross sections

- The scattering angle is related to the deflection angle:

$$
0 \leq \theta_{s}= \pm \Theta-2 n \pi \leq \pi
$$

- And the differential cross section is :

$$
\frac{d \sigma}{d \Omega}=\frac{\text { Number detected per unit time }}{(\text { Incident Intensity }) \times d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta_{s} d \theta_{s}}=\frac{b}{\sin \theta_{s}}\left|\frac{d \theta_{s}}{d b}\right|^{-1}
$$

Hey look! A discrete sum!

Scattering

- Recall definition of r_min :

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square repulsive force field of another charged particle.

- We have shown : $\frac{d r}{d \theta}= \pm \frac{r^{2}}{b} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}$
-RHS is zero at r_min (Yay! It's a root!)

Scattering

- Also recall the differential cross section :
$\frac{d \sigma}{d \Omega}=\frac{\text { Number detected per unit time }}{(\text { Incident Intensity) } \times d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta_{s} d \theta_{s}}=\frac{b}{\sin \theta_{s}}\left|\frac{d \theta_{s}}{d b}\right|^{-1}$
- If we can compute dtheta/db, we can get the scattering cross section
- Example : hard sphere
- So, we have

$$
b(\theta)=R \sin \alpha=R \sin \left(\frac{\pi-\theta}{2}\right)=-R \cos (\theta / 2)
$$

- Thus :

$$
\frac{d b}{d \theta_{s}}=\frac{R}{2} \sin \left(\frac{\theta_{s}}{2}\right)
$$

Scattering

- Example : Rutherford Scattering : EM scattering of object with charge q1 off of an object with charge q2

- Look at the change in momentum : $\Delta \mathrm{p}=\mathrm{p}^{\prime}-\mathrm{p}$

Scattering

- We know that $\left|\mathbf{p}^{\prime}\right|=|\mathbf{p}|$
so we can write
In the direction

$$
|\Delta \mathbf{p}|=2 p \sin \theta / 2
$$

- We get an isosceles triangle :

- But, we know from Newton's second law:

$$
\Delta \mathbf{p}=\int \mathbf{F} \Delta t
$$

- Since F is in the direction of u, we perform this in one dimension:

$$
|\Delta \mathbf{p}|=\int_{-\infty}^{\infty}\left|\mathbf{F}_{\mathbf{u}}\right| \Delta t
$$

Scattering

- The components of the integral cancel except for the force in the u direction, so investigating this again:

$$
\left|\mathbf{F}_{\mathbf{u}}\right|=\mathbf{F} \cdot \hat{u}=\frac{k q_{1} q_{2}}{r^{2}} \cos \psi
$$

- Thus :

$$
|\Delta \mathbf{p}|=\int_{-\infty}^{\infty} \frac{k q_{1} q_{2}}{r^{2}} \cos \psi d t
$$

Scattering

- Now use a trick :

$$
\begin{gathered}
\dot{\psi}=\frac{d \psi}{d t} \\
d t=\frac{d \psi}{\dot{\psi}}
\end{gathered}
$$

- Can use conservation of angular momentum to solve for $\dot{\psi}$

$$
\left|\overrightarrow{L_{1}}\right|=m v b
$$

Scattering

- Solving for the magnitude of L_{2} :
- Tangential velocity is:

$$
v=r \frac{d \psi}{d t}
$$

- So

$$
\left|\mathbf{L}_{\mathbf{2}}\right|=m r^{2} \frac{d \psi}{d t}=m r^{2} \dot{\psi}
$$

- Finally can substitute this into the integral:

$$
|\Delta \mathbf{p}|=\int_{-\infty}^{\infty} \frac{k q_{1} q_{2}}{r^{2}} \cos \psi d t=\int \frac{k q_{1} q_{2}}{r^{2}} \cos \psi \frac{d \psi}{b p / m r^{2}}
$$

Scattering

- Simplifying :

$$
=\int_{-\psi_{0}}^{\psi_{0}} \frac{k q_{1} q_{2} m}{b p} \cos \psi d \psi
$$

- And doing the integral, we get :

$$
|\Delta \mathbf{p}|=\frac{2 k q_{1} q_{2} m}{b p} \cos \theta / 2 \quad \text { and } \quad|\Delta \mathbf{p}|=2 p \sin \theta / 2
$$

- We solve for b:

$$
\begin{aligned}
|\Delta \mathbf{p}| & =\frac{2 k q_{1} q_{2} m}{b p} \cos \theta / 2=2 p \sin \theta / 2 \\
b & =\frac{k q_{1} q_{2}}{m v^{2}} \cot \theta / 2
\end{aligned}
$$

Scattering

- Can finally put it together and compute scattering cross section:
$\frac{d \sigma}{d \Omega}=\frac{\text { Number detected per unit time }}{(\text { Incident Intensity }) \times d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta_{s} d \theta_{s}}=\frac{b}{\sin \theta_{s}}\left|\frac{d \theta_{s}}{d b}\right|^{-1}$
- in this case :

$$
\frac{d \sigma}{d \Omega}=\left(\frac{k q_{1} k_{2}}{4 E \sin ^{2} \theta / 2}\right)^{2}
$$

Scattering

- Finally consider the Lennard-Jones potential:

Scattering

- How would we go about computing this?
- Of course, we need to do it numerically!
- Or rather : you'll compute it numerically in your homework!
- Let's sketch it out

Scattering

- Critical bit is here :

$$
|\Delta \mathbf{p}|=\int_{-\infty}^{\infty} \frac{k q_{1} q_{2}}{r^{2}} \cos \psi d t=\int \frac{k q_{1} q_{2}}{r^{2}} \cos \psi \frac{d \psi}{b p / m r^{2}}
$$

- We had the force in the integrand, but the factors of r canceled fortuitously
- Can use another (less fortuitous) trick, though. Limits of integration were $\pm \psi_{0}$
- However, this is

$$
\psi_{0}=\int_{0}^{\infty} \dot{\psi} d t
$$

- We can use the same trick:

$$
\psi_{0}=\int_{r_{\min }}^{\infty} \frac{\dot{\psi}}{\dot{r}} d r
$$

Scattering

- Rewriting all of this in terms of E, v, and the potential, this is our total deflection angle:

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

- In order to plot the differential cross section, we :
-Compute this integral numerically for several b's
-Compute the derivative $\frac{d \Theta}{d b}$ numerically for those b's -We'd then have

$$
\frac{d \sigma}{d \Omega}=\frac{\text { Number detected per unit time }}{\text { (Incident Intensity) } \times d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta_{s} d \theta_{s}}=\frac{b}{\sin \theta_{s}}\left|\frac{d \theta_{s}}{d b}\right|^{-1}
$$

Scattering

- To do this, we must compute the deflection angle :

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\min }}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

- Given r_min, we can compute the integral
- Therefore, this is a two-step problem :
-Compute r_min numerically
-Compute integral

Scattering

- Our overall plan is thus :
-Set up scattering problem (E, b)
-Find r_min numerically
-Integrate dtheta/dr(b,E) numerically, given r_min

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\min }}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Our overall plan is thus :
-Set up scattering problem (E, b)
-Find r_min numerically
-Integrate dtheta/dr(b,E) خumerically, given r_min

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 \int_{r_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Our overall plan is thus :
-Set up scattering problem (E, b)
-Find r_min numerically
-Integrate dtheta/dr(b,E) numerically, given r_min

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Find r_min numerically :
-Recall :
$-r _m i n$ is defined by dr/dtheta $=0$
-Function is:

-So, we find the root of this!

Scattering

- Integrate dtheta/dr numerically :
-Find r_min (from previous)
- Initialize to pi
- Integrate over a small "dTheta" with Trapezoid rule
-Add up the dTheta's to get total

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\min }}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Integrate dtheta/dr numerically :
-Find r_min (from previous)
- Initialize to pi
- Integrate over a small "dyheta" with Trapezoid rule
-Add up the dTheta's to get fotal

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \chi_{\mathcal{T}_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Integrate dtheta/dr numerically :
-Find r_min (from previous)
- Initialize to pi
-Integrate over a small "dTheta" with Trapezoid rule
-Add up the dThetas to get total

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Integrate dtheta/dr numerically :
-Find r_min (from previous)
- Initialize to pi
-Integrate over a small "dTheta" with Trapezoid rule
-Add up the dTheta's to get total

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\text {min }}}^{\infty} \frac{\searrow}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Scattering

- Integrate dtheta/dr numerically :
-Find r_min (from previous)
- Initialize to pi
-Integrate over a small "dTheta" with Trapezoid rule
-Add up the dTheta's to get total

$$
\Theta(b, E)=\theta(-\infty)-\int_{-\infty}^{+\infty} \frac{d \theta(t)}{d t} d t=\pi-2 b \int_{r_{\text {min }}}^{\infty} \frac{d r}{r^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}}}
$$

Orbiting

- As you know, oftentimes in scattering, the potentials are attractive and the incoming particle can orbit the other
-Gravitational capture
-Electron capture
- We can also investigate orbiting in our example
- We're computing the deflection angle Theta, but if you're orbiting, this can go completely nuts (somewhat obviously)

Orbiting

- Define the effective potential for scattering as the sum of the actual potential, and the centrifugal potential (from angular momentum of the incoming particle) :

$$
V_{\mathrm{eff}}(r)=V(r)+E\left(\frac{b}{r}\right)^{2}
$$

- Then this looks something like : Lennard.Jones Potential $V_{0}=1, r_{0}=1, E=0.5,5 \mathrm{~Eb}^{2}=1.1$
- Orbiting occurs when E equals the max of the effective potential

$$
\begin{aligned}
\left.\frac{d V_{\mathrm{eff}}(r)}{d r}\right|_{r=r_{\max }} & =0 \\
V_{\mathrm{eff}}\left(r_{\max }\right) & =E
\end{aligned}
$$

Scattering Pseudocode

Integrate dtheta/dr numerically :
 -Initialize to pi
 -Find r_min (from previous)
 - Integrate over a small "dTheta" with Trapezoid rule
 -Add up the dTheta's to get total
 ```def trajectory(self) : \\ # Define theta step ; \\ dtheta = -1.0 * asin(self.b / self.r_max) \\ # To return ; list of trajectories \\ rtheta = [self.r_max, pi + dtheta] \\ traj = [array(rtheta)] \\ # To return : Total deflection \\ deflection = pi - 2*dtheta```
 \# Find the distance of closest approach with the "root_simple" method
 $\mathrm{dr}=-1.0$ * self. r_{m} max $/ 100$
 $r_{\text {_max }}=$ self. $r_{\text {_max }}$
 $r_{\text {_min }}=$ root_simple(self.f_r_min, r_max, $d r$)
 \# Integrate to find successive changes in theta :
 $\mathrm{d} \boldsymbol{r}=\left(\mathbf{r}_{-}\right.$max $-r_{-}$min $) /$self.steps
 accuracy = 1e-6
 for i in xrange (self.steps) :
 r_upper = traj[i][0]
 r_lower = r_upper - dr
 itheta = traj[i][1]
 dtheta = -self.b * adaptive_trapezoid(self.dTheta_dr, r_lower, r_upper, accuracy)
 rtheta[0] -= dr
 rtheta[1] += dtheta
 traj.append(array (rtheta))
 deflection += 2 * dtheta
 \# Use symmetry to get the outgoing trajectory points
 for i in range (self.steps-1, $0,-1$) :
 r theta[0] $+=\mathrm{dr}$
 dtheta $=$ traj[i][1] - traj[i-1][1]
 rtheta[1] += dtheta
 traj.append(array (rtheta))
 return [deflection, traj]

Scattering Pseudocode

- For each value of b:
- Calculate deflection angle
- Plot x vs y of scatter

```
int main()
{
    using namespace std;
    cout << " Classical Scattering from Lennard-Jones potential" << endl;
    double E = 0.705; // set global value of E
    cout << " Energy E = " << E << endl;
    double b_min = 0.6, db = 0.3;
    int n_b = 6;
    double b = 0.0;
    double v0 = 1.0;
    cout << " b " << '\t' << "Theta(b) \n"
        << " ------" << '\t' << "--------" << endl;
    lennard_jones lj( v0 );
lor (int i = 0; i < n_b; i++) {
    stringstream sstream;
    sstream << "trajfile_cpp_" << i << ".data";
    ofstream file(sstream.str्य().c_str());
    b = b_min + i * db;
    std::vector< std::pair<double,double> > trajectory;
    double deflection = 0.0;
    Theta<lennard_jones> theta( lj, E, b, %.5,100);
    theta.trajectory (deflection, trajector,
    std::cout << " " << b << "\t\t" << deflection << std::endl;
    for (int i = 0; i < trajectory.size(); i++) {
        double r = trajectory[i].first;
        double theta = trajectory[i].second;
        char buff[1000];
        Mprintf(buff, "%8.4f %8.4f", r*cos(theta), r*sin(theta));
        file << buff << std::endl;
    }
    file << std::endl;
    file.close();
}
```

