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Derivatives + Integrals

• One of the most obvious things in computational physics is 
to look at computation of derivatives and integrals 

• You probably can guess how much of this is already known 
to you, since this is how you learned to do these things 
anyway! 

• The “hard” part for you in calculus was probably getting 
your brain around taking the limits of the “simpler” things 
when the step size went to zero 

• Well, that part is also hard for computers! 
–So, you have to think a little differently here, and go back 

to discrete derivatives and integrals
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Derivatives + Integrals

• Conceptually this is probably the easiest chapter 

• The devil is in the details, however 

• Short discussion in Chapter 1 of Garcia 
• Also parts are addressed in Chapter 2 of Garcia
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The devil in the details



Derivatives
• We’ve now seen several differentials in the previous 

discussion 

• We need to be able to compute the differential numerically, 
so as we mentioned, we take a step back :  

• First we take the “forward difference” :  

• But we could equally have taken the “backward difference”:
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Derivatives

• But! Here’s the first devil :) 

• Combine the forward and backward 
differences to get a  
symmetric difference!
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Improve 
the accuracy!



Recall : “Big-Ohh” Notation

• The “big-ohh” notation stands for “order” 

• O(N2) operations means “the leading coefficient in the 
number of operations scales like N2” 

• Remember, “operations” here really means 
“multiplications”... addition is cheap! 

• In computing, we want to minimize this as much as 
possible since the computational time scales the same 
way
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Derivatives

• Since “h” is small, the error that we make is smaller (h2) :  

• We want to make the error that we make as small as 
possible! 

• Simple thing : reduce h 
–But! This has a bit of a problem because it increases the 

computational time (ouch) 

• Can we do better?
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Derivatives

• Absolutely!  

• Can try with a “five point stencil”:  
–http://en.wikipedia.org/wiki/Five-point_stencil  

• Consider the five points :  

• Then the derivative looks like : 
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http://en.wikipedia.org/wiki/Five-point_stencil


Derivatives

• Five-point derivative method is simple enough to just write 
it down
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Derivatives

• What if we don’t know the functional form of the derivative? 

• We have to use some approximate functional form of the 
data points to handle this 

• One popular method is to use polynomial interpolation and 
extrapolation
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Ridder’s method

• Chapter 5, Section 7 of Numerical Recipes recommends 
Ridder’s algorithm : 
–Advances in Engineering Software, 4 75-76 (1978)  

• Uses Ridder’s polynomial extrapolation. 
• This relies on the so-called “Neville’s algorithm” to 

compute the polynomial extrapolation, then computes the 
derivative
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http://dx.doi.org/10.1016/S0141-1195%2882%2980057-0


• Derived to compute polynomial interpolation 
–http://en.wikipedia.org/wiki/Neville's_algorithm  

• Given n data points, you can construct the n-dimensional 
polynomial (which is unique) as follows :  

–Let pi,j denote the polynomial of degree j - i which goes 
through the points (xk,yk) for k=i..j.  

–The pi,j satisfy : 

Neville’s Algorithm
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http://en.wikipedia.org/wiki/Neville's_algorithm


Neville’s Algorithm

• So, we can fill a tableau to compute this from the left to the 
right : 
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Ridder’s method

• Start with the symmetric difference 
• Compute polynomial extrapolations for n=10 polynomials 

–Reduce the step size for each n 
–Compute symmetric difference at smaller step size. 

Store the result.  
–Compute extrapolations for n-1 with Neville’s algorithm 
–Compare each new extrapolation to one order lower at 

this step size, and the previous one 
• If error is smaller, keep the improvement 
• else, continue
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If you have lots of derivatives, over the entire time 
this can save you a lot of CPU’s



Ridder’s Method
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Input value 
Initialize 10x10 array 
Compute symmetric difference differential 
for each polynomial extrapolation : 
   reduce step size 
   compute symmetric difference differential 
   store results 
   compute error to previous step size 
   if error is better, keep it 
   else, continue



Ridder’s method
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• docker pull srappoccio/compphys:latest 

• cd results/CompPhys/ 
• git pull origin master
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Integration

• Covered (cursorily) in Garcia Chapter 10.2 
• Also covered in Numerical Recipes Chapter 4 

–(The C version is online for free : ) 
–http://apps.nrbook.com/c/index.html 
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http://apps.nrbook.com/c/index.html


Integration

• We’ve done derivatives. Now on to integration.  
• Recall your high-school (ish) calculus class :  

–http://en.wikipedia.org/wiki/Integral 
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http://en.wikipedia.org/wiki/Integral


Integration

• To first order, that’s all we’re going to do for computations 
of integrals 
–There are fancier, faster, better methods, but they are 

successive approximations of this kind of thing except 
one (Monte Carlo integration) 

–We’ll first consider the class of problems called 
“quadrature” in numerical analysis 

–See Chapter 4 of “Numerical Recipes” (C version online 
for free from their website)
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Integration

• Consider the integral :  

• Then define :  

• Thus :  

• We COULD solve this as a differential equation! 
• But instead we’ll start with the “bare bones” approximations 

that you learned in high school/freshman calculus
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Integration : Trapezoidal Rule

• The rectangle sum is a slightly-less-than-wonderful 
approximation of the integral 

• The trapezoid sum is actually much better 
–http://en.wikipedia.org/wiki/Trapezoidal_rule  

• You compute the integral by approximating it as a 
trapezoid : 
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f(a) + f(b)

b - a

http://en.wikipedia.org/wiki/Trapezoidal_rule


Integration : Trapezoidal Rule

• How accurate? Define h = (b-a) as our “small” parameter 
• Approximate the integral by :  

• We Taylor-expand f(x) :  

• The error in the estimate is : 
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Integration : Trapezoidal Rule

• Notice a trick we can play! 
• If we choose x0 = (b+a) / 2, then we get down to O(h3) 

instead of O(h2)! 
–“Midpoint rule” :
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Integration : Trapezoidal Rule
• Then can break the integral into a bunch of trapezoids 

• This is also related to “polygon tessellation” in computer graphics, 
to compute (or display) the area in a 2-d image :  
–http://en.wikipedia.org/wiki/Polygon_triangulation  

• Easier and faster 
than computing the 
area in a more 
complicated way! 

• Almost all of your modern 
computer games will allow 
you to set the amount of  
tessellation to optimize  
performance or beauty depending 
on your taste 25

http://en.wikipedia.org/wiki/Polygon_triangulation


Integration : Trapezoidal Rule
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They’re using 
tessellation here!



Integration : Trapezoidal Rule

• Now you can guess what to do, we have successive 
approximations :  

• The uncertainty here is :  

• Can therefore pick N,h to desired accuracy (same deal as 
in tessellation!)
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Integration : Trapezoidal Rule
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Integration : Simpson’s Rule

• This is more accurate than the Trapezoidal rule, and not 
really slower : 
–http://en.wikipedia.org/wiki/Simpson's_rule  

• Instead of approximating by a trapezoid, use a parabola! 

• This is a “three-point” 
rule, similar to that we 
saw last class for the 
derivatives with the 
“symmetric” derivative 
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http://en.wikipedia.org/wiki/Simpson's_rule


Integration : Simpson’s Rule

• The approximation is thus :  

• Similarly to above, we can divide into intervals of size 2h if 
we have a large area :  

• This particular implementation requires an EVEN number of 
intervals, and that the function is evaluated at an ODD 
number of points (need three points on each!) 30



Integration : Simpson’s Rule
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Integration : For your homeworks!

• In your homeworks (assigned Monday) you will go through 
the same exercise of examining numerical precision of 
integration, like we did for derivatives. 

32



Integration : Adaptive methods

• Can often adapt the algorithm to a desired precision by 
iterating 

• This improves the accuracy dynamically, saving time when 
the function is fairly linear

33



Integration : Adaptive methods

• So, pseudocode is :  

• Can also reuse the computations as we did in our previous 
example to speed up computational time : 
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Choose N and compute h 
Set h --> h/2 
Compute 
If         repeat 

�I ⌘ |IT (h)� IT (2h)|
�I > ✏



Integration : Adaptive methods
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Next up : Root finding

• The next issue is to find the roots 
of a function f(x) 

• That is,  

• Lots of issues, not only 
computational! 
–May not have a root 

–May have imaginary roots 

–May have a large number of 
roots 

• Section 4.3 in Garcia, Chapter 9 
in Numerical Recipes
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{x|f(x) = 0}
f(x) = 1 + |x|

f(x) = 1 + x2

f(x) = sin 1/x



Root finding

• But, given those caveats, once again it is very 
straightforward logic here 

• You’ve probably already seen Newton’s method in your 
mathematics classes 
–http://en.wikipedia.org/wiki/Newton's_method  

• Guess at the answer 
• Find derivative 
• Use it to get successively better approximations
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http://en.wikipedia.org/wiki/Newton's_method


Root finding

38

Newton’s Method



Root finding

• A very simple version (not yet Newton’s version) : 
• Choose accuracy you want :  
• Guess x and dx, then 
• Step is :  
• Check to see if you’ve passed the root :  

– If negative, you changed sign so, reverse : 
                   and reduce your step :  

• If                    or                    , you’re done 

• Otherwise, iterate steps
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f0 = f(x)

x ! x+ dx
f0 ⇥ f(x)

x ! x� dx

|dx| < ✏ f(x) = 0

✏

dx ! dx/2



Root finding

• The above assumes that the function f(x) is continuously 
differentiable with at least one real root 

• Much of the complications arise when this is not the case :  
–Kinks 
–Discontinuities 
–No real roots 

• So, we usually put in protections against this, and 
eventually the code will give up and print a failure message 

• Even still, can have 
pathologies!
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Root finding

• So, the code for our simple root finding is here : 
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Root finding

• Problem! We already need to know the structure pretty 
specifically of the function before we find the root 

• So, the code will happily continue until infinity if we give it a 
guess in the wrong direction 

• This is a bit of a pain, so we need something better
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Root finding

• The next idea is to find a window within which the root will 
fall : bisection method 
–http://en.wikipedia.org/wiki/Bisection_method 

• Utilizes the intermediate 
value theorem! 

• Assumes that the function  
has exactly one root  
between x0,x1, at which  
point it changes sign
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http://en.wikipedia.org/wiki/Bisection_method


Root finding

• Repeatedly bisects the interval :  

• Let                               be the bisection point 

• Compute :  
– If positive, then x0 and x1/2 are on the same side of the 

root, and x1/2 is closer, so replace 
–Else, they’re on opposite sides, so refine interval: 

• If                            or if                     then we have the root 
with sufficient precision
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|x1 � x0| < ✏ f(x 1
2
) = 0



Root finding

• So, the code looks like this : 
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Compute bisection

If they’re both on the 
same sign, then 
refine to [x1/2,x1]

Otherwise  
refine to [x0,x1/2]

Iterate until 
the accuracy 
is achieved



Root finding

• OK, much better, we just have to find a bounding interval 
• Usually a lot easier than having to remember what the 

function actually looks like 

• One problem : It’s pretty darned slow. 
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Root finding

• Let’s estimate the convergence rate : 
–Number of iterations needed before root is located with 

some desired accuracy  
–Either                         or  
–We usually do the former, not the latter 

• Look at bisection.  
–After n bisection steps, then         is given by :  

–So,  

–or : 47

dx < ✏ f(x) < ↵

dxn



Root finding

• Can also represent as 
 
 
where          is a constant “convergence factor” 
 
                    is the “order of convergence” 

• For bisection :  

• For the simple step-halving :  

• Both of these are pretty darned slow to converge 
• Can we do better? 48

CF =
1

2
,↵ = 1

CF 2 [
1

2
, 1],↵ = 1



Root finding

• Two better options :  
–Secant method 

• http://en.wikipedia.org/wiki/Secant_method  
–Newton’s method (or Newton-Raphson, or “tangent” 

method” 
• http://en.wikipedia.org/wiki/Newton's_method  

• There are others,  
but we’ll just use these
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http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/Newton's_method


Root finding

• Secant method (secare : Latin, “to cut”... think “section”) 

• Choose the secant, the line between x0 and x1 that 
intersects f(x) 

• Equation is :  

• Can utilize x0 as the initial guess, and then specify the 
initial window (dx = x1 - x0) 
–The next step is therefore chosen at where the secant 

intersects f(x) = 0:  

• Then iterate
50



Root finding

• So, pseudocode is :  
–choose x0 and x1 “near” the root, dx = x1 - x0 
–If either f(x0) = f(x1) then the method fails, so re-guess 
–Replace :  

–Check if: 
• If so, desired accuracy reached. 
• Otherwise, iterate
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dx ! dxnew, x0 ! x1, x1 ! xnew

|dxnew| < ✏



Root finding

• Here’s the code for the secant method : 
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Guess x0, x1

Check for 
anomaly

Make 
replacements

Iterate until 
accuracy 
reached



Root finding

• If a few conditions are met, then this is much faster than 
bisection : 
–If f(x) is smooth near the root 
–If x0 and x1 are close enough to the root 
–Given these two, a Taylor expansion should be a good 

approximation 
• Assume that the root is at zero (for simplicity, but without 

loss of generality, you can always do a change of variables 
to make this at some other x) 

• Then, in the expansion :  

• we have written simply f’(0) = f’, f’’(0) = f’’
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Root finding

• Then we can plug this into the secant approximation to 
get :  

• To find the convergence, we rewrite x_new and x1 in terms 
of our convergence relation from above, and define C_F 
and alpha : 
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Root finding
• So, we do a little algebraic massaging and get :  

• The RHS is independent of x1, so we must have 

• I.e. the rate of convergence  
is equal to the golden mean! 

• Faster than linear, but not 
quite quadratic 

• But! Strong assumptions about 
behavior of f(x) 55



Root finding

• Finally, Newton-Raphson method (or “tangent” method) is 
the fastest we will consider that has the smallest number of 
assumptions 

• But this time, instead of the secant, we utilize the 
derivative (“tangent”!) 

• Tangent is : 

• Then we see where the tangent intersects the x axis:
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Root finding

• Similar to secant algorithm :  

• Chose x0 near the root 
• Check if f’(x0) = 0. 

–If = 0, fails 
–Else continue 

• Compute dx, replace x0 by x_new 
• Check if                       or  

–If so, accuracy reached 
–Else : iterate
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|dx| < ✏ f(xnew) = 0



Root finding

• Two cases here :  

– f’ is analytic : rate of convergence is ~quadratic 
–f’ must be computed numerically : rate of convergence is 

~secant method
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Root finding

• Tangent method is : 
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If f’ is analytic, 
use this

Compute f, f’, dx

Make replacements

Iterate until convergence



Application : Cross sections

• You should have encountered cross sections in one of your 
classes : 

60

Number of interactions Cross section

Incident fluxunit time
=



Application : Cross sections
• You should have encountered cross sections in one of your 

classes : 

61

Number of interactions Cross section

Incident flux

Area

unit time
=

Number/time/area
Time

Number 
(dimensionless)

http://www.jupiterscientific.org/ 
sciinfo/crosssection.html

http://www.jupiterscientific.org/sciinfo/crosssection.html
http://www.jupiterscientific.org/sciinfo/crosssection.html


Cross sections

• Happens a lot in physics 

–Collision of galaxies 

–Particle physics (ubiquitous!) 

–Optical scattering 

–Etc
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Cross sections

• Take a simple case :  
–Particle of mass “m” scattering from an isotropic central 

force field 
• Examples : billiard balls, Rutherford scattering 

• Use conservation of linear and angular momenta to solve 
the problem 
–This occurs in the plane of the scatter (2-d)
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Cross sections

• Conservation of energy :  

• Conservation of angular momentum (normal to plane) is:  

• But we know :  

• So we can get rid of ALL of the time derivatives in the energy 
expression! 

• Can then integrate this to get the trajectory in parametric form
64



Cross sections

• So we’re looking for an equation of the form : 

• Define our axes : 

65

r = r(✓)

x axis

z axis 
(out of the board)

y axis



• Define the “impact parameter” b 

• By conservation of angular + linear momenta and energy : 

Cross sections
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Fowles and Cassiday, Analytical Mechanics



Cross sections

• Can solve the energy formula to get a parametric equation 
for r in terms of theta :  

• At the point of closest approach (PCA) the derivative is 
zero, so define this as rmin.
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Cross sections
• Typically we have experiments with many incident particles 

(“beam”) 
• Then we can consider a distribution of impact parameters 

with density 

• Classically, given E and b, you  
can get the unique scattering  
angle theta 

• Example : Lennard-Jones potential  
for interactions between pairs of  
neutral atoms or molecules  

• Interesting bit is that more than one b can lead to the same 
theta!
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Cross sections

• Consider a differential of the impact parameter. The 
scattering angles will therefore be in the range :  

• Typically detectors of particles are located “at infinity” (far 
away) 

• They exist at some angle     , and subtend some physical 
space (solid angle       ) 

• Thus we have : 
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d⌦
✓s



Cross sections

• Now, consider the differential scattering cross section :  

• Now, since many incident particles are detected in the 
same “slice” of the detector, define a deflection angle as 
the total number of radians that the position vector rotates 
along the trajectory :
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Cross sections

• The scattering angle is related to the deflection angle:  

• And the differential cross section is :
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Hey look! A discrete sum!

d�

d⌦
=



Scattering

• Recall definition of r_min : 

• We have shown :  

–RHS is zero at r_min (Yay! It’s a root!) 72



Scattering

• Also recall the differential cross section : 

• If we can compute dtheta/db, we can get the scattering 
cross section  

• Example : hard sphere 

• So, we have 

• Thus : 
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db

d✓s
=

R

2
sin

✓
✓s
2

◆

d�

d⌦
=



• Example : Rutherford Scattering : EM scattering of object 
with charge q1 off of an object with charge q2 

• Look at the change in momentum : 

Scattering

74

V =
kq1q2
r

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf

✓ = ⇡ � 2 0

�p = p0 � p

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf


• We know that  
 
so we can write 

• We get an isosceles triangle :  

• But, we know from Newton’s second law: 

• Since F is in the direction of u, we perform this in one 
dimension: 

Scattering
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|p0| = |p|

�p =

Z
F�t

In the direction 
of unit vector u!

|�p| =
Z 1

�1
|Fu|�t

|�p| = 2p sin ✓/2



Scattering

• The components of the integral cancel except for the force 
in the u direction, so investigating this again:  

• Thus : 
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F

|Fu| = F · û =
kq1q2
r2

cos 

|�p| =
Z 1

�1

kq1q2
r2

cos dt



Scattering

• Now use a trick :  

• Can use conservation of angular momentum to solve for 
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 ̇ =
d 

dt

dt =
d 

 ̇

 ̇

| ~L1| = mvb
| ~L2| = |r⇥ p0|



Scattering

• Solving for the magnitude of L2 :  

• Tangential velocity is: 
 

• So  

• Finally can substitute this into the integral:
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|L2| = mr2
d 

dt
= mr2 ̇

v = r
d 

dt

d 

r

|�p| =
Z 1

�1

kq1q2
r2

cos dt =

Z
kq1q2
r2

cos 
d 

bp/mr2



b =
kq1q2
mv2

cot ✓/2

Scattering

• Simplifying :  

• And doing the integral, we get : 

• We solve for b:
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=

Z  0

� 0

kq1q2m

bp
cos d 

|�p| = 2p sin ✓/2|�p| = 2kq1q2m

bp
cos ✓/2 and

|�p| = 2kq1q2m

bp
cos ✓/2 = 2p sin ✓/2



Scattering

• Can finally put it together and compute scattering cross 
section: 

• in this case : 
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d�

d⌦
=

d�

d⌦
=

✓
kq1k2

4E sin2 ✓/2

◆2



Scattering

• Finally consider the Lennard-Jones potential: 
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Scattering

• How would we go about computing this? 

• Of course, we need to do it numerically! 

• Or rather : you’ll compute it numerically in your homework!  

• Let’s sketch it out
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Scattering

• Critical bit is here : 

• We had the force in the integrand, but the factors of r 
canceled fortuitously 

• Can use another (less fortuitous) trick, though. Limits of 
integration were  

• However, this is  

• We can use the same trick:
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|�p| =
Z 1

�1

kq1q2
r2

cos dt =

Z
kq1q2
r2

cos 
d 

bp/mr2

± 0

 0 =

Z 1

0
 ̇dt

 0 =

Z 1

rmin

 ̇

ṙ
dr



Scattering

• Rewriting all of this in terms of E, v, and the potential, this 
is our total deflection angle:  

• In order to plot the differential cross section, we : 
–Compute this integral numerically for several b’s 

–Compute the derivative        numerically for those b’s 
–We’d then have
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d⇥

db

d�

d⌦
=



Scattering

• To do this, we must compute the deflection angle :  

• Given r_min, we can compute the integral 

• Therefore, this is a two-step problem :  

–Compute r_min numerically 
–Compute integral
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Scattering

• Our overall plan is thus :  
–Set up scattering problem (E, b) 
–Find r_min numerically 
–Integrate dtheta/dr(b,E) numerically, given r_min
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Scattering

• Our overall plan is thus :  
–Set up scattering problem (E, b) 
–Find r_min numerically 
–Integrate dtheta/dr(b,E) numerically, given r_min
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Scattering

• Our overall plan is thus :  
–Set up scattering problem (E, b) 
–Find r_min numerically 
–Integrate dtheta/dr(b,E) numerically, given r_min
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Scattering

• Find r_min numerically :  
–Recall :  
–r_min is defined by dr/dtheta = 0  
–Function is: 

–So, we find the root of this!
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Scattering

• Integrate dtheta/dr numerically :  
–Find r_min (from previous) 
–Initialize to pi 
–Integrate over a small “dTheta” with Trapezoid rule 
–Add up the dTheta’s to get total
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Scattering

• Integrate dtheta/dr numerically :  
–Find r_min (from previous) 
–Initialize to pi 
–Integrate over a small “dTheta” with Trapezoid rule 
–Add up the dTheta’s to get total
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Scattering

• Integrate dtheta/dr numerically :  
–Find r_min (from previous) 
–Initialize to pi 
–Integrate over a small “dTheta” with Trapezoid rule 
–Add up the dTheta’s to get total
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Scattering

• Integrate dtheta/dr numerically :  
–Find r_min (from previous) 
–Initialize to pi 
–Integrate over a small “dTheta” with Trapezoid rule 
–Add up the dTheta’s to get total
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Scattering

• Integrate dtheta/dr numerically :  
–Find r_min (from previous) 
–Initialize to pi 
–Integrate over a small “dTheta” with Trapezoid rule 
–Add up the dTheta’s to get total
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Orbiting

• As you know, oftentimes in scattering, the potentials are 
attractive and the incoming particle can orbit the other 
–Gravitational capture 
–Electron capture 

• We can also investigate orbiting in our example 

• We’re computing the deflection angle Theta, but if you’re 
orbiting, this can go completely nuts (somewhat obviously)
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Orbiting

• Define the effective potential for scattering as the sum of 
the actual potential, and the centrifugal potential (from 
angular momentum of the incoming particle) : 

• Then this looks something like :  
• Orbiting occurs when E 

equals the max of the  
effective potential

96



Scattering Pseudocode

• Integrate dtheta/dr 
numerically :  
– Initialize to pi  
–Find r_min (from 

previous) 
–Integrate over a small 

“dTheta” with Trapezoid 
rule 

–Add up the dTheta’s to 
get total
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Scattering Pseudocode

• For each value of b: 
• Calculate deflection 

angle 
• Plot x vs y of scatter 

• Be careful about rmax! 
–Make sure it makes 

sense!
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