PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Next up : Linear algebra

- Covered in Chapter 4 of Garcia and Chapter 2 of Numerical Recipes
- Huge number of applications!
-Complex circuit diagrams
-Coupled oscillators
-General solution of fitting arbitrary curves
- We'll learn how to :
-Solve linear equations
-Compute eigenvalues
-Apply these to various applications

Linear Algebra

- You should all be familiar with the basics of linear algebra
- Vectors $\mathbf{A x}=\mathbf{b}$,
-Matrices
-Solving matrix equations
-Gaussian (or Gauss-Jordan) elimination
- http://en.wikipedia.org/wiki/ Gaussian elimination
- We'll go over the computational issues here

Linear Algebra

- Recall Cramer's rule :
-http://en.wikipedia.org/wiki/Cramer's_rule
- If we have the determinant of a matrix A :

$$
|\mathbf{A}|=\sum_{i=1}^{n}(-1)^{i+j} A_{i j}\left|\mathbf{R}_{i j}\right|
$$

- where R_{ij} is the "residual matrix" or "minor" of A , removing row i and column j
- Then the inverse of the matrix is :

$$
A_{i j}^{-1}=(-1)^{i+j} \frac{\left|\mathbf{R}_{j i}\right|}{|\mathbf{A}|}
$$

- This is a recursive rule

Linear Algebra

- Computing this "brute force" way is okay for small n, but problematic for large $\mathrm{n}(>10)$
- Scales as n factorial (n!)
- To see this, consider an expansion of the determinant :

$$
|\mathbf{A}|=\sum_{P}(-)^{P} A_{1 p_{1}} A_{2 p_{2}} \ldots A_{n p_{n}}
$$

- Here, P runs over the n ! permutations of the indices
- $20!=2.43 \times 10^{18} \ldots$ yipes! (which is "yipes, factorial")
- OK, well, scratch that idea.
-What else ya got, Sal?

Linear Algebra

- Medium sized matrices ($\mathrm{n} \sim 10-10^{3}$)
-Gaussian elimination, LU-decomposition, and Householder method
- Larger matrices ($\mathrm{n}>10^{3}$)
-Storage becomes a problem
-Cannot practically do this for arbitrary matrices
-However, most matrices are "sparse" with lots of zeroes in practical applications
-Can, however, store and solve these fairly well

Linear Algebra

- Linear algebra is the raison d'être for numpy.
-Let's just use it.
- Most of the scipy algorithms for linear algebra are from LAPACK. (Linear Algebra Package)
- http://www.netlib.org/lapack/
- Other options:
-BLAS (Basic Linear Algebra Subprograms)
- http://en.wikipedia.org/wiki/Basic Linear Algebra Subprograms
-LAPACK
-BOOST Basic Linear Algebra Library
- http://www.boost.org/doc/libs/1_54_0/libs/numeric/ublas/doc/ index.htm
-matlab (the "mat" in "matlab" stands for "matrix")
- http://www.mathworks.com/products/matlab/

Linear Algebra

- Game plan:
-Use numpy software.
-Go over algorithms that are used internally
-Check into use cases

Linear Algebra

- So if you recall the Gaussian Elimination, we have a matrix equation :

$\mathbf{A x}=\mathbf{b}$,

- Or, written out for the case of $\mathrm{n}=3$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right) \\
& \left(\begin{array}{l}
a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2} \\
a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2} \\
a_{20} x_{0}+a_{21} x_{1}+a_{22} x_{2}
\end{array}\right)=\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)
\end{aligned}
$$

Linear Algebra

- We take linear combinations of the rows to convert the matrix into "reduced row echelon form" :
-Multiply first equation by $\mathrm{a}(10) / \mathrm{a}(00)$ and subtract from second:

$$
a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2}-\left(a_{10} / a_{00}\right)\left(a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2}\right)=b_{1}-\left(a_{10} / a_{00}\right) b_{0}
$$

-Then $x 0$ is eliminated from the second equation:

$$
\left(a_{11}-a_{10} a_{01} / a_{00}\right) x_{1}+\left(a_{12}-a_{10} a_{02} / a_{00}\right) x_{2}=b_{1}-\left(a_{10} / a_{00}\right) b_{0},
$$

-which can be written as:

$$
a_{11}^{\prime} x_{1}+a_{12}^{\prime} x_{2}=b_{1}^{\prime}
$$

-Repeat until you run out of rows
-Example:

$$
\left[\begin{array}{rrr|r}
1 & 3 & 1 & 9 \\
1 & 1 & -1 & 1 \\
3 & 11 & 5 & 35
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 2 & 2 & 8
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -2 & -3 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Linear Algebra

- Can also think about this in terms of an "augmented" matrix where you add the vector b as another column:

$$
\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & b_{0} \\
a_{10} & a_{11} & a_{21} & b_{1} \\
a_{20} & a_{21} & a_{22} & b_{2}
\end{array}\right)
$$

- You eliminate each row iteratively, reducing the dimension by one each time:

$$
\begin{aligned}
& \equiv\left(\begin{array}{cccc}
a_{01}^{\prime} & a_{01}^{\prime} & a_{02}^{\prime} & b_{0}^{\prime} \\
0 & a_{0}^{\prime} \\
0 & a_{11}^{\prime 1} & a_{12}^{\prime} & b_{1}^{\prime} \\
a_{21} & a_{22} & b_{2}^{\prime}
\end{array}\right) \\
& \left(\begin{array}{cccc}
a_{00}^{\prime} & a_{01}^{\prime} & a_{02}^{\prime} & b_{0}^{\prime} \\
0 & a_{11}^{\prime} \\
0 & a_{21}^{\prime}-a_{11}^{\prime} a_{21}^{\prime} / a_{11}^{\prime} & a_{22}^{\prime}-a_{12}^{\prime} a_{21}^{\prime} / a_{11}^{\prime} & b_{2}^{\prime}-b_{1}^{\prime} a_{1}^{\prime} a_{21}^{\prime} / a_{11}^{\prime}
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc}
a_{00}^{\prime \prime} & a_{01}^{\prime \prime} & a_{02}^{\prime \prime} \\
0, & b_{1 \prime \prime}^{\prime \prime} \\
0 & a_{11}^{\prime \prime} & a_{11}^{\prime \prime} \\
0 & 0 & a_{22}^{\prime \prime}
\end{array}\right)
\end{aligned}
$$

Linear Algebra

- To solve for the actual equation, we then use "back substitution", starting at the last row
-For instance

$$
x_{2}=\frac{b_{2}^{\prime \prime}}{a_{22}^{\prime \prime}}
$$

-Then we use the second equation

$$
x_{1}=\frac{1}{a_{11}^{\prime \prime}}\left[b_{1}^{\prime \prime}-a_{12}^{\prime \prime} x_{2}\right]
$$

-And finally

$$
x_{0}=\frac{1}{a_{00}^{\prime \prime}}\left[b_{0}^{\prime \prime}-a_{01}^{\prime \prime} x_{1}-a_{02}^{\prime \prime} x_{2}\right]
$$

Linear Algebra

- Gaussian elimination is is $O\left(n^{3}\right)$ operations
$-\mathrm{n}^{2}$ matrix elements, and $\mathrm{O}(\mathrm{n})$ row operations on each
- Back-substitution is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ operations
- So the total is $\mathrm{O}\left(\mathrm{n}^{3}\right)+\mathrm{O}\left(\mathrm{n}^{2}\right) \sim \mathrm{O}\left(\mathrm{n}^{3}\right)$ for large n
- Much better than $\mathrm{O}(\mathrm{n}!) \gg \mathrm{O}\left(\mathrm{n}^{3}\right)$
- Easy to extend to arbitrarily large n's
-But, as we mentioned earlier, storage becomes a problem

Linear Algebra

- You can see one problem already
- If any of the rows have a zero as the first element, then you divide by zero and get an exception

- So, need to make sure this doesn't happen by "partial pivoting" :
-Before performing the ith row operation, search for the element $\mathrm{a}_{\mathrm{ki}}(\mathrm{k}=\mathrm{i}, \ldots \mathrm{n}-1)$ with the largest magnitude
-If $k!=i$, interchange rows i and k of the augmented matrix, and interchange x_{i} <---> x_{k}
-Perform as usual
- Will not fail for small ai's, also stable to roundoff errors
- Note : in "full" pivoting you swap rows AND columns

Linear Algebra

- Another variation is Gauss-Jordan elimination
-Does not require the backsubstitution step
-Replaces A by the inverse "in place", avoiding memory copy
- So, we have another augmented equation (again in $n=3$):

$$
\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{llll}
x_{0} & a_{00}^{-1} & a_{01}^{-1} & a_{02}^{-1} \\
x_{1} & a_{10}^{-1} & a_{11}^{-1} & a_{12}^{-1} \\
x_{2} & a_{20}^{-1} & a_{21}^{-1} & a_{22}^{-1}
\end{array}\right)=\left(\begin{array}{llll}
b_{0} & 1 & 0 & 0 \\
b_{1} & 0 & 1 & 0 \\
b_{2} & 0 & 0 & 1
\end{array}\right)
$$

- This is a way of stating :
$\mathbf{A x}=\mathbf{b}$,
and
$\mathbf{A} \mathbf{A}^{-1}=1$.

Linear Algebra

- Algorithm :
-Start with zeroth row, divide by a(00) and subtract
-Subtract all zeroth column entries (as in Gaussian elimination)
-For row $\mathrm{i}=1, \ldots \mathrm{n}-1$, divide by diagonal element a(ii) and eliminate elements in column i other than the diagonal by subtracting a(ij) times the ith row elements from the jth row
- Gaussian elimination : subtracts only those below diagonal
- Gauss-Jordan : subtracts ALL elements where i != j
-Simultaneously perform on the augmented (b1) matrix on the RHS

Linear Algebra

- In the end we get :

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
\mathrm{b} 0 & a_{00}^{-1} & a_{01}^{-1} & a_{02}^{-1} \\
\mathrm{~b} 1 & a_{10}^{-1} & a_{11}^{-1} & a_{12}^{-1} \\
\mathrm{~b} 2 & a_{20}^{-1} & a_{21}^{-1} & a_{22}^{-1}
\end{array}\right)=\left(\begin{array}{llll}
x_{0} & a_{00}^{-1} & a_{01}^{-1} & a_{02}^{-1} \\
x_{1} & a_{10}^{-1} & a_{111}^{-1} & a_{12}^{-1} \\
x_{2} & a_{20}^{-1} & a_{21}^{-1} & a_{22}^{-1}
\end{array}\right)
$$

- A is replaced by a unit matix
- b is reduced to input vector x
- Unit matrix on RHS is replace by inverse A^{-1}
- Can also implement pivoting in this algorithm to make sure we have numeric stability

Linear Algebra

- Another variation is "LU decomposition" ("lower-upper")
- Reduce A to an L*U product: $\mathbf{A x}=\mathbf{b}$,

$$
\left(\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{00} & 0 & 0 \\
\alpha_{10} & \alpha_{11} & 0 \\
\alpha_{20} & \alpha_{21} & \alpha_{22}
\end{array}\right)\left(\begin{array}{ccc}
\beta_{00} & \beta_{01} & \beta_{02} \\
0 & \beta_{11} & \beta_{12} \\
0 & 0 & \beta_{22}
\end{array}\right)
$$

- Then solve the problem in two steps :
-Solve Ly = b with forward substitution:

$$
y_{0}=\frac{b_{0}}{\alpha_{00}}, \quad y_{i}=\frac{1}{\alpha_{i i}}\left[b_{i}-\sum_{j=0}^{i-1} \alpha_{i j} y_{j}\right], \quad i=1,2, \ldots, n-1 .
$$

-Solve $\mathbf{U x}=\mathbf{y}$, since $\mathbf{A x}=\mathbf{L}(\mathbf{U x})=\mathbf{L y}=\mathbf{b}$, with backward substitution :

$$
x_{n-1}=\frac{y_{n-1}}{\beta_{n-1, n-1}}, \quad x_{i}=\frac{1}{\beta_{i i}}\left[y_{i}-\sum_{j=i+1}^{n-1} \beta_{i j} x_{j}\right], \quad i=n-2, \ldots, 0 .
$$

Linear Algebra

- Factoring the matrix A = LU can be done with "Crout's Algorithm" :
- Set alpha(ii) $=1$ for $\mathrm{i}=0, \ldots \mathrm{n}-1$
-for each $\mathrm{j}=0, \ldots \mathrm{n}-1$:

$$
\begin{aligned}
& \text { for } \mathrm{i}=0, \ldots \mathrm{j} \\
& \quad \text { compute } \beta_{i j}=a_{i j}-\sum_{k=0}^{i-1} \alpha_{i k} \beta_{k j} .
\end{aligned}
$$

$$
\begin{gathered}
\text { for } \mathrm{j}=\mathrm{j}+1, \ldots \mathrm{n}-1 \\
\text { compute }
\end{gathered} \alpha_{i j}=\frac{1}{\beta_{j j}}\left[a_{i j}-\sum_{k=0}^{j-1} \alpha_{i k} \beta_{j k}\right] .
$$

- Replaces A by LU "in place":

$$
\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
\beta_{00} & \beta_{01} & \beta_{02} \\
\alpha_{10} & \beta_{11} & \beta_{12} \\
\alpha_{20} & \alpha_{21} & \beta_{22}
\end{array}\right)
$$

The RH matrix is NOT a matrix! It is a storage unit in the computer!

Linear Algebra

- Simple special case : Tridiagonal matrices
- If you have a problem such as :

$$
\mathbf{M}=\left(\begin{array}{cccccc}
2-c & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2-c & -1 & \cdots & 0 & 0 \\
0 & -1 & 2-c & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2-c & -1 \\
0 & 0 & 0 & \cdots & -1 & 2-c
\end{array}\right)
$$

- This matrix is sparse!
-Can solve in $\mathrm{O}(\mathrm{n})$ operations
- Equations are:

$$
M_{i}^{-} u_{i-1}+M_{i}^{0} u_{i}+M_{i}^{+} u_{i+1}=b_{i}, \quad i=1, \ldots, n-1
$$

- Can show that (recursively):

$$
\alpha_{i-1}=-\frac{M_{i}^{-}}{M_{i}^{0}+\alpha_{i} M_{i}^{+}}, \quad \beta_{i-1}=\frac{b_{i}-\beta_{i} M_{i}^{+}}{M_{i}^{0}+\alpha_{i} M_{i}^{+}}
$$

Linear Algebra

- Can start from the right boundary value for $i=n-2, \ldots 0$

$$
u_{n}=\alpha_{n-1} u_{n-1}+\beta_{n-1} \quad \text { if } \quad \alpha_{n-1}=0, \quad \beta_{n-1}=u_{n},
$$

- and then solve from the left boundary value for $\mathrm{i}=1, \ldots \mathrm{n}-1$

$$
u_{i+1}=\alpha_{i} u_{i}+\beta_{i}
$$

- So we "sweep twice" and obtain O(n) operations

Linear Algebra

- Examples:
-Polynomial fits (again)
- Circuit diagrams
-Boundary value problems

Recall : General fitting of curves

- This is a matrix equation, so we define the "design matrix" :

$$
\begin{gathered}
A_{i j}=\frac{Y_{j}\left(x_{i}\right)}{\sigma_{i}} \\
\mathbf{A}=\left[\begin{array}{lll}
Y_{1}\left(x_{1}\right) / \sigma_{1} & Y_{2}\left(x_{1}\right) / \sigma_{1} & \ldots \\
Y_{1}\left(x_{2}\right) / \sigma_{2} & Y_{2}\left(x_{2}\right) / \sigma_{2} & \ldots \\
\cdots & \cdots & \cdots
\end{array}\right]
\end{gathered}
$$

- Then our chi2 minimization becomes :

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \vec{a}=\mathbf{A}^{T} \vec{b}
$$

- So :

$$
\vec{a}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \vec{b}
$$

Recall : General fitting of curves

- If we define the "correlation matrix" :

$$
\mathbf{C}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}
$$

- Then the uncertainty on a_{j} is :

$$
\sigma_{a_{j}}=\sqrt{C_{j j}}
$$

Recall : General fitting of curves

- As a first example, let's look at polynomial fits

$$
y=\sum_{k=0}^{m-1} a_{k} x^{k}
$$

- Slight generalization of the linear fit we did previously
- General solution is to minimize the chi2 :

$$
\chi^{2}(\vec{a}) \equiv \sum_{i=0}^{n-1}\left(\frac{y_{i}-y(x ; \vec{a})}{\sigma_{i}}\right)^{2}
$$

- In this case :

$$
\chi^{2}(\vec{a})=\sum_{i=0}^{n-1}\left(\frac{y_{i}-\sum_{j=0}^{M} a_{j} x^{j}}{\sigma_{i}}\right)^{2}
$$

Recall : General fitting of curves

- Our design matrix is therefore :

$$
A_{i j}=x_{i}^{j} / \sigma_{i}
$$

- Caveat : This oftentimes is ill-formed, so don't go too crazy here. Typically we do quadratic, cubic, quartic, but above that it strains credibility.

Polynomial fits

- Can finally generalize our formalism to arbitrary functional fits
- Example : quadratic fit for our CO2 data!

Linear Algebra

- Example :
-Kirchoff's Law for a Wheatstone bridge :
-http://en.wikipedia.org/wiki/Wheatstone_bridge

Solve for Rx given R1,R2,R2, i and V

- This is a matrix equation: $\mathbf{R i}=\mathbf{v}$,

$$
\left(\begin{array}{ccc}
R_{1}+R_{v} & R_{2} & R_{v} \\
R_{1}+R_{a} & -R_{a} & -R_{3} \\
R_{x}+R_{a} & -R_{2}-R_{x}-R_{a} & R_{x}
\end{array}\right)\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\left(\begin{array}{l}
v \\
0 \\
0
\end{array}\right)
$$

Linear Algebra

- Try to "zero" the potential at V_G:

$$
V_{G}=\left(\frac{R_{x}}{R_{a}+R_{x}}-\frac{R_{2}}{R_{1}+R_{2}}\right) V_{s}
$$

Linear Algebra

- Example : boundary value problems -Consider :

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}=-\frac{\pi^{2}}{4}(u+1)
$$

- with Dirichlet boundary conditions $u(0)=0$ and $u(1)=1$
-We can discretize this :

$$
\frac{2 u_{i}-u_{i+1}-u_{i-1}}{h^{2}}=\frac{\pi^{2}}{4}\left(u_{i}+1\right), \quad i=1, \ldots, N-1
$$

-This is therefore a sparse matrix equation with $c=h^{\wedge} 2$ pi^2/4:
$\mathbf{M}=\left(\begin{array}{cccccc}2-c & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2-c & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2-c & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2-c & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2-c\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ \vdots \\ u_{N-2} \\ u_{N-1}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}u_{0}+c \\ c \\ c \\ \vdots \\ c \\ u_{N}+c\end{array}\right)$,

Hands on!

Linear Algebra

- Today : Eigenvalues and eigenvectors, more hands on
- See Chapter 11 of Numerical Recipes
- In this case, even they recommend using packaged software for eigenvalues and eigenvectors, but let's get the general gist here

Linear Algebra

- Example : normal modes of a harmonic oscillator between n objects

$$
\mathcal{L}=\frac{1}{2} \sum_{j, k}^{n} M_{j k} \dot{q}_{j} \dot{q}_{k}-\frac{1}{2} \sum_{j, k}^{n} A_{j k} q_{j} q_{k},
$$

- "Normal mode" is the mode of the system where all of the coordinates oscillate with some frequency omega:

$$
q_{j}(t)=x_{j} e^{i \omega t}, \quad \sum_{j=1}^{n}\left[A_{j k}-M_{j k} \omega^{2}\right] x_{j}=0, \quad\left(\mathbf{A}-\mathbf{M} \omega^{2}\right) \mathbf{x}=0 .
$$

- Homogeneous matrix equation has solutions for omega for which the determinant is zero:

$$
\operatorname{det}\left|\mathbf{A}-\mathbf{M} \omega^{2}\right|=0 .
$$

Eigenvalues and Eigenvectors

- This is an instance of a general class of eigenvalue and eigenvector problems
- So, if A is an $n \times n$ matrix, x is a column vector (the "right" eigenvector), lambda is a number (the "eigenvalue"), and :

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- Then the equation is satisfied when :

$$
|\mathbf{A}-\lambda \mathbf{1}|=\sum_{k=0}^{n} a_{k} \lambda^{k}=0
$$

- This is an n-th degree polynomial in lambda that depends on the matrix elements
- N-degree polynomial ==> n different eigenvalues, so we need to solve for them

Eigenvalues and Eigenvectors

- Example :

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

- The eigenvalue equation and eigenvalues are :

$$
\mathbf{A}=\left(\begin{array}{ll}
1-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right)
$$

$(1-\lambda)(2-\lambda)-1=\lambda^{2}-3 \lambda+1=0 \quad \Rightarrow \quad \lambda_{0}=\frac{3+\sqrt{5}}{2}, \quad \lambda_{1}=\frac{3-\sqrt{5}}{2}$.

- We solve for the eigenvectors :

$$
\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\binom{x_{0}}{x_{1}}=(1 \pm \sqrt{2})\binom{x_{0}}{x_{1}} \quad \mathbf{x}^{(0)}=\binom{\sqrt{\frac{1}{3}}}{\sqrt{\frac{2}{3}}}, \quad \mathbf{x}^{(1)}=\binom{\sqrt{\frac{1}{3}}}{-\sqrt{\frac{2}{3}}} .
$$

Eigenvalues and Eigenvectors

- Also consider :

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

- So we have:

$$
(1-\lambda)^{2}+1=\lambda^{2}-2 \lambda+2=0
$$

- And thus the eigenvalues are complex :

$$
\lambda_{0}=1+i, \quad \lambda_{1}=1-i, \quad \text { where } \quad i=\sqrt{-1} .
$$

Eigenvalues and Eigenvectors

- "Hey Sal! I know what we can do!" you say. "We can just find the roots of the characteristic polynomial with our rootfinding methods!"
- "Excellent idea in principle, my clever students," I say. "But unfortunately, it's hard in practice"
-Need to know roughly where the roots are ahead of time
-You don't get the eigenvectors this way either

- So, we'll look at ways to do both!

Eigenvalues and Eigenvectors

- First, define "left" eigenvectors:

$$
\mathbf{y} \mathbf{A}=\lambda \mathbf{y}
$$

- In this case, y is a row vector.
- This implies :

$$
\mathbf{A}^{\mathrm{T}} \mathbf{y}=\lambda \mathbf{y}
$$

- Since: $\quad\left|\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{1}\right|=|\mathbf{A}-\lambda \mathbf{1}|$,
then the left and right eigenvalues are the same
- However the left and right eigenvectors are not necessarily the same
- Left eigenvector 0, though, is orthogonal to right eigenvector 1, etc

Eigenvalues and Eigenvectors

- If we consider a complex matrix A , we can define the Hermitian conjugate :

$$
\left(\mathbf{A}^{\dagger}\right)_{i j}=a_{j i}^{*},
$$

-This is also referred to as the "conjugate transpose"
-If the a_{ij} are real, this is just the transpose

- Define a "normal" matrix if the conjugate transpose commutes with the matrix:

$$
\mathbf{N} \cdot \mathbf{N}^{\dagger}=\mathbf{N}^{\dagger} \cdot \mathbf{N}
$$

- Note that normal matrices have the same left and right eigenvector sets

Eigenvalues and Eigenvectors

- A Hermitian matrix (or self-adjoint matrix) is defined when

$$
\mathbf{H}^{\dagger}=\mathbf{H}
$$

- When the elements are real, this is called a "symmetric" matrix:

$$
\mathbf{S}^{\mathrm{T}}=\mathbf{S}
$$

- These special matrices have :
$-n$ real eigenvalues
-eigenvectors are orthogonal
-the set of eigenvectors is "complete" (spans the n -dim space)

Eigenvalues and Eigenvectors

- Computation of eigenvalues/eigenvectors for symmetric or Hermitian matrices depends on a nice property
- If we consider the matrices formed by the right and left eigenvectors X and Y :

$$
\mathbf{X}=\left(\begin{array}{cc}
\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{3}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}}
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{cc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)=\frac{2 \sqrt{2}}{3} \mathbf{X}^{-1}
$$

- In general : $\mathbf{Y} \propto \mathbf{X}^{-1}$
- Can choose the normalization appropriately so that

$$
\mathbf{Y}=\mathbf{X}^{-1}
$$

Eigenvalues and Eigenvectors

- How does this help us?

$$
\begin{aligned}
\mathbf{Y} \cdot \mathbf{A} \cdot \mathbf{X} & =\mathbf{X}^{-1} \cdot \mathbf{A} \cdot \mathbf{X} \\
& =\mathbf{X}^{-1} \cdot \lambda \cdot \mathbf{X} \\
& =\lambda
\end{aligned}
$$

- Can exploit this fact to compute the eigenvalues!

Eigenvalues and Eigenvectors

- This is a similarity transformation!

$$
\mathbf{A} \quad \rightarrow \quad \mathbf{Z}^{-1} \cdot \mathbf{A} \cdot \mathbf{Z}
$$

- The interesting bit is that symmetry transformations leave the eigenvalues unchanged:

$$
\begin{aligned}
\operatorname{det}\left|\mathbf{Z}^{-1} \cdot \mathbf{A} \cdot \mathbf{Z}-\lambda \mathbf{1}\right| & =\operatorname{det}\left|\mathbf{Z}^{-1} \cdot(\mathbf{A}-\lambda \mathbf{1}) \cdot \mathbf{Z}\right| \\
& =\operatorname{det}|\mathbf{Z}| \operatorname{det}|\mathbf{A}-\lambda \mathbf{1}| \operatorname{det}\left|\mathbf{Z}^{-1}\right| \\
& =\operatorname{det}|\mathbf{A}-\lambda \mathbf{1}|
\end{aligned}
$$

- So, we can solve this easier problem instead

Eigenvalues and Eigenvectors

- Let X be the matrix of eigenvectors
-If the matrix A is real and symmetric, then the eigenvectors are real and orthonormal, and :

$$
\mathbf{X}^{-1}=\mathbf{X}^{\mathrm{T}}
$$

-If the matrix A is is Hermitian, the matrix of eigenvectors is unitary :

$$
\mathbf{X}^{-1}=\mathbf{X}^{\dagger}
$$

Eigenvalues and Eigenvectors

- Generalized eigenvalue problem : solve

$$
\mathbf{A} \cdot \mathbf{x}=\lambda \mathbf{B} \cdot \mathbf{x}
$$

- Strategy : Successively apply sımıarity transformations until the matrix is "almost" diagonal
-Either diagonal, block diagonal, or tridiagonal and also easy to solve
- Nonsymmetric matrices will not, in general, have similarity matrices with real components
-So, cannot use real similarity matrix
-But! "Almost" can : will reduce to block-diagonal with two-by-two blocks replacing the complex eigenvalues
-Think $\quad\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

Eigenvalues and Eigenvectors

- Can then repeatedly apply similarity transformations until we can solve the problem "easily" :

$$
\begin{aligned}
\mathbf{A} & \rightarrow \mathbf{P}_{1}^{-1} \cdot \mathbf{A} \cdot \mathbf{P}_{1} \quad \rightarrow \quad \mathbf{P}_{2}^{-1} \cdot \mathbf{P}_{1}^{-1} \cdot \mathbf{A} \cdot \mathbf{P}_{1} \cdot \mathbf{P}_{2} \\
& \rightarrow \mathbf{P}_{3}^{-1} \cdot \mathbf{P}_{2}^{-1} \cdot \mathbf{P}_{1}^{-1} \cdot \mathbf{A} \cdot \mathbf{P}_{1} \cdot \mathbf{P}_{2} \cdot \mathbf{P}_{3} \quad \rightarrow \quad \text { etc. }
\end{aligned}
$$

- If we end up in completely diagonal form, then the eigenvectors are just the columns of the total transformation:

$$
\mathbf{X}_{R}=\mathbf{P}_{1} \cdot \mathbf{P}_{2} \cdot \mathbf{P}_{3} \cdot \ldots
$$

- Sometimes just want eigenvalues, in which case can stop when we reduce to triangular form
-Then eigenvalues are the diagonal elements!

Eigenvalues and Eigenvectors

- One strategy we will look at :
-Reduce to tridiagonal form by the Householder algorithm (Chapter 11 Section 2 of Numerical Recipes)
-Solve the tridiagonal matrix problem using a QL algorithm with implicit shifts (Chapter 11 Section 3 of Numerical Recipes)
- $\mathrm{Q}=$ orthogonal
- L = lower triangular matrix
- These are basically "uninteresting" to go through the gory details, because they're mostly just math tricks
- Instead, let's just focus on an application

Eigenvalues and Eigenvectors

- Consider a linear triatomic molecule
-Fowles and Cassiday,
Chapter 11, Section 4
-Taylor, Chapter 11, Section 6
- Approximate by masses on springs

$$
(a) \quad \rightarrow \quad \rightarrow \rightarrow
$$

Eigenvalues and Eigenvectors

- Lagrangian for the general case is :
$L=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{1}{2} m_{3} \dot{x}_{3}^{2}-\frac{1}{2}\left[k_{12}\left(x_{1}-x_{2}\right)^{2}+k_{23}\left(x_{2}-x_{3}\right)^{2}\right]$
- The equations of motion are

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right)=\frac{\partial L}{\partial x_{1}}=-k_{12} x_{1}+k_{12} x_{2} \\
& m_{2} \ddot{x}_{2}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{2}}\right)=\frac{\partial L}{\partial x_{2}}=k_{12} x_{1}-\left(k_{12}+k_{23}\right) x_{2}+k_{23} x_{3} \\
& m_{3} \ddot{x}_{3}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{3}}\right)=\frac{\partial L}{\partial x_{3}}=-k_{23} x_{3}+k_{23} x_{2}
\end{aligned}
$$

- For our specific problem, we have

$$
m_{1}=m_{3}, m_{2}=2 m_{1}, k_{12}=k_{23}=K
$$

Eigenvalues and Eigenvectors

- Can be written as a matrix equation:

$$
\mathbf{M} \ddot{\mathbf{q}}=-\mathbf{K q}
$$

- with normal modes of the form :

$$
\mathbf{q}(t)=\mathbf{a} \cos (\omega t-\delta)
$$

- The normal mode frequencies are eigenvalues of the generalized eigenvalue equation:
$\mathbf{K a}=\omega^{2} \mathbf{M a}$

Eigenvalues and Eigenvectors

- The eigenvalues are therefore:

$$
\omega_{1}^{2}=0, \quad \omega_{2}^{2}=\frac{K}{m}, \quad \omega_{3}^{2}=\frac{K}{m}\left(1+\frac{2 m}{M}\right)
$$

- And the eigenvectors are :

$$
\mathbf{a}_{1}=a_{11}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{a}_{2}=a_{12}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{a}_{3}=a_{13}\left(\begin{array}{c}
1 \\
-\frac{2 m}{M} \\
1
\end{array}\right)
$$

Eigenvalues and Eigenvectors

-"triatomic" python notebook

