PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Boundary-value and eigenvalue problems

- We've completed solutions to solve "unbounded" ODE's
- Now we turn to boundary-value problems and eigenvalue problems
- These are closely related (of course, they solve the same mathematical constructs)
- Key complication : the boundary values must be met, so "marching" methods like RK4 are not always the most accurate
"1d PDEs"

Boundary-value and eigenvalue problems

- Consider a second-order ODE :

$$
\frac{d^{2} u}{d x^{2}}=f\left(x, u, u^{\prime}\right), \quad u^{\prime}(x)=d u / d x
$$

- We specify values on two boundaries (left and right)

$$
x_{l b} \leq x \leq x_{r b}
$$

-We can have :
-Dirichlet: specify $u(x)$ on the boundaries
-Neumann: specify $u^{\prime}(x)$ on the boundaries
-Periodic : specify $u\left(x _l b\right)=u\left(x _r b\right), u^{\prime}\left(x _l b\right)=u^{\prime}\left(x _r b\right)$
-Mixed are also possible

Boundary-value and eigenvalue problems

- Can also consider the eigenvalue problems :

$$
\frac{d^{2} u}{d x^{2}}=f\left(x, u, u^{\prime}, \lambda\right)
$$

- We've already encountered them earlier in the semester, too
- Will build upon the matrix methods we've already established!

Boundary-value and eigenvalue problems

- Example : time-independent Schroedinger equation:

$$
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}[E-V(x)] \psi(x)
$$

- Say $\mathrm{V}(\mathrm{x})$ is a potential well :

$$
\begin{array}{rlrl}
V(x) & =0 & |x|<L \\
& =\infty \quad x \geq L
\end{array}
$$

- We have Dirichlet boundary conditions : $\psi(0)=0, \psi(L)=0$

Boundary-value and eigenvalue problems

- Analytically, we have within the well :

$$
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}} E \psi(x)
$$

- This is a free particle, so we guess

$$
\psi(x)=A e^{i k x}+B e^{-i k x}
$$

- Applying the boundary conditions we get

$$
\begin{aligned}
\psi(0) & =0=A+B \\
\psi(L) & =0=2 A \sin k L=0 \\
k & =\frac{n \pi}{L}
\end{aligned}
$$

Boundary-value and eigenvalue problems

- Applying normalization :

$$
\begin{aligned}
1 & =\int_{0}^{L} d x 4 A^{2} \sin ^{2}\left(\frac{n \pi}{L} x\right) \\
& =\left.4 A^{2}\left(\frac{x}{2}-\frac{\sin \left(\frac{n \pi}{L} x\right)}{4 n \pi / L}\right)\right|_{0} ^{L}
\end{aligned}
$$

-So we get : $\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$
-Energy eigenvalues are $E=\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}$

Boundary-value and eigenvalue problems

- General strategy is to either "shoot" or "relax" :
- "Shoot" : pick values via a guess, "shoot" the ODE to the other side, and correct iteratively
- "Relax" : pick values via a guess, check points on the interior, and relax until the correction is small
- When in doubt of which to use, from NR: Be a gunslinger!
-"Shoot first, then relax later"

Boundary-value and eigenvalue problems

- Iterative shooting procedure :
-Guess unknown initial parameter
-Generate trial solution with a "marching" algorithm
-Compute difference at boundary
-Iterate until difference i small
- Use a root-finding metho $\underset{\substack{\text { value }}}{\text { boundary }}$

Boundary-value and eigenvalue problems

- Iterative shooting procedure :
-Guess unknown initial parameter
-Generate trial solution with a "marching" algorithm
-Compute difference at boundary
-Iterate until difference is small
- Use a root-finding method!

Boundary-value and eigenvalue problems

- Iterative relaxation procedure :
-Guess solution at all values of x AND the boundary
-Compute the difference in the ODE

$$
G(x)=\frac{d^{2} u_{\mathrm{g}}}{d x^{2}}-f\left(x, u_{\mathrm{g}}, u_{\mathrm{g}}^{\prime}\right)
$$

-Iterate adjustments until $\mathrm{G}(\mathrm{x})$ tends to zero

Boundary-value and eigenvalue problems

- Specifically we use Jacobi's relaxation algorithm :
-Discretize the space, compute second derivative:

$$
\begin{aligned}
& h=\frac{1}{N}, \quad x_{i}=i h, \quad u_{i} \equiv u\left(x_{i}\right), \quad i=1, \ldots, N-1 \\
& \left.\frac{d^{2} u}{d x^{2}}\right|_{x=x_{i}}=\frac{u_{i+1}+u_{i-1}-2 u_{i}}{h^{2}}, \quad i=1, \ldots, N-1
\end{aligned}
$$

-Compute difference:

$$
G\left(x_{i}\right) \approx \frac{u_{g, i+1}+u_{g, i-1}-2 u_{i}}{h^{2}}-f\left(x_{i}, u_{g, i}, u_{g, i}^{\prime}\right) \approx 0
$$

-Solve for the next guess :

$$
u_{i} \approx \frac{1}{2}\left[u_{g, i+1}+u_{g, i-1}+h^{2} f\left(x_{i}, u_{g, i}, u_{g, i}^{\prime}\right)\right]
$$

-Like the Euler algorithm, Jacobi method will be the "workhorse" for many more advanced algorithms

Boundary-value and eigenvalue problems

- Specifically we use Jacobi's relaxation algorithm :
-Discretize the space, compute second derivative:
-Compute difference:
-Solve for the next guess

Boundary-value and eigenvalue problems

- Examples:
-bvpexample
-qmbox

Boundary-value and eigenvalue problems

- For eigenvalue problems, we've already seen this once
- Recall : $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}=-\frac{\pi^{2}}{4}(u+1)$,
with $u(0)=0, u(1)=1$
- We discretized this :
$\frac{2 u_{i}-u_{i+1}-u_{i-1}}{h^{2}}=\frac{\pi^{2}}{4}\left(u_{i}+1\right), \quad i=1, \ldots, N-1$
- And put this into the matrix form:
$\mathbf{M u}=\mathbf{b}$,

Boundary-value and eigenvalue problems

- We write M as a tridiagonal matrix :

$$
\begin{gathered}
\mathbf{M}=\left(\begin{array}{cccccc}
2-c & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2-c & -1 & \cdots & 0 & 0 \\
0 & -1 & 2-c & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2-c & -1 \\
0 & 0 & 0 & \cdots & -1 & 2-c
\end{array}\right) \\
\mathbf{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1}
\end{array}\right),
\end{gathered}
$$

- You played with this in your homework, so we won't belabor the point, but realize that this is intricately tied!

Boundary-value and eigenvalue problems

- Can also solve for eigenvalues by adjusting the parameters until the boundary conditions are met
- Example : particle in a box
- In this case we know psi($\mathrm{x}=0$) and $\mathrm{psi}(\mathrm{x}=1)$ are both equal to zero
- So, adjust energy until this occurs!

Boundary-value and eigenvalue problems

- To continue our investigation of BVP and eigenvalue problems, consider $d^{2} u$

$$
\frac{d^{2} u}{d x^{2}}+d(x) \frac{d u}{d x}+q(x) u=s(x)
$$

-where $\mathrm{d}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{s}(\mathrm{x})$ are given functions

- The $s(x)$ term makes the equation inhomogeneous
- The Sturm-Liouville theory deals with linear homogeneous second order equations of the form

$$
-\frac{d}{d x}\left[p(x) \frac{d u}{d x}\right]+r(x) u(x)=\lambda w(x) u(x),
$$

-where $p(x), r(x), w(x)$ are given, and lambda is a parameter, $p(x)>0$ and $w(x)>0$ in integration domain

- Need boundary conditions! Consider homogenous and linear BC's like :

$$
c_{1} u(a)+c_{2} u^{\prime}(a)=0, \quad c_{3} u(\mathbb{\Xi})+c_{4} u^{\prime}(\mathbb{\Xi})=0,
$$

Boundary-value and eigenvalue problems

- Strum and Liouville showed :
-Non-trivial solutions exist only for eigenvalues lambda
-If eigenvalues are arranged in increasing order, eigenfunctions have one additional node or zero per step
- Can solve these types of equations with the Numerov's Method
- If we have a second-order ODE without a first-order derivative term : $\mathrm{d}^{2} u$

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+q(x) u(x)=s(x),
$$

- Then the symmetric three-point difference is :

$$
\frac{u_{n+1}+u_{n-1}-2 u_{n}}{h^{2}}=u_{n}^{\prime \prime}+\frac{h^{2}}{12} u_{n}^{\prime \prime \prime \prime}+\mathcal{O}\left(h^{4}\right) .
$$

Boundary-value and eigenvalue problems

- With the differential equation, we can write :

$$
\begin{aligned}
u_{n}^{\prime \prime \prime \prime} & =\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(-q(x) u(x)+s(x))\right|_{x=x_{n}} \\
& =-\frac{q_{n+1} u_{n+1}-2 q_{n} u_{n}+q_{n-1} u_{n-1}}{h^{2}}+\frac{s_{n+1}-2 s_{n}+s_{n-1}}{h^{2}}+\mathcal{O}\left(h^{2}\right) .
\end{aligned}
$$

- If we plug this into the difference formula and simplify we get:

$$
\begin{aligned}
& \left(1+\frac{h^{2}}{12} q_{n+1}\right) u_{n+1}-2\left(1+\frac{5 h^{2}}{12} q_{n}\right) u_{n}+\left(1+\frac{h^{2}}{12} q_{n-1}\right) u_{n-1} \\
= & \frac{h^{2}}{12}\left(s_{n+1}+10 s_{n}+s_{n-1}\right)+\mathcal{O}\left(h^{6}\right) .
\end{aligned}
$$

- Already better than RK4!
- But, this is a three-point formula, so needs u0 and u1 to start it

Boundary-value and eigenvalue problems

- Now we consider the Quantum harmonic oscillator
- Hamiltonian is :
$\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$,
- Eigenfunctions are :

$\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}} \cdot\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \cdot e^{-\frac{m w x^{2}}{2 \hbar}} \cdot H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right), \quad n=0,1,2, \ldots$.

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

- Energy levels are :

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

Boundary-value and eigenvalue problems

- Obviously can't compute for x in +- infinity
-Need to get appropriate boundary conditions
-Choose left and right boundaries that are "big enough" and then apply approximate boundary conditions :
- Since psi(x) 0 there, just set psi(x) = 0
- We can use the Numerov algorithm to solve this
- Some caveats :
-There are unphysical solutions that march to infinity (mathematical property of QHO)
-From symmetry, need to make sure that the solutions are appropriately symmetric or antisymmetric!

Boundary-value and eigenvalue problems

- How to deal with this?
-March twice!
- Once from left
- Once from right
-Ensure that they match at some x value
-We can actually multiply one of the solutions by a constant (still solves the ODE) so we ensure

$$
\phi_{\text {left }}\left(x_{\text {match }}\right)=\phi_{\text {right }}\left(x_{\text {match }}\right)
$$

-If we have a true match, then we can test

$$
\left.\frac{d \phi_{\text {left }}}{d x}\right|_{x_{\text {match }}}=\left.\frac{d \phi_{\text {right }}}{d x}\right|_{x_{\text {match }}}
$$

Boundary-value and eigenvalue problems

- Can pick a matching point near the classical turning point with $\mathrm{E}=\mathrm{V}(\mathrm{x})$
- Matching condition is :

$$
\begin{aligned}
F(E) & = \pm\left[\phi_{\text {left }}\left(x_{\text {match }}+h\right)-\phi_{\text {left }}\left(x_{\text {match }}-h\right)\right] \\
& -\left[\phi_{\text {right }}\left(x_{\text {match }}+h\right)-\phi_{\text {right }}\left(x_{\text {match }}-h\right)\right] /\left(2 h \phi\left(x_{\text {match }}\right)\right) \\
& =0 .
\end{aligned}
$$

- Finally, we can find the matching functior $F(E)$ numerically and find the roots!

Results of Schroedinger

Boundary-value and eigenvalue problems

- Another popular problem is to investigates Particle in a periodic potential
-Kronig-Penney model : 1-d "crystal"
-N heavy nuclei at fixed lattice sites with spacing a

- This is easier to solve in the Fourier domain!

$$
f(x)=\sum_{k} e^{i k x} f_{k},
$$

- Then we have periodic boundary conditions :

$$
e^{i k(x+N a)}=e^{i k x} \quad \Rightarrow \quad k=\frac{2 \pi n}{N a}, \text { where } n=0, \pm 1, \pm 2, \ldots
$$

Boundary-value and eigenvalue problems

- Define the Brillouin zone :
-http://en.wikipedia.org/wiki/ Brillouin zone
- Space of nearest neighbors!
- Also known as the Voronoi cell
-http://en.wikipedia.org/wiki/ Voronoi cell

Boundary-value and eigenvalue problems

- Define the lattice point by translating the objects by some basis vector a, and the "reciprocal" basis vectors b:

$$
\begin{aligned}
& \mathbf{R}=n \mathbf{a}, \text { where } \mathbf{a}=a \hat{x}, \text { and } n=0, \pm 1, \pm 2, \ldots, \\
& \mathbf{a} \cdot \mathbf{b}=2 \pi \quad \text { that is } \quad \mathbf{b}=(2 \pi / a) \hat{x} \\
& \mathbf{K}=n \mathbf{b}, \text { where } n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

- The first Brillouin zone is :

$$
k=0, \pm \frac{2 \pi}{N a}, \pm \frac{4 \pi}{N a}, \pm \frac{6 \pi}{N a}, \ldots \pm \frac{(N-1) \pi}{N a}, \frac{\pi}{a} .
$$

- A general wave number q can be decomposed into a wave number k in the first Brillouin zone and a wave number of the reciprocal lattice $q=k+K$.

Boundary-value and eigenvalue problems

- Can use "Bloch's theorem" to solve the problem
- We know:

$$
V(x)=\sum_{K} e^{i K x} V_{K},
$$

- The eigenstates satisfy: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi(x)=E \psi(x)$.
- Then we expand in Fourier series:

$$
\psi(x)=\sum_{q} e^{i q x} C_{q}=\sum_{K, k} e^{i(k+K) x} C_{k+K}
$$

- Plugging this into Schroedinger's equation we get:

$$
\begin{aligned}
& \sum_{K, k}\left\{\left[\frac{1}{2}(k+K)^{2}-E\right] e^{i(k+K) x} C_{k+K}\right\} \\
& \quad+\sum_{K^{\prime}} V_{K^{\prime}} \sum_{K, k} e^{i\left(k+K+K^{\prime}\right) x} C_{k+K}=0 .
\end{aligned} \quad \hbar^{2} / m=1
$$

Boundary-value and eigenvalue problems

- k and k' are both reciprocal lattice vectors, so we just change the notation:

$$
\sum_{K, k} e^{i(k+K) x}\left\{\left[\frac{1}{2}(k+K)^{2}-E\right] C_{k+K}+\sum_{K^{\prime}} V_{K-K^{\prime}} C_{k+K^{\prime}}\right\}=0
$$

- The functions are linearly independent so :

$$
\left[\frac{1}{2}(k+K)^{2}-E\right] C_{k+K}+\sum_{K^{\prime}} V_{K-K^{\prime}} C_{k+K^{\prime}}=0
$$

-Modes with different wave numbers k decouple from one another!

- Can state this as: $\psi_{k}(x)=e^{i k x} \sum_{K} e^{i K x} C_{k+K}=e^{i k x} u_{k}(x)$,
- where :

$$
u_{k}(x+n a)=u_{k}(x)
$$

- This is Bloch's theorem!

Boundary-value and eigenvalue problems

- So this "feels like" the solution to the first Brillouin zone, shifted by a simple plane wave!

Boundary-value and eigenvalue problems

- To solve for the band structure we look at the eigenvalue equation :

$$
\left[\frac{1}{2}(k+K)^{2}-E\right] C_{k+K}+\sum_{K^{\prime}} V_{K-K^{\prime}} C_{k+K^{\prime}}=0 .
$$

- Actually infinite-dimensional, so we need to cut it off somewhere
- Looking at the spectrum of states as a function of k over the first Brillouin zone is a "band"

Boundary-value and eigenvalue problems

- Concretely, consider a single cell on the lattice :

$$
V(x)=\left\{\begin{array}{ll}
0 & \text { for }-\frac{a}{2}<x<-\frac{\Delta}{2} \\
V_{0} & \text { for }-\frac{\Delta}{2}<x<\frac{\Delta}{2} \\
0 & \text { for } \frac{\Delta}{2}<x<\frac{a}{2}
\end{array},\right.
$$

- Between barriers we have

$$
\psi(x)=A_{n} e^{i q(x-n a)}+B_{n} e^{-i q(x-n a)}
$$

- Inside the barrier we have

$$
\psi(x)=C_{n} e^{i \kappa(x-n a)}+D_{n} e^{-i \kappa(x-n a)}
$$

- Here :

$$
q=\sqrt{2 E} \quad \kappa=\sqrt{2\left(E-V_{0}\right)}
$$

- Determine A,B,C,D's by matching psi and psi', then we have recursion relation to solve for $\mathrm{n}+1$ given n :

$$
\binom{A_{n+1}}{B_{n+1}}=\mathbf{T}(E)\binom{A_{n}}{B_{n}},
$$

Boundary-value and eigenvalue problems

- $\mathrm{T}(\mathrm{E})$ is the "transfer matrix", with elements :

$$
\begin{aligned}
& T_{11}=T_{22}^{*}=\frac{e^{i q(a-\Delta)}}{4 q \kappa}\left[e^{i \kappa \Delta}(q+\kappa)^{2}-e^{-i \kappa \Delta}(q-\kappa)^{2}\right] \\
& T_{12}=T_{21}^{*}=-\frac{i e^{i q(a-\Delta)}}{2 q \kappa}\left(q^{2}-\kappa^{2}\right) \sin (\kappa \Delta)
\end{aligned}
$$

- From Bloch's theorem, eigenvalues are of the form $\exp (\mathrm{ika})$, where k is the reduced wave number in the first Brillouin zone
- $T(E)$ is 2×2 so can easily solve the characteristic equation:

$$
\operatorname{det}\left[\mathbf{T}-e^{i k a} \mathbf{1}\right]=0
$$

- This yields a quadratic equation with two solutions for $\mathrm{k}(\mathrm{E})$ equal in maanitude and opposite in sian

Results of Kronig-Penney

Results of Kronig-Penney

