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Next up : Linear algebra

• Covered in Chapter 4 of Garcia and Chapter 2 of 
Numerical Recipes 

• Huge number of applications! 
–Complex circuit diagrams 
–Coupled oscillators 
–General solution of fitting arbitrary curves 

• We’ll learn how to :  
–Solve linear equations 
–Compute eigenvalues 
–Apply these to various applications
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Linear Algebra

• You should all be familiar with 
the basics of linear algebra 

–Vectors 
–Matrices 
–Solving matrix equations 
–Gaussian (or Gauss-Jordan) 

elimination 
• http://en.wikipedia.org/wiki/

Gaussian_elimination  

• We’ll go over the computational 
issues here
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Linear Algebra

• Recall Cramer’s rule :  
–http://en.wikipedia.org/wiki/Cramer's_rule  

• If we have the determinant of a matrix A :  

• where Rij is the “residual matrix” or “minor” of A, removing row i 
and column j 

• Then the inverse of the matrix is :  

• This is a recursive rule
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Linear Algebra

• Computing this “brute force” way is okay for small n, but 
problematic for large n (>10) 

• Scales as n factorial (n!)  

• To see this, consider an expansion of the determinant : 

• Here, P runs over the n! permutations of the indices 
• 20! = 2.43x1018 .... yipes! (which is “yipes, factorial”) 

• OK, well, scratch that idea.  
–What else ya got, Sal?
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Linear Algebra

• Medium sized matrices (n~10-103) 
–Gaussian elimination, LU-decomposition, and 

Householder method 

• Larger matrices (n > 103)  
–Storage becomes a problem 
–Cannot practically do this for arbitrary matrices 
–However, most matrices are “sparse” with lots of zeroes 

in practical applications 
–Can, however, store and solve these fairly well
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Linear Algebra

• Linear algebra is the raison d’être for numpy.  
–Let’s just use it.  

• Most of the scipy algorithms for linear algebra are from 
LAPACK. (Linear Algebra Package) 

• http://www.netlib.org/lapack/ 
• Other options: 

–BLAS (Basic Linear Algebra Subprograms) 
• http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms  

–LAPACK  
–BOOST Basic Linear Algebra Library 

• http://www.boost.org/doc/libs/1_54_0/libs/numeric/ublas/doc/
index.htm  

–matlab (the “mat” in “matlab” stands for “matrix”) 
• http://www.mathworks.com/products/matlab/ 
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Linear Algebra

• Game plan:  
–Use numpy software.  
–Go over algorithms that are used internally 
–Check into use cases
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Linear Algebra

• So if you recall the Gaussian Elimination, we have a matrix 
equation :  

• Or, written out for the case of n=3: 
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Linear Algebra

• We take linear combinations of the rows to convert the 
matrix into “reduced row echelon form” : 
–Multiply first equation by a(10)/a(00) and subtract from 

second: 

–Then x0 is eliminated from the second equation: 

–which can be written as: 

–Repeat until you run out of rows 
–Example:
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Linear Algebra

• Can also think about this in terms of an “augmented” 
matrix where you add the vector b as another column: 

• You eliminate each row iteratively, reducing the dimension 
by one each time:
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Linear Algebra

• To solve for the actual equation, we then use “back 
substitution”, starting at the last row 
–For instance 

–Then we use the second equation 

–And finally
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Linear Algebra

• Gaussian elimination is is O(n3) operations 
–n2 matrix elements, and O(n) row operations on each 

• Back-substitution is O(n2) operations 

• So the total is O(n3) + O(n2) ~ O(n3) for large n 

• Much better than O(n!) >>O(n3) 

• Easy to extend to arbitrarily large n’s 
–But, as we mentioned earlier, storage becomes a 

problem
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Linear Algebra
• You can see one problem already 
• If any of the rows have a zero as the first 

element, then you divide by zero and get 
an exception 

• So, need to make sure this doesn’t happen by “partial 
pivoting” : 
–Before performing the ith row operation, search for the 

element aki (k=i,...n-1) with the largest magnitude 
–If k != i, interchange rows i and k of the augmented 

matrix, and interchange xi <---> xk 
–Perform as usual 

• Will not fail for small ai’s, also stable to roundoff errors 

• Note : in “full” pivoting you swap rows AND columns 14



Linear Algebra

• Another variation is Gauss-Jordan elimination 
–Does not require the backsubstitution step 
–Replaces A by the inverse “in place”, avoiding memory 

copy 
• So, we have another augmented equation (again in n=3): 

• This is a way of stating : 
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Linear Algebra

• Algorithm :  
–Start with zeroth row, divide by a(00) and subtract 
–Subtract all zeroth column entries (as in Gaussian 

elimination) 
–For row i=1,...n-1, divide by diagonal element a(ii) and 

eliminate elements in column i other than the diagonal 
by subtracting a(ij) times the ith row elements from the 
jth row 
• Gaussian elimination : subtracts only those below diagonal 
• Gauss-Jordan : subtracts ALL elements where i != j 

–Simultaneously perform on the augmented (b 1) matrix 
on the RHS
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Linear Algebra

• In the end we get :  

• A is replaced by a unit matix 
• b is reduced to input vector x 
• Unit matrix on RHS is replace by inverse A-1 

• Can also implement pivoting in this algorithm to make sure 
we have numeric stability
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Linear Algebra

• Another variation is “LU decomposition” (“lower-upper”) 
• Reduce A to an L*U product: 

• Then solve the problem in two steps :  
–Solve                  with forward substitution: 

–Solve                       since 
with backward substitution :
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Linear Algebra

• Factoring the matrix A = LU can be done with “Crout’s 
Algorithm” : 
–Set alpha(ii) = 1   for i=0,...n-1 
–for each j = 0,...n-1 : 

     for i = 0,...j  
             compute 
 
 
 
     for j = j+1,...n-1 
             compute 

• Replaces A by LU “in place”:
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Linear Algebra

• Simple special case : Tridiagonal matrices 

• If you have a problem such as :  

• This matrix is sparse! 
–Can solve in O(n) operations 

• Equations are: 

• Can show that (recursively):
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Linear Algebra

• Can start from the right boundary value for i=n-2,...0 

• and then solve from the left boundary value for i=1,...n-1 

• So we “sweep twice” and obtain O(n) operations
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Linear Algebra

• Examples: 
–Polynomial fits (again) 
–Circuit diagrams 
–Boundary value problems
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General fitting of curves

• This is a matrix equation, so we define the “design matrix” :  

• Then our chi2 minimization becomes : 

• so :
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A =

2

4
Y1(x1)/�1 Y2(x1)/�1 . . .
Y1(x2)/�2 Y2(x2)/�2 . . .
. . . . . . . . .

3

5

Aij =
Yj(xi)

�i

(ATA)~a = AT~b

~a = (ATA)�1AT~b

Recall : General fitting of curves



General fitting of curves

• If we define the “correlation matrix” : 

• Then the uncertainty on aj is : 
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C = (ATA)�1

�aj =
p

Cjj

Recall : General fitting of curves



General fitting of curves

• As a first example, let’s look at polynomial fits 

• Slight generalization of the linear fit we did previously 
• General solution is to minimize the chi2 :  

• In this case : 
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Recall : General fitting of curves



General fitting of curves

• Our design matrix is therefore :  

• Caveat : This oftentimes is ill-formed, so don’t go too crazy 
here. Typically we do quadratic, cubic, quartic, but above 
that it strains credibility. 
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Polynomial fits

• Can finally generalize our formalism to arbitrary functional 
fits 

• Example : quadratic fit for our CO2 data!
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Linear Algebra
• Example :  

–Kirchoff’s Law for a Wheatstone bridge : 
–http://en.wikipedia.org/wiki/Wheatstone_bridge  

• This is a matrix equation:
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Solve for Rx given  
R1,R2,R2, i and V

Ra
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Linear Algebra

• Try to “zero” the potential at V_G: 
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Linear Algebra

• Example : boundary value problems 
–Consider :  

–with Dirichlet boundary conditions u(0) = 0 and u(1)=1 
–We can discretize this :  

–This is therefore a sparse matrix equation with c = h^2 
pi^2/4:
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Hands on!
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Linear Algebra

• Today : Eigenvalues and eigenvectors, more hands on 

• See Chapter 11 of Numerical Recipes 

• In this case, even they recommend using packaged 
software for eigenvalues and eigenvectors, but let’s get the 
general gist here
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Linear Algebra

• Example : normal modes of a harmonic oscillator between 
n objects 

• “Normal mode” is the mode of the system where all of the 
coordinates oscillate with some frequency omega:  

• Homogeneous matrix equation has solutions for omega for 
which the determinant is zero:
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Eigenvalues and Eigenvectors

• This is an instance of a general class of eigenvalue and 
eigenvector problems 

• So, if A is an nxn matrix, x is a column vector (the “right” 
eigenvector),  lambda is a number (the “eigenvalue”), and : 

• Then the equation is satisfied when :  

• This is an n-th degree polynomial in lambda that depends 
on the matrix elements 

• N-degree polynomial ==> n different eigenvalues, so we 
need to solve for them
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Eigenvalues and Eigenvectors

• Example :  

• The eigenvalue equation and eigenvalues are : 

• We solve for the eigenvectors : 
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Eigenvalues and Eigenvectors

• Also consider :  

• So we have: 

• And thus the eigenvalues are complex :
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Eigenvalues and Eigenvectors

• “Hey Sal! I know what we can do!” you say. “We can just 
find the roots of the characteristic polynomial with our root-
finding methods!” 

• “Excellent idea in principle, my clever students,” I say. “But 
unfortunately, it’s hard in practice” 

–Need to know roughly 
where the roots are 
ahead of time 

–You don’t get the 
eigenvectors this 
way either 

• So, we’ll look at ways to do both! 37



Eigenvalues and Eigenvectors

• First, define “left” eigenvectors: 

• In this case, y is a row vector. 
• This implies :  

• Since :  
 
then the left and right eigenvalues are the same 

• However the left and right eigenvectors are not necessarily 
the same  

• Left eigenvector 0, though, is orthogonal to right 
eigenvector 1, etc
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Eigenvalues and Eigenvectors

• If we consider a complex matrix A, we can define the 
Hermitian conjugate : 

–This is also referred to as the “conjugate transpose” 
–If the aij are real, this is just the transpose 

• Define a “normal” matrix if the conjugate transpose 
commutes with the matrix: 

• Note that normal matrices have the same left and right 
eigenvector sets
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Eigenvalues and Eigenvectors

• A Hermitian matrix (or self-adjoint matrix) is defined when 

• When the elements are real, this is called a “symmetric” 
matrix: 

• These special matrices have :  
–n real eigenvalues 
–eigenvectors are orthogonal 
–the set of eigenvectors is “complete” (spans the n-dim 

space)
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Eigenvalues and Eigenvectors

• Computation of eigenvalues/eigenvectors for symmetric or 
Hermitian matrices depends on a nice property 

• If we consider the matrices formed by the right and left 
eigenvectors X and Y: 

• In general : 

• Can choose the normalization appropriately so that
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Eigenvalues and Eigenvectors

• How does this help us? 

• Can exploit this fact to compute the eigenvalues!
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Y ·A ·X = X�1 ·A ·X
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Eigenvalues and Eigenvectors

• This is a similarity transformation! 

• The interesting bit is that symmetry transformations leave 
the eigenvalues unchanged: 

• So, we can solve this easier problem instead
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Eigenvalues and Eigenvectors

• Let X be the matrix of eigenvectors 
–If the matrix A is real and symmetric, then the 

eigenvectors are real and orthonormal, and  : 

– If the matrix A is is Hermitian, the matrix of eigenvectors 
is unitary :
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Eigenvalues and Eigenvectors

• Generalized eigenvalue problem : solve 

• Strategy : Successively apply similarity transformations 
until the matrix is “almost” diagonal 
–Either diagonal, block diagonal, or tridiagonal and also 

easy to solve 

• Nonsymmetric matrices will not, in general, have similarity 
matrices with real components 
–So, cannot use real similarity matrix 
–But! “Almost” can : will reduce to block-diagonal with 

two-by-two blocks replacing the complex eigenvalues 

–Think
45
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Eigenvalues and Eigenvectors

• Can then repeatedly apply similarity transformations until 
we can solve the problem “easily” :  

• If we end up in completely diagonal form, then the 
eigenvectors are just the columns of the total 
transformation:  

• Sometimes just want eigenvalues, in which case can stop 
when we reduce to triangular form 
–Then eigenvalues are the diagonal elements!
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Eigenvalues and Eigenvectors

• One strategy we will look at :  
–Reduce to tridiagonal form by the Householder algorithm 

(Chapter 11 Section 2 of Numerical Recipes) 
–Solve the tridiagonal matrix problem using a QL 

algorithm with implicit shifts (Chapter 11 Section 3 of 
Numerical Recipes) 
• Q = orthogonal 
• L = lower triangular matrix 

• These are basically “uninteresting” to go through the gory 
details, because they’re mostly just math tricks 

• Instead, let’s just focus on an application
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Eigenvalues and Eigenvectors

• Consider a linear triatomic 
molecule  
–Fowles and Cassiday, 

Chapter 11, Section 4 
–Taylor, Chapter 11, Section 6 

• Approximate by masses on 
springs 

48



Eigenvalues and Eigenvectors

• Lagrangian for the general case is : 

• The equations of motion are 

• For our specific problem, we have
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m3ẍ3 =
d

dt

✓
@L

@ẋ3
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Eigenvalues and Eigenvectors

• Can be written as a matrix equation: 

• with normal modes of the form :  

• The normal mode frequencies are eigenvalues of 
the generalized eigenvalue equation:
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Eigenvalues and Eigenvectors

• The eigenvalues are therefore: 

• And the eigenvectors are :
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Eigenvalues and Eigenvectors

• “triatomic” python notebook
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