
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Next up : Linear algebra

• Covered in Chapter 4 of Garcia and Chapter 2 of
Numerical Recipes

• Huge number of applications!
–Complex circuit diagrams
–Coupled oscillators
–General solution of fitting arbitrary curves

• We’ll learn how to :
–Solve linear equations
–Compute eigenvalues
–Apply these to various applications

2

Linear Algebra

• You should all be familiar with
the basics of linear algebra

–Vectors
–Matrices
–Solving matrix equations
–Gaussian (or Gauss-Jordan)

elimination
• http://en.wikipedia.org/wiki/

Gaussian_elimination

• We’ll go over the computational
issues here

3

http://xkcd.com/184/

http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Gaussian_elimination
http://xkcd.com/184/

Linear Algebra

• Recall Cramer’s rule :
–http://en.wikipedia.org/wiki/Cramer's_rule

• If we have the determinant of a matrix A :

• where Rij is the “residual matrix” or “minor” of A, removing row i
and column j

• Then the inverse of the matrix is :

• This is a recursive rule

4

http://en.wikipedia.org/wiki/Cramer's_rule

Linear Algebra

• Computing this “brute force” way is okay for small n, but
problematic for large n (>10)

• Scales as n factorial (n!)

• To see this, consider an expansion of the determinant :

• Here, P runs over the n! permutations of the indices
• 20! = 2.43x1018 yipes! (which is “yipes, factorial”)

• OK, well, scratch that idea.
–What else ya got, Sal?

5

Linear Algebra

• Medium sized matrices (n~10-103)
–Gaussian elimination, LU-decomposition, and

Householder method

• Larger matrices (n > 103)
–Storage becomes a problem
–Cannot practically do this for arbitrary matrices
–However, most matrices are “sparse” with lots of zeroes

in practical applications
–Can, however, store and solve these fairly well

6

Linear Algebra

• Linear algebra is the raison d’être for numpy.
–Let’s just use it.

• Most of the scipy algorithms for linear algebra are from
LAPACK. (Linear Algebra Package)

• http://www.netlib.org/lapack/
• Other options:

–BLAS (Basic Linear Algebra Subprograms)
• http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

–LAPACK
–BOOST Basic Linear Algebra Library

• http://www.boost.org/doc/libs/1_54_0/libs/numeric/ublas/doc/
index.htm

–matlab (the “mat” in “matlab” stands for “matrix”)
• http://www.mathworks.com/products/matlab/

7

http://www.netlib.org/lapack/
http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://www.boost.org/doc/libs/1_54_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_54_0/libs/numeric/ublas/doc/index.htm
http://www.mathworks.com/products/matlab/

Linear Algebra

• Game plan:
–Use numpy software.
–Go over algorithms that are used internally
–Check into use cases

8

Linear Algebra

• So if you recall the Gaussian Elimination, we have a matrix
equation :

• Or, written out for the case of n=3:

9

Linear Algebra

• We take linear combinations of the rows to convert the
matrix into “reduced row echelon form” :
–Multiply first equation by a(10)/a(00) and subtract from

second:

–Then x0 is eliminated from the second equation:

–which can be written as:

–Repeat until you run out of rows
–Example:

10

Linear Algebra

• Can also think about this in terms of an “augmented”
matrix where you add the vector b as another column:

• You eliminate each row iteratively, reducing the dimension
by one each time:

11

Linear Algebra

• To solve for the actual equation, we then use “back
substitution”, starting at the last row
–For instance

–Then we use the second equation

–And finally

12

Linear Algebra

• Gaussian elimination is is O(n3) operations
–n2 matrix elements, and O(n) row operations on each

• Back-substitution is O(n2) operations

• So the total is O(n3) + O(n2) ~ O(n3) for large n

• Much better than O(n!) >>O(n3)

• Easy to extend to arbitrarily large n’s
–But, as we mentioned earlier, storage becomes a

problem

13

Linear Algebra
• You can see one problem already
• If any of the rows have a zero as the first

element, then you divide by zero and get
an exception

• So, need to make sure this doesn’t happen by “partial
pivoting” :
–Before performing the ith row operation, search for the

element aki (k=i,...n-1) with the largest magnitude
–If k != i, interchange rows i and k of the augmented

matrix, and interchange xi <---> xk
–Perform as usual

• Will not fail for small ai’s, also stable to roundoff errors

• Note : in “full” pivoting you swap rows AND columns 14

Linear Algebra

• Another variation is Gauss-Jordan elimination
–Does not require the backsubstitution step
–Replaces A by the inverse “in place”, avoiding memory

copy
• So, we have another augmented equation (again in n=3):

• This is a way of stating :

15

Linear Algebra

• Algorithm :
–Start with zeroth row, divide by a(00) and subtract
–Subtract all zeroth column entries (as in Gaussian

elimination)
–For row i=1,...n-1, divide by diagonal element a(ii) and

eliminate elements in column i other than the diagonal
by subtracting a(ij) times the ith row elements from the
jth row
• Gaussian elimination : subtracts only those below diagonal
• Gauss-Jordan : subtracts ALL elements where i != j

–Simultaneously perform on the augmented (b 1) matrix
on the RHS

16

Linear Algebra

• In the end we get :

• A is replaced by a unit matix
• b is reduced to input vector x
• Unit matrix on RHS is replace by inverse A-1

• Can also implement pivoting in this algorithm to make sure
we have numeric stability

17

b0
b1
b2

Linear Algebra

• Another variation is “LU decomposition” (“lower-upper”)
• Reduce A to an L*U product:

• Then solve the problem in two steps :
–Solve with forward substitution:

–Solve since
with backward substitution :

18

Linear Algebra

• Factoring the matrix A = LU can be done with “Crout’s
Algorithm” :
–Set alpha(ii) = 1 for i=0,...n-1
–for each j = 0,...n-1 :

 for i = 0,...j
 compute

 for j = j+1,...n-1
 compute

• Replaces A by LU “in place”:

19

The RH matrix
is NOT a matrix!  

It is a storage unit
in the computer!

Linear Algebra

• Simple special case : Tridiagonal matrices

• If you have a problem such as :

• This matrix is sparse!
–Can solve in O(n) operations

• Equations are:

• Can show that (recursively):

20

Linear Algebra

• Can start from the right boundary value for i=n-2,...0

• and then solve from the left boundary value for i=1,...n-1

• So we “sweep twice” and obtain O(n) operations

21

Linear Algebra

• Examples:
–Polynomial fits (again)
–Circuit diagrams
–Boundary value problems

22

General fitting of curves

• This is a matrix equation, so we define the “design matrix” :

• Then our chi2 minimization becomes :

• so :

23

A =

2

4
Y1(x1)/�1 Y2(x1)/�1 . . .
Y1(x2)/�2 Y2(x2)/�2 . . .
.

3

5

Aij =
Yj(xi)

�i

(ATA)~a = AT~b

~a = (ATA)�1AT~b

Recall : General fitting of curves

General fitting of curves

• If we define the “correlation matrix” :

• Then the uncertainty on aj is :

24

C = (ATA)�1

�aj =
p

Cjj

Recall : General fitting of curves

General fitting of curves

• As a first example, let’s look at polynomial fits

• Slight generalization of the linear fit we did previously
• General solution is to minimize the chi2 :

• In this case :

25

�2(~a) ⌘
n�1X

i=0

✓
yi � y(x;~a)

�i

◆2

�2(~a) =
n�1X

i=0

yi �

PM
j=0 ajx

j

�i

!2

Recall : General fitting of curves

General fitting of curves

• Our design matrix is therefore :

• Caveat : This oftentimes is ill-formed, so don’t go too crazy
here. Typically we do quadratic, cubic, quartic, but above
that it strains credibility.

26

Recall : General fitting of curves

Aij = xj
i/�i

Polynomial fits

• Can finally generalize our formalism to arbitrary functional
fits

• Example : quadratic fit for our CO2 data!

27

Linear Algebra
• Example :

–Kirchoff’s Law for a Wheatstone bridge :
–http://en.wikipedia.org/wiki/Wheatstone_bridge

• This is a matrix equation:

28

Solve for Rx given
R1,R2,R2, i and V

Ra

RV

http://en.wikipedia.org/wiki/Wheatstone_bridge

Linear Algebra

• Try to “zero” the potential at V_G:

29

Linear Algebra

• Example : boundary value problems
–Consider :

–with Dirichlet boundary conditions u(0) = 0 and u(1)=1
–We can discretize this :

–This is therefore a sparse matrix equation with c = h^2
pi^2/4:

30

Hands on!

31

Linear Algebra

• Today : Eigenvalues and eigenvectors, more hands on

• See Chapter 11 of Numerical Recipes

• In this case, even they recommend using packaged
software for eigenvalues and eigenvectors, but let’s get the
general gist here

32

Linear Algebra

• Example : normal modes of a harmonic oscillator between
n objects

• “Normal mode” is the mode of the system where all of the
coordinates oscillate with some frequency omega:

• Homogeneous matrix equation has solutions for omega for
which the determinant is zero:

33

Eigenvalues and Eigenvectors

• This is an instance of a general class of eigenvalue and
eigenvector problems

• So, if A is an nxn matrix, x is a column vector (the “right”
eigenvector), lambda is a number (the “eigenvalue”), and :

• Then the equation is satisfied when :

• This is an n-th degree polynomial in lambda that depends
on the matrix elements

• N-degree polynomial ==> n different eigenvalues, so we
need to solve for them

34

Eigenvalues and Eigenvectors

• Example :

• The eigenvalue equation and eigenvalues are :

• We solve for the eigenvectors :

35

A =

✓
1 1
1 2

◆

A =

✓
1� � 1
1 2� �

◆

Eigenvalues and Eigenvectors

• Also consider :

• So we have:

• And thus the eigenvalues are complex :

36

Eigenvalues and Eigenvectors

• “Hey Sal! I know what we can do!” you say. “We can just
find the roots of the characteristic polynomial with our root-
finding methods!”

• “Excellent idea in principle, my clever students,” I say. “But
unfortunately, it’s hard in practice”

–Need to know roughly
where the roots are
ahead of time

–You don’t get the
eigenvectors this
way either

• So, we’ll look at ways to do both! 37

Eigenvalues and Eigenvectors

• First, define “left” eigenvectors:

• In this case, y is a row vector.
• This implies :

• Since :

then the left and right eigenvalues are the same

• However the left and right eigenvectors are not necessarily
the same

• Left eigenvector 0, though, is orthogonal to right
eigenvector 1, etc

38

Eigenvalues and Eigenvectors

• If we consider a complex matrix A, we can define the
Hermitian conjugate :

–This is also referred to as the “conjugate transpose”
–If the aij are real, this is just the transpose

• Define a “normal” matrix if the conjugate transpose
commutes with the matrix:

• Note that normal matrices have the same left and right
eigenvector sets

39

Eigenvalues and Eigenvectors

• A Hermitian matrix (or self-adjoint matrix) is defined when

• When the elements are real, this is called a “symmetric”
matrix:

• These special matrices have :
–n real eigenvalues
–eigenvectors are orthogonal
–the set of eigenvectors is “complete” (spans the n-dim

space)

40

Eigenvalues and Eigenvectors

• Computation of eigenvalues/eigenvectors for symmetric or
Hermitian matrices depends on a nice property

• If we consider the matrices formed by the right and left
eigenvectors X and Y:

• In general :

• Can choose the normalization appropriately so that

41

Eigenvalues and Eigenvectors

• How does this help us?

• Can exploit this fact to compute the eigenvalues!

42

Y ·A ·X = X�1 ·A ·X
= X�1 · � ·X
= �

Eigenvalues and Eigenvectors

• This is a similarity transformation!

• The interesting bit is that symmetry transformations leave
the eigenvalues unchanged:

• So, we can solve this easier problem instead

43

Eigenvalues and Eigenvectors

• Let X be the matrix of eigenvectors
–If the matrix A is real and symmetric, then the

eigenvectors are real and orthonormal, and :

– If the matrix A is is Hermitian, the matrix of eigenvectors
is unitary :

44

Eigenvalues and Eigenvectors

• Generalized eigenvalue problem : solve

• Strategy : Successively apply similarity transformations
until the matrix is “almost” diagonal
–Either diagonal, block diagonal, or tridiagonal and also

easy to solve

• Nonsymmetric matrices will not, in general, have similarity
matrices with real components
–So, cannot use real similarity matrix
–But! “Almost” can : will reduce to block-diagonal with

two-by-two blocks replacing the complex eigenvalues

–Think
45

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆

Eigenvalues and Eigenvectors

• Can then repeatedly apply similarity transformations until
we can solve the problem “easily” :

• If we end up in completely diagonal form, then the
eigenvectors are just the columns of the total
transformation:

• Sometimes just want eigenvalues, in which case can stop
when we reduce to triangular form
–Then eigenvalues are the diagonal elements!

46

Eigenvalues and Eigenvectors

• One strategy we will look at :
–Reduce to tridiagonal form by the Householder algorithm

(Chapter 11 Section 2 of Numerical Recipes)
–Solve the tridiagonal matrix problem using a QL

algorithm with implicit shifts (Chapter 11 Section 3 of
Numerical Recipes)
• Q = orthogonal
• L = lower triangular matrix

• These are basically “uninteresting” to go through the gory
details, because they’re mostly just math tricks

• Instead, let’s just focus on an application

47

Eigenvalues and Eigenvectors

• Consider a linear triatomic
molecule
–Fowles and Cassiday,

Chapter 11, Section 4
–Taylor, Chapter 11, Section 6

• Approximate by masses on
springs

48

Eigenvalues and Eigenvectors

• Lagrangian for the general case is :

• The equations of motion are

• For our specific problem, we have

49

m1 = m3,m2 = 2m1, k12 = k23 = K

L =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 +

1

2
m3ẋ

2
3 �

1

2

⇥
k12(x1 � x2)

2 + k23(x2 � x3)
2
⇤

m1ẍ1 =
d

dt

✓
@L

@ẋ1

◆
=

@L

@x1
= �k12x1 + k12x2

m2ẍ2 =
d

dt

✓
@L

@ẋ2

◆
=

@L

@x2
= k12x1 � (k12 + k23)x2 + k23x3

m3ẍ3 =
d

dt

✓
@L

@ẋ3

◆
=

@L

@x3
= �k23x3 + k23x2

Eigenvalues and Eigenvectors

• Can be written as a matrix equation:

• with normal modes of the form :

• The normal mode frequencies are eigenvalues of
the generalized eigenvalue equation:

50

Eigenvalues and Eigenvectors

• The eigenvalues are therefore:

• And the eigenvectors are :

51

Eigenvalues and Eigenvectors

• “triatomic” python notebook

52

