
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Derivatives + Integrals

• One of the most obvious things in computational physics is
to look at computation of derivatives and integrals

• You probably can guess how much of this is already known
to you, since this is how you learned to do these things
anyway!

• The “hard” part for you in calculus was probably getting
your brain around taking the limits of the “simpler” things
when the step size went to zero

• Well, that part is also hard for computers!
–So, you have to think a little differently here, and go back

to discrete derivatives and integrals

2

Derivatives + Integrals

• Conceptually this is probably the easiest chapter

• The devil is in the details, however

• Short discussion in Chapter 1 of Garcia
• Also parts are addressed in Chapter 2 of Garcia

3

The devil in the details

Derivatives
• We’ve now seen several differentials in the previous

discussion

• We need to be able to compute the differential numerically,
so as we mentioned, we take a step back :

• First we take the “forward difference” :

• But we could equally have taken the “backward difference”:

4

Derivatives

• But! Here’s the first devil :)

• Combine the forward and backward
differences to get a
symmetric difference!

5

Improve
the accuracy!

Recall : “Big-Ohh” Notation

• The “big-ohh” notation stands for “order”

• O(N2) operations means “the leading coefficient in the
number of operations scales like N2”

• Remember, “operations” here really means
“multiplications”... addition is cheap!

• In computing, we want to minimize this as much as
possible since the computational time scales the same
way

6

Derivatives

• Since “h” is small, the error that we make is smaller (h2) :

• We want to make the error that we make as small as
possible!

• Simple thing : reduce h
–But! This has a bit of a problem because it increases the

computational time (ouch)

• Can we do better?
7

Derivatives

• Absolutely!

• Can try with a “five point stencil”:
–http://en.wikipedia.org/wiki/Five-point_stencil

• Consider the five points :

• Then the derivative looks like :

8

http://en.wikipedia.org/wiki/Five-point_stencil

Derivatives

• Five-point derivative method is simple enough to just write
it down

9

Derivatives

• What if we don’t know the functional form of the derivative?

• We have to use some approximate functional form of the
data points to handle this

• One popular method is to use polynomial interpolation and
extrapolation

10

Ridder’s method

• Chapter 5, Section 7 of Numerical Recipes recommends
Ridder’s algorithm :
–Advances in Engineering Software, 4 75-76 (1978)

• Uses Ridder’s polynomial extrapolation.
• This relies on the so-called “Neville’s algorithm” to

compute the polynomial extrapolation, then computes the
derivative

11

http://dx.doi.org/10.1016/S0141-1195%2882%2980057-0

• Derived to compute polynomial interpolation
–http://en.wikipedia.org/wiki/Neville's_algorithm

• Given n data points, you can construct the n-dimensional
polynomial (which is unique) as follows :

–Let pi,j denote the polynomial of degree j - i which goes
through the points (xk,yk) for k=i..j.

–The pi,j satisfy :

Neville’s Algorithm

12

http://en.wikipedia.org/wiki/Neville's_algorithm

Neville’s Algorithm

• So, we can fill a tableau to compute this from the left to the
right :

13

Ridder’s method

• Start with the symmetric difference
• Compute polynomial extrapolations for n=10 polynomials

–Reduce the step size for each n
–Compute symmetric difference at smaller step size.

Store the result.
–Compute extrapolations for n-1 with Neville’s algorithm
–Compare each new extrapolation to one order lower at

this step size, and the previous one
• If error is smaller, keep the improvement
• else, continue

14

If you have lots of derivatives, over the entire time
this can save you a lot of CPU’s

Ridder’s Method

15

Input value
Initialize 10x10 array
Compute symmetric difference differential
for each polynomial extrapolation :
 reduce step size
 compute symmetric difference differential
 store results
 compute error to previous step size
 if error is better, keep it
 else, continue

Ridder’s method

16

• docker pull srappoccio/compphys:latest

• cd results/CompPhys/
• git pull origin master

17

Integration

• Covered (cursorily) in Garcia Chapter 10.2
• Also covered in Numerical Recipes Chapter 4

–(The C version is online for free :)
–http://apps.nrbook.com/c/index.html

18

http://apps.nrbook.com/c/index.html

Integration

• We’ve done derivatives. Now on to integration.
• Recall your high-school (ish) calculus class :

–http://en.wikipedia.org/wiki/Integral

19

http://en.wikipedia.org/wiki/Integral

Integration

• To first order, that’s all we’re going to do for computations
of integrals
–There are fancier, faster, better methods, but they are

successive approximations of this kind of thing except
one (Monte Carlo integration)

–We’ll first consider the class of problems called
“quadrature” in numerical analysis

–See Chapter 4 of “Numerical Recipes” (C version online
for free from their website)

20

Integration

• Consider the integral :

• Then define :

• Thus :

• We COULD solve this as a differential equation!
• But instead we’ll start with the “bare bones” approximations

that you learned in high school/freshman calculus
21

Integration : Trapezoidal Rule

• The rectangle sum is a slightly-less-than-wonderful
approximation of the integral

• The trapezoid sum is actually much better
–http://en.wikipedia.org/wiki/Trapezoidal_rule

• You compute the integral by approximating it as a
trapezoid :

22

f(a) + f(b)

b - a

http://en.wikipedia.org/wiki/Trapezoidal_rule

Integration : Trapezoidal Rule

• How accurate? Define h = (b-a) as our “small” parameter
• Approximate the integral by :

• We Taylor-expand f(x) :

• The error in the estimate is :

23

Integration : Trapezoidal Rule

• Notice a trick we can play!
• If we choose x0 = (b+a) / 2, then we get down to O(h3)

instead of O(h2)!
–“Midpoint rule” :

24

Integration : Trapezoidal Rule
• Then can break the integral into a bunch of trapezoids

• This is also related to “polygon tessellation” in computer graphics,
to compute (or display) the area in a 2-d image :
–http://en.wikipedia.org/wiki/Polygon_triangulation

• Easier and faster
than computing the
area in a more
complicated way!

• Almost all of your modern
computer games will allow
you to set the amount of
tessellation to optimize
performance or beauty depending
on your taste 25

http://en.wikipedia.org/wiki/Polygon_triangulation

Integration : Trapezoidal Rule

26

They’re using
tessellation here!

Integration : Trapezoidal Rule

• Now you can guess what to do, we have successive
approximations :

• The uncertainty here is :

• Can therefore pick N,h to desired accuracy (same deal as
in tessellation!)

27

Integration : Trapezoidal Rule

28

Integration : Simpson’s Rule

• This is more accurate than the Trapezoidal rule, and not
really slower :
–http://en.wikipedia.org/wiki/Simpson's_rule

• Instead of approximating by a trapezoid, use a parabola!

• This is a “three-point”
rule, similar to that we
saw last class for the
derivatives with the
“symmetric” derivative

29

http://en.wikipedia.org/wiki/Simpson's_rule

Integration : Simpson’s Rule

• The approximation is thus :

• Similarly to above, we can divide into intervals of size 2h if
we have a large area :

• This particular implementation requires an EVEN number of
intervals, and that the function is evaluated at an ODD
number of points (need three points on each!) 30

Integration : Simpson’s Rule

31

Integration : For your homeworks!

• In your homeworks (assigned Monday) you will go through
the same exercise of examining numerical precision of
integration, like we did for derivatives.

32

Integration : Adaptive methods

• Can often adapt the algorithm to a desired precision by
iterating

• This improves the accuracy dynamically, saving time when
the function is fairly linear

33

Integration : Adaptive methods

• So, pseudocode is :

• Can also reuse the computations as we did in our previous
example to speed up computational time :

34

Choose N and compute h
Set h --> h/2
Compute
If repeat

�I ⌘ |IT (h)� IT (2h)|
�I > ✏

Integration : Adaptive methods

35

Next up : Root finding

• The next issue is to find the roots
of a function f(x)

• That is,

• Lots of issues, not only
computational!
–May not have a root

–May have imaginary roots

–May have a large number of
roots

• Section 4.3 in Garcia, Chapter 9
in Numerical Recipes

36

{x|f(x) = 0}
f(x) = 1 + |x|

f(x) = 1 + x2

f(x) = sin 1/x

Root finding

• But, given those caveats, once again it is very
straightforward logic here

• You’ve probably already seen Newton’s method in your
mathematics classes
–http://en.wikipedia.org/wiki/Newton's_method

• Guess at the answer
• Find derivative
• Use it to get successively better approximations

37

http://en.wikipedia.org/wiki/Newton's_method

Root finding

38

Newton’s Method

Root finding

• A very simple version (not yet Newton’s version) :
• Choose accuracy you want :
• Guess x and dx, then
• Step is :
• Check to see if you’ve passed the root :

– If negative, you changed sign so, reverse :
 and reduce your step :

• If or , you’re done

• Otherwise, iterate steps

39

f0 = f(x)

x ! x+ dx
f0 ⇥ f(x)

x ! x� dx

|dx| < ✏ f(x) = 0

✏

dx ! dx/2

Root finding

• The above assumes that the function f(x) is continuously
differentiable with at least one real root

• Much of the complications arise when this is not the case :
–Kinks
–Discontinuities
–No real roots

• So, we usually put in protections against this, and
eventually the code will give up and print a failure message

• Even still, can have
pathologies!

40

Root finding

• So, the code for our simple root finding is here :

41

Root finding

• Problem! We already need to know the structure pretty
specifically of the function before we find the root

• So, the code will happily continue until infinity if we give it a
guess in the wrong direction

• This is a bit of a pain, so we need something better

42

Root finding

• The next idea is to find a window within which the root will
fall : bisection method
–http://en.wikipedia.org/wiki/Bisection_method

• Utilizes the intermediate
value theorem!

• Assumes that the function
has exactly one root
between x0,x1, at which
point it changes sign

43

http://en.wikipedia.org/wiki/Bisection_method

Root finding

• Repeatedly bisects the interval :

• Let be the bisection point

• Compute :
– If positive, then x0 and x1/2 are on the same side of the

root, and x1/2 is closer, so replace
–Else, they’re on opposite sides, so refine interval:

• If or if then we have the root
with sufficient precision

44

|x1 � x0| < ✏ f(x 1
2
) = 0

Root finding

• So, the code looks like this :

45

Compute bisection

If they’re both on the
same sign, then
refine to [x1/2,x1]

Otherwise
refine to [x0,x1/2]

Iterate until
the accuracy
is achieved

Root finding

• OK, much better, we just have to find a bounding interval
• Usually a lot easier than having to remember what the

function actually looks like

• One problem : It’s pretty darned slow.

46

Root finding

• Let’s estimate the convergence rate :
–Number of iterations needed before root is located with

some desired accuracy
–Either or
–We usually do the former, not the latter

• Look at bisection.
–After n bisection steps, then is given by :

–So,

–or : 47

dx < ✏ f(x) < ↵

dxn

Root finding

• Can also represent as

where is a constant “convergence factor”

 is the “order of convergence”

• For bisection :

• For the simple step-halving :

• Both of these are pretty darned slow to converge
• Can we do better? 48

CF =
1

2
,↵ = 1

CF 2 [
1

2
, 1],↵ = 1

Root finding

• Two better options :
–Secant method

• http://en.wikipedia.org/wiki/Secant_method
–Newton’s method (or Newton-Raphson, or “tangent”

method”
• http://en.wikipedia.org/wiki/Newton's_method

• There are others,
but we’ll just use these

49

http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/Newton's_method

Root finding

• Secant method (secare : Latin, “to cut”... think “section”)

• Choose the secant, the line between x0 and x1 that
intersects f(x)

• Equation is :

• Can utilize x0 as the initial guess, and then specify the
initial window (dx = x1 - x0)
–The next step is therefore chosen at where the secant

intersects f(x) = 0:

• Then iterate
50

Root finding

• So, pseudocode is :
–choose x0 and x1 “near” the root, dx = x1 - x0
–If either f(x0) = f(x1) then the method fails, so re-guess
–Replace :

–Check if:
• If so, desired accuracy reached.
• Otherwise, iterate

51

dx ! dxnew, x0 ! x1, x1 ! xnew

|dxnew| < ✏

Root finding

• Here’s the code for the secant method :

52

Guess x0, x1

Check for
anomaly

Make
replacements

Iterate until
accuracy
reached

Root finding

• If a few conditions are met, then this is much faster than
bisection :
–If f(x) is smooth near the root
–If x0 and x1 are close enough to the root
–Given these two, a Taylor expansion should be a good

approximation
• Assume that the root is at zero (for simplicity, but without

loss of generality, you can always do a change of variables
to make this at some other x)

• Then, in the expansion :

• we have written simply f’(0) = f’, f’’(0) = f’’
53

Root finding

• Then we can plug this into the secant approximation to
get :

• To find the convergence, we rewrite x_new and x1 in terms
of our convergence relation from above, and define C_F
and alpha :

54

Root finding
• So, we do a little algebraic massaging and get :

• The RHS is independent of x1, so we must have

• I.e. the rate of convergence
is equal to the golden mean!

• Faster than linear, but not
quite quadratic

• But! Strong assumptions about
behavior of f(x) 55

Root finding

• Finally, Newton-Raphson method (or “tangent” method) is
the fastest we will consider that has the smallest number of
assumptions

• But this time, instead of the secant, we utilize the
derivative (“tangent”!)

• Tangent is :

• Then we see where the tangent intersects the x axis:

56

Root finding

• Similar to secant algorithm :

• Chose x0 near the root
• Check if f’(x0) = 0.

–If = 0, fails
–Else continue

• Compute dx, replace x0 by x_new
• Check if or

–If so, accuracy reached
–Else : iterate

57

|dx| < ✏ f(xnew) = 0

Root finding

• Two cases here :

– f’ is analytic : rate of convergence is ~quadratic
–f’ must be computed numerically : rate of convergence is

~secant method

58

Root finding

• Tangent method is :

59

If f’ is analytic,
use this

Compute f, f’, dx

Make replacements

Iterate until convergence

Application : Cross sections

• You should have encountered cross sections in one of your
classes :

60

Number of interactions Cross section

Incident fluxunit time
=

Application : Cross sections
• You should have encountered cross sections in one of your

classes :

61

Number of interactions Cross section

Incident flux

Area

unit time
=

Number/time/area
Time

Number
(dimensionless)

http://www.jupiterscientific.org/
sciinfo/crosssection.html

http://www.jupiterscientific.org/sciinfo/crosssection.html
http://www.jupiterscientific.org/sciinfo/crosssection.html

Cross sections

• Happens a lot in physics

–Collision of galaxies

–Particle physics (ubiquitous!)

–Optical scattering

–Etc

62

Cross sections

• Take a simple case :
–Particle of mass “m” scattering from an isotropic central

force field
• Examples : billiard balls, Rutherford scattering

• Use conservation of linear and angular momenta to solve
the problem
–This occurs in the plane of the scatter (2-d)

63

Cross sections

• Conservation of energy :

• Conservation of angular momentum (normal to plane) is:

• But we know :

• So we can get rid of ALL of the time derivatives in the energy
expression!

• Can then integrate this to get the trajectory in parametric form
64

Cross sections

• So we’re looking for an equation of the form :

• Define our axes :

65

r = r(✓)

x axis

z axis
(out of the board)

y axis

• Define the “impact parameter” b

• By conservation of angular + linear momenta and energy :

Cross sections

66

Fowles and Cassiday, Analytical Mechanics

Cross sections

• Can solve the energy formula to get a parametric equation
for r in terms of theta :

• At the point of closest approach (PCA) the derivative is
zero, so define this as rmin.

67

Cross sections
• Typically we have experiments with many incident particles

(“beam”)
• Then we can consider a distribution of impact parameters

with density

• Classically, given E and b, you
can get the unique scattering
angle theta

• Example : Lennard-Jones potential
for interactions between pairs of
neutral atoms or molecules

• Interesting bit is that more than one b can lead to the same
theta!

68

Cross sections

• Consider a differential of the impact parameter. The
scattering angles will therefore be in the range :

• Typically detectors of particles are located “at infinity” (far
away)

• They exist at some angle , and subtend some physical
space (solid angle)

• Thus we have :

69

d⌦
✓s

Cross sections

• Now, consider the differential scattering cross section :

• Now, since many incident particles are detected in the
same “slice” of the detector, define a deflection angle as
the total number of radians that the position vector rotates
along the trajectory :

70

Cross sections

• The scattering angle is related to the deflection angle:

• And the differential cross section is :

71

Hey look! A discrete sum!

d�

d⌦
=

Scattering

• Recall definition of r_min :

• We have shown :

–RHS is zero at r_min (Yay! It’s a root!) 72

Scattering

• Also recall the differential cross section :

• If we can compute dtheta/db, we can get the scattering
cross section

• Example : hard sphere

• So, we have

• Thus :
73

db

d✓s
=

R

2
sin

✓
✓s
2

◆

d�

d⌦
=

• Example : Rutherford Scattering : EM scattering of object
with charge q1 off of an object with charge q2

• Look at the change in momentum :

Scattering

74

V =
kq1q2
r

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf

✓ = ⇡ � 2 0

�p = p0 � p

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf

• We know that

so we can write

• We get an isosceles triangle :

• But, we know from Newton’s second law:

• Since F is in the direction of u, we perform this in one
dimension:

Scattering

75

|p0| = |p|

�p =

Z
F�t

In the direction
of unit vector u!

|�p| =
Z 1

�1
|Fu|�t

|�p| = 2p sin ✓/2

Scattering

• The components of the integral cancel except for the force
in the u direction, so investigating this again:

• Thus :

76

F

|Fu| = F · û =
kq1q2
r2

cos

|�p| =
Z 1

�1

kq1q2
r2

cos dt

Scattering

• Now use a trick :

• Can use conservation of angular momentum to solve for

77

 ̇ =
d

dt

dt =
d

 ̇

 ̇

| ~L1| = mvb
| ~L2| = |r⇥ p0|

Scattering

• Solving for the magnitude of L2 :

• Tangential velocity is:

• So

• Finally can substitute this into the integral:

78

|L2| = mr2
d

dt
= mr2 ̇

v = r
d

dt

d

r

|�p| =
Z 1

�1

kq1q2
r2

cos dt =

Z
kq1q2
r2

cos
d

bp/mr2

b =
kq1q2
mv2

cot ✓/2

Scattering

• Simplifying :

• And doing the integral, we get :

• We solve for b:

79

=

Z 0

� 0

kq1q2m

bp
cos d

|�p| = 2p sin ✓/2|�p| = 2kq1q2m

bp
cos ✓/2 and

|�p| = 2kq1q2m

bp
cos ✓/2 = 2p sin ✓/2

Scattering

• Can finally put it together and compute scattering cross
section:

• in this case :

80

d�

d⌦
=

d�

d⌦
=

✓
kq1k2

4E sin2 ✓/2

◆2

Scattering

• Finally consider the Lennard-Jones potential:

81

Scattering

• How would we go about computing this?

• Of course, we need to do it numerically!

• Or rather : you’ll compute it numerically in your homework!

• Let’s sketch it out

82

Scattering

• Critical bit is here :

• We had the force in the integrand, but the factors of r
canceled fortuitously

• Can use another (less fortuitous) trick, though. Limits of
integration were

• However, this is

• We can use the same trick:
83

|�p| =
Z 1

�1

kq1q2
r2

cos dt =

Z
kq1q2
r2

cos
d

bp/mr2

± 0

 0 =

Z 1

0
 ̇dt

 0 =

Z 1

rmin

 ̇

ṙ
dr

Scattering

• Rewriting all of this in terms of E, v, and the potential, this
is our total deflection angle:

• In order to plot the differential cross section, we :
–Compute this integral numerically for several b’s

–Compute the derivative numerically for those b’s
–We’d then have

84

d⇥

db

d�

d⌦
=

Scattering

• To do this, we must compute the deflection angle :

• Given r_min, we can compute the integral

• Therefore, this is a two-step problem :

–Compute r_min numerically
–Compute integral

85

Scattering

• Our overall plan is thus :
–Set up scattering problem (E, b)
–Find r_min numerically
–Integrate dtheta/dr(b,E) numerically, given r_min

86

Scattering

• Our overall plan is thus :
–Set up scattering problem (E, b)
–Find r_min numerically
–Integrate dtheta/dr(b,E) numerically, given r_min

87

Scattering

• Our overall plan is thus :
–Set up scattering problem (E, b)
–Find r_min numerically
–Integrate dtheta/dr(b,E) numerically, given r_min

88

Scattering

• Find r_min numerically :
–Recall :
–r_min is defined by dr/dtheta = 0
–Function is:

–So, we find the root of this!

89

Scattering

• Integrate dtheta/dr numerically :
–Find r_min (from previous)
–Initialize to pi
–Integrate over a small “dTheta” with Trapezoid rule
–Add up the dTheta’s to get total

90

Scattering

• Integrate dtheta/dr numerically :
–Find r_min (from previous)
–Initialize to pi
–Integrate over a small “dTheta” with Trapezoid rule
–Add up the dTheta’s to get total

91

Scattering

• Integrate dtheta/dr numerically :
–Find r_min (from previous)
–Initialize to pi
–Integrate over a small “dTheta” with Trapezoid rule
–Add up the dTheta’s to get total

92

Scattering

• Integrate dtheta/dr numerically :
–Find r_min (from previous)
–Initialize to pi
–Integrate over a small “dTheta” with Trapezoid rule
–Add up the dTheta’s to get total

93

Scattering

• Integrate dtheta/dr numerically :
–Find r_min (from previous)
–Initialize to pi
–Integrate over a small “dTheta” with Trapezoid rule
–Add up the dTheta’s to get total

94

Orbiting

• As you know, oftentimes in scattering, the potentials are
attractive and the incoming particle can orbit the other
–Gravitational capture
–Electron capture

• We can also investigate orbiting in our example

• We’re computing the deflection angle Theta, but if you’re
orbiting, this can go completely nuts (somewhat obviously)

95

Orbiting

• Define the effective potential for scattering as the sum of
the actual potential, and the centrifugal potential (from
angular momentum of the incoming particle) :

• Then this looks something like :
• Orbiting occurs when E

equals the max of the
effective potential

96

Scattering Pseudocode

• Integrate dtheta/dr
numerically :
– Initialize to pi
–Find r_min (from

previous)
–Integrate over a small

“dTheta” with Trapezoid
rule

–Add up the dTheta’s to
get total

97

Scattering Pseudocode

• For each value of b:
• Calculate deflection

angle
• Plot x vs y of scatter

• Be careful about rmax!
–Make sure it makes

sense!

98

