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Boundary-value and eigenvalue problems

• We’ve completed solutions to solve “unbounded” ODE’s  

• Now we turn to boundary-value problems and 
eigenvalue problems 

• These are closely related (of course, they solve the 
same mathematical constructs) 

• Key complication : the boundary values must be met, so 
“marching” methods like RK4 are not always the most 
accurate
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“1d PDEs”



Boundary-value and eigenvalue problems

• Consider a second-order ODE :  

• We specify values on two boundaries (left and right) 

• We can have :  
–Dirichlet :  specify u(x) on the boundaries 
–Neumann : specify u’(x) on the boundaries 
–Periodic : specify u(x_lb) = u(x_rb), u’(x_lb) = u’(x_rb) 
–Mixed are also possible
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Boundary-value and eigenvalue problems

• Can also consider the eigenvalue problems :  

• We’ve already encountered them earlier in the semester, 
too 

• Will build upon the matrix methods we’ve already 
established!
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Boundary-value and eigenvalue problems
• Example : time-independent 

Schroedinger equation : 

• Say V(x) is a potential well :  

• We have Dirichlet boundary 
conditions : 
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V (x) = 0 |x| < L

= 1 x � L

 (0) = 0, (L) = 0



Boundary-value and eigenvalue problems

• Analytically, we have within the well :  

• This is a free particle, so we guess  

• Applying the boundary conditions we get
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Boundary-value and eigenvalue problems

• Applying normalization : 

–So we get : 

–Energy eigenvalues are
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Boundary-value and eigenvalue problems

• General strategy is to either “shoot” or “relax” : 

• “Shoot” : pick values via a guess, “shoot” the ODE to the 
other side, and correct iteratively 

• “Relax” : pick values via a guess, check points on the 
interior, and relax until the correction is small 

• When in doubt of which to use,  
from NR : Be a gunslinger!  
–“Shoot first, then relax later”
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Boundary-value and eigenvalue problems

• Iterative shooting 
procedure :  
–Guess unknown initial 

parameter 
–Generate trial solution 

with a “marching” 
algorithm 

–Compute difference at 
boundary 

–Iterate until difference is 
small 
• Use a root-finding method!
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Boundary-value and eigenvalue problems

• Iterative shooting procedure :  
–Guess unknown initial 

parameter 
–Generate trial solution with a 

“marching” algorithm 
–Compute difference at boundary 
–Iterate until difference is small 

• Use a root-finding method!
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Boundary-value and eigenvalue problems

• Iterative relaxation procedure :  
–Guess solution at all values of x AND the boundary 
–Compute the difference in the ODE 

–Iterate adjustments until G(x) tends to zero
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Boundary-value and eigenvalue problems

• Specifically we use Jacobi’s relaxation algorithm :  
–Discretize the space, compute second derivative: 

–Compute difference: 

–Solve for the next guess : 

–Like the Euler algorithm, Jacobi method will be the 
“workhorse” for many more advanced algorithms 12



Boundary-value and eigenvalue problems

• Specifically we use 
Jacobi’s relaxation 
algorithm :  
–Discretize the space, 

compute second 
derivative: 

–Compute difference: 
–Solve for the next 

guess
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Boundary-value and eigenvalue problems

• Examples: 
–bvpexample 
–qmbox
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Boundary-value and eigenvalue problems

• For eigenvalue problems, we’ve already seen this once 

• Recall :  
 
 
with u(0) = 0, u(1) = 1 

• We discretized this :  

• And put this into the matrix form:
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Boundary-value and eigenvalue problems

• We write M as a tridiagonal matrix : 

• You played with this in your homework, so we won’t 
belabor the point, but realize that this is intricately tied! 16



Boundary-value and eigenvalue problems

• Can also solve for eigenvalues 
by adjusting the parameters 
until the boundary conditions 
are met 

• Example : particle in a box 

• In this case we know psi(x=0) 
and psi(x=1) are both equal to 
zero 

• So, adjust energy until this 
occurs!
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Boundary-value and eigenvalue problems

• To continue our investigation of BVP and eigenvalue problems, 
consider 

–where d(x), q(x) and s(x) are given functions 
• The s(x) term makes the equation inhomogeneous 
• The Sturm-Liouville theory deals with linear homogeneous 

second order equations of the form  

–where p(x), r(x), w(x) are given, and lambda is a parameter, 
p(x) >0 and w(x) >0 in integration domain 

• Need boundary conditions! Consider homogenous and linear 
BC’s like : 
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http://en.wikipedia.org/wiki/Sturm-Liouville_theory


Boundary-value and eigenvalue problems

• Strum and Liouville showed : 
–Non-trivial solutions exist only for eigenvalues lambda 
–If eigenvalues are arranged in increasing order, 

eigenfunctions have one additional node or zero per 
step 

• Can solve these types of equations with the Numerov's 
Method  

• If we have a second-order ODE without a first-order 
derivative term :  

• Then the symmetric three-point difference is : 
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http://en.wikipedia.org/wiki/Numerov%27s_method
http://en.wikipedia.org/wiki/Numerov%27s_method


Boundary-value and eigenvalue problems

• With the differential equation, we can write :  

• If we plug this into the difference formula and simplify we 
get: 

• Already better than RK4!  
• But, this is a three-point formula, so needs u0 and u1 to 

start it
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Boundary-value and eigenvalue problems

• Now we consider the Quantum harmonic oscillator 

• Hamiltonian is :  

• Eigenfunctions are : 

• Energy levels are :
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http://en.wikipedia.org/wiki/Harmonic_oscillator_%28quantum%29


Boundary-value and eigenvalue problems

• Obviously can’t compute for x in +- infinity 
–Need to get appropriate boundary conditions 
–Choose left and right boundaries that are “big enough” 

and then apply approximate boundary conditions : 
• Since psi(x) ~ 0 there, just set psi(x) = 0 

• We can use the Numerov algorithm to solve this 

• Some caveats :  
–There are unphysical solutions that march to infinity 

(mathematical property of QHO) 
–From symmetry, need to make sure that the solutions 

are appropriately symmetric or antisymmetric!
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Boundary-value and eigenvalue problems

• How to deal with this? 
–March twice!  

• Once from left 
• Once from right 

–Ensure that they match at some x value 
–We can actually multiply one of the solutions by a 

constant (still solves the ODE) so we ensure 

–If we have a true match, then we can test
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Boundary-value and eigenvalue problems

• Can pick a matching point near the classical turning 
point with E = V(x) 

• Matching condition is :  

• Finally, we can find  
the matching function  
F(E) numerically and  
find the roots!
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Results of Schroedinger
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Wavefunction versus x

Root-finding function F(E)  
versus E



Boundary-value and eigenvalue problems

• Another popular problem is to investigates Particle in a 
periodic potential  
–Kronig-Penney model : 1-d “crystal” 
–N heavy nuclei at fixed lattice sites with spacing a 

• This is easier to solve in the Fourier domain! 

• Then we have periodic boundary conditions :
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http://en.wikipedia.org/wiki/Particle_in_a_one-dimensional_lattice
http://en.wikipedia.org/wiki/Particle_in_a_one-dimensional_lattice


Boundary-value and eigenvalue problems

• Define the Brillouin zone :  
–http://en.wikipedia.org/wiki/

Brillouin_zone  
• Space of nearest neighbors! 
• Also known as the Voronoi cell 

–http://en.wikipedia.org/wiki/
Voronoi_cell 
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http://en.wikipedia.org/wiki/Brillouin_zone
http://en.wikipedia.org/wiki/Brillouin_zone
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Boundary-value and eigenvalue problems

• Define the lattice point by translating the objects by 
some basis vector a, and the “reciprocal” basis vectors 
b: 

• The first Brillouin zone is : 

• A general wave number q can be decomposed into a 
wave number k in the first Brillouin zone and a wave 
number of the reciprocal lattice
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Boundary-value and eigenvalue problems

• Can use “Bloch’s theorem” to solve the problem 
• We know: 

• The eigenstates satisfy: 

• Then we expand in Fourier series: 

• Plugging this into Schroedinger’s equation we get:
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Boundary-value and eigenvalue problems

• k and k’ are both reciprocal lattice vectors, so we just 
change the notation: 

• The functions are linearly independent so : 

–Modes with different wave numbers k decouple from one 
another! 

• Can state this as: 
–where :  

• This is Bloch’s theorem!
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Boundary-value and eigenvalue problems

• So this “feels like” the solution to the first Brillouin zone, 
shifted by a simple plane wave!
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Boundary-value and eigenvalue problems

• To solve for the band structure we look at the eigenvalue 
equation :  

• Actually infinite-dimensional, so we need to cut it off 
somewhere 

• Looking at the spectrum of states as a function of k over 
the first Brillouin zone is a “band”
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Boundary-value and eigenvalue problems

• Concretely, consider a single cell on the lattice :  

• Between barriers we have 

• Inside the barrier we have 

• Here :  

• Determine A,B,C,D’s by matching psi and psi’, then we 
have recursion relation to solve for n+1 given n:
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Boundary-value and eigenvalue problems

• T(E) is the “transfer matrix”, with elements :  

• From Bloch’s theorem, eigenvalues are of the form 
exp(ika), where k is the reduced wave number in the first 
Brillouin zone 

• T(E) is 2x2 so can easily solve the characteristic 
equation: 

• This yields a quadratic equation with two solutions for 
k(E) equal in magnitude and opposite in sign 35



Results of Kronig-Penney
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Results of Kronig-Penney
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Band gap!


