
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Partial Differential Equations

• Start looking at PDE’s
–http://en.wikipedia.org/wiki/

Partial_differential_equation
• Just like ODE’s, only harder! (Kidding)

• You should be familiar with the mathematics of PDE’s
–Poisson equation
–Diffusion equation
–Wave equation

• The general strategy is to look at finite derivatives (just
like we did in ODE’s), but now we have to look in
multiple dimensions at once!

2

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation

Partial Differential Equations

• First example : Elliptic PDEs

• Given an electric charge distribution rho(r), Poisson’s
equation is :

• This determines the potential V(r) at each point r,
provided boundary values are specified
–Dirichlet : V(r) specified on boundary
–Neumann : normal component specified on

boundary
• For electrostatics, this specifies normal component of E-field in

a conductor
–Periodic : V(r) = V(r + dr) for some dr 3

Partial Differential Equations

• Why “elliptic”?
• Consider 2-d and let

• Then :

• The kx, ky values in k-space of a given eigenvalue satisfy

• This is (of course) a circle, which is an ellipse

• We’ll continue this “conic section” terminology, as you
probably have done in your other courses

4

Partial Differential Equations

• Second case : parabolic PDEs

• Given a source S(r,t) and a diffusion coefficient D(r), the
diffusion equation is :

• This determines the concentration “n” in a closed space
–Now need both initial conditions (t=t0) AND boundary

conditions (Dirichlet, Neumann, periodic)

5

@n(r, t)

@t
�r · (D(r)rn(r, t)) = S(r, t)

Partial Differential Equations

• Why “parabolic” ?
• Consider one spatial dimension, and a constant D, with

• The differential operator on the LHS has the eigenvalue

• which is a parabola in omega-k space

6

Partial Differential Equations

• The time-dependent Schroedinger equation is also a
parabolic PDE :

• This can be viewed as a diffusion equation with
imaginary diffusion constant , or
mathematically as a diffusion equation in imaginary time
with real diffusion constant

7

Partial Differential Equations

• Third case : hyperbolic PDE’s
• The wave equation is :

• this is hyperbolic because the eigenvalues of the
differential operator are :

• These are hyperboloid surfaces in omega-k space

• Again need initial conditions (t=t0) and boundary
conditions (Dirichlet, Neumann, Periodic)

8

Elliptic PDES

9

Partial Differential Equations

• Let’s first take a look at the solution to the elliptic
equation for Poisson’s equation (solving Gauss’s law for
electrostatics)

• We have Gauss’s law :

• The static electric field can be written as :

• And V(r) satisfies Poisson’s equation:

10

Partial Differential Equations

• Now, we need to discretize the entire space

• Consider a 2-d space and discretize in 10x10 blocks:

11

Partial Differential Equations

• The 2-d Poisson’s equation is :

• Let’s work in units with epsilon_0 = 1, and solve in the
region of a square with length A=1.0

• The grid is :

• The lattice spacing is h = 1/(L+1)
• Let

• Now we need to discretize this

12

V (xi, yj) = Vij , ⇢(xi, yj) = ⇢ij

Partial Differential Equations
• The discretization is to look at an equivalent of Euler’s

formula, but now we have to do it in two dimensions:

• Note the following :
–The lattice is only connected

to its four nearest neighbors
–We will define “odd” and “even”

sites depending on whether i+j
is odd or even (red/black)

–The boundaries are indicated
with open circles

13

Partial Differential Equations
• First attempt : Jacobi’s iterative method
• Suppose we have a solution of the discretized equation
• At each lattice site :

• If we knew the RHS, then we could compute the LHS
• But, the RHS pieces all have their own equations similar

to this one!
• They all need to be solved simultaneously
• Instead of that, we try for a guess at each point, and

then iteratively solve :

14

Partial Differential Equations

• This should remind you a bit of the relaxation method for
our ODE’s
–We guess, then iterate until our boundary is solved

and the equations are satisfied at the points
• But, all we know for sure are the boundary points

• Can instead iterate until our solution stops changing very
much

• Usually “relaxes” to the right solution, but there are of
course pathologies that can occur

15

Partial Differential Equations

• Next example : use the Gauss-Seidel method
• This is almost the same as the Jacobi method, but uses

the updated neighbor sites
–Remember the red/black? Red only talks to black, and

vice versa
• Then we have :

• This converges faster than the Jacobi method

16

Partial Differential Equations

• Finally, consider the Successive Over-Relaxation (SOR)
method

• Jacobi and Gauss-Seidel do not use V_ij at the same
lattice point in updating V_ij

• If we use a linear combination of the old and new
solutions, we can get better convergence :

• Omega is called the “over-relaxation” parameter
–Can be tuned for performance

17

Partial Differential Equations

• A few notes :
–Converges only if 0 < omega < 2
–Faster than Gauss-Seidel only if 1 < omega < 2
–It converges fastest on a square lattice if

• Here, L is the number of lattice points

18

Partial Differential Equations

• For our strategy, we will use the red/black splitting to
solve the equations faster :
–First update the even sites, then update the odd sites
–Can use the SOR method (or the others) with faster

convergence in this case

• In Numerical Recipes 19.5, the iterations required to
reduce the overall error by a factor of 10-p for Laplace’s
equation is :

19

Partial Differential Equations

• To solve for the convergence rates, let’s look at the
Poisson equation again:

• In matrix form, this is :

• Can break A into lower triangular, diagonal and upper
triangular bits :

20

Vij Charge densityDiscrete
Poisson
operator

Partial Differential Equations

• Then, at each step, the Jacobi iteration is

• The matrix :

• This is the “iteration matrix”, and the magnitude of the
largest eigenvalue is the “spectral radius” for the
relaxation problem

21

Partial Differential Equations

• Spectral radius “ ” should satisfy :
–0 < < 1 for the method to be stable
–depends on the boundary conditions and the lattice

spacing
–approaches 1.0 as the number of lattice points

increases

• For LxL square lattice with Dirichlet boundary
conditions :

22

⇢s

⇢s

Partial Differential Equations

• How to derive spectral radius ?
• Let’s just do it in 1-d
• The 1-d Laplace equation is :

• This can be discretized as :

• The Jacobi iteration is :

• With Dirichlet BC’s V(0)=V(L+1)=0, we see the
eigenvectors are:

23

⇢s

Partial Differential Equations

• Eigenvalues are determined by plugging in:

• The spectral radius is given by the largest eigenvalue:

• Similar analysis in 2-D gets the Numerical Recipes
version for 2D :

24

(for large L)

Partial Differential Equations

• How many iterations does it take for the solution to be
damped by a factor of 10-p?

• Determined by the spectral radius!

• Jacobi method is not very efficient!
• If L = 1000, then n = 1M to improve to 1% of current

value

25

Partial Differential Equations

• Gauss-Seidel does a little better

• Iteration matrix is

• Then the spectral radius for the LxL Dirichlet lattice is :

• Only about twice as fast as Jacobi!

26

Partial Differential Equations

• What about SOR?

• Much better here, we have :

• So, if L=1000, need only n=667 iterations to improve to
1% of current value

27

Partial Differential Equations

• What about computational complexity?

• Jacobi and Gauss-Seidel update all interior lattice points
per iteration

• So, for LxL 2-D lattice, we would have

• For SOR, we would have

• Neither of these are wonderful for very large L

28

Partial Differential Equations

• Can also use spectral analysis to solve our PDE’s, just like
you do in your math classes

• Here, “spectral analysis” is the FFT.
–In 1D:

• Then we express f and rho in terms of their Fourier
transforms :

• This is diagonalized in k-space :

• The solution is then the inverse FFT:

• Two problems : 1. boundary conditions, 2. singularity at k=0
29

Partial Differential Equations

• Boundary conditions dictate the type of Fourier transform
you want to use
–Sometimes sine transforms are best, sometimes

cosine, sometimes exponential
• Consider 1-D lattice 0 < x < L with N points

• The complex FFT coefficients of f(x) are

• The inverse will be periodic in xn with period L:

• So, if periodic conditions : use the complex FFT
30

Partial Differential Equations

• For Dirichlet conditions f(0) = f(L) = 0, then sine Fourier
transform is best:

• For Neumann conditions use cosine Fourier transform:

• Note : These are not just the real and imaginary parts of
the complex exponential transform!
–Sine, Cosine, and exp(ikx) are all complete sets with

different boundary conditions
–Sine/Cosine are real, so also require 2x as many

points 31

Partial Differential Equations

• Let’s go back to Poisson’s equation in 2d:

• Let’s take an NxN grid in region 0 < x,y < 1
• Presume there is a point charge at the center
• Impose periodic BCs so we use the exponential FFT

• Since the FFT is linear, we can do it separately in the x
and y directions, and it doesn’t matter which order!

32

Partial Differential Equations

• The 2-D FFT coefficients are

• The inverse transforms are :

• So, if we plug these into our discretized equation and
equating coefficients of we get :

• IFFT gives the
potential!

33

Partial Differential Equations
• In some sense, this is even easier than relaxation

methods
• Take FFT of rows of rho
• Take FFT of columns of rho

• Solve equation in Fourier
domain

• Take IFFT of rows of rho
• Take IFFT of columns of rho

34

Partial Differential Equations

• Since PDE’s are done in higher dimensions, it is
oftentimes beneficial to use “multigrid methods”

• General gist : start at a coarse scale, get close to the
answer, then go to a finer scale
–Similar to adaptive RK4 in philosophy

• For this, need an estimate of the error at each stage

• Described in Chapter 19 Section 6 of Numerical Recipes

35

Partial Differential Equations

• So let’s again consider Poisson’s equation in 2 D:

• Again let’s impose this on a grid with units 0-1 and
impose Dirichlet boundary conditions

• As before, the solution obeys :

36

Partial Differential Equations

• Then here is where things get different
• This uses a succession of lattices / grids
• This is the “multigrid”!

• Here’s the trick : define the interior lattice points as a
power of 2 so that :

• Thus the lattice spacing is

• There are then sequentially coarser lattices with number
of interior points as :

37

`

Partial Differential Equations

• Now to compute the error, we define the solution at any
stage in the calculation as

• Also define the exact solution
• The correction is

• The “residual” or “defect” is defined as

• The correction and the residual are related by :

• So interestingly, this has the same form as Poisson’s
equation with v as the function u, and r being a known
source function! 38

Partial Differential Equations

• Now define the “Simple V-Cycle Algorithm”
• Define two grids (coarse and fine) with points:

• Need to move from one grid to another
• Given any function on the lattice, we need to :

–restrict the function from fine to coarse
–interpolate the function from coarse to fine

39

Partial Differential Equations
• If we have those, the multigrid V-cycle can be defined recursively :

–If , there is only one interior point, so solve exactly:

–Otherwise, calculate current
–Perform pre-smoothing iterations with a local algorithm (Gauss-

Seidel, etc). This will damp out the short wavelength errors in
the solution

–Estimate correction as :
• Compute residual

• Restrict residual r-> R to the coarser grid
• Set the coarser grid correction V = 0 and improve it recursively
• Prolongate the correction V-> v onto the finer grid

–Correct u -> u + v
–Perform post-smoothing Gauss-Seidel iterations and return

improved u
40

Partial Differential Equations

• Is this worth it? What’s the scaling with L?

• Recall that Jacobi / Gauss-Seidel iterations are the most
time-consuming parts of the calculation.
–Single step:

• Now this gets performed on the sequence of grids with :

• So the total number is of order:

• So in this, the TOTAL is !!!! 41

Partial Differential Equations

• Details of restricting residual to coarser lattice:
• Define the coarser lattice H = 2h
• Set the value to the average of the values on the four

corners:

42

Partial Differential Equations

• Details to prolong the correction to the finer lattice :
• Need to solve the equation

• In the code this will be called “twoGrid”
• Then we copy the value of V(I,J) into the four

neighboring points on the finer lattice v(i,j) :

43

Partial Differential Equations

• Two possibilities :
–Cell centered :

–Grid centered :

• Note : grid-centered needs to one more poit in each dimension
44

Partial Differential Equations

• The boundary points are specified as follows :

–Cell-centered : Boundary points move in space toward
the center of the region at each coarsening (so care
must be taken here)

–Vertex-centered : Boundary points do not move when
lattice is coarsened

• A little more convenient to use vertex-centered

45

Partial Differential Equations
• What about restriction (fine->coarse) and prolongation

(coarse->fine) operations?
• Cell-centered :

–Prolongation : Set the values on the
fine to the value from the coarse

–Restriction : Average fine points to get
coarse points

• Vertex-centered :
–Prolongation : use bilinear interpolation

at which value at F at a coarse grid
point is copied to 9 neighboring
fine-grid points with weights :

–Restriction : Adjoint of the
prolongation

46

Partial Differential Equations

• Improvements are to use more than one cycle
–Repeat the two-grid iteration more than once
–Full multigrid starts with coarses grid, then proceeds to

finer grids

–Numerical Recipes Chapter 19 Section 6 goes over
this

–Can look into them at your leisure

47

Parabolic PDES

48

Partial Differential Equations

• Let’s now turn to parabolic differential equations
–Includes diffusion and time-dependent Schroedinger

equation

–Formal solution is:

–where H is the hermitian Hamiltonian operator

49

Partial Differential Equations

• Two separate strategies:
–“Marching” in time

• Similar to ODE technology, but now must account for derivatives in
spatial dimension too!

–Spectral analysis
• Just like in your classes, we can also solve the PDE in the Fourier

domain, and it is often more convenient

50

Will examine both solutions

Partial Differential Equations

• First: Marching

51

Partial Differential Equations

• The time-evolution is unitary, so the total probability is
conserved :

• Diffusion equations, on the other hand, are NOT unitary

• This leads to the characteristic damping
• Schroedinger’s equation is mathematically equivalent to

diffusion with an imaginary diffusion constant (or a real
one, in imaginary time):

52

Partial Differential Equations

• We will look at a free particle as an instructive case:

• where the momentum is
• Of course, the plane wave is not localized in space

–Probability is not =1 over all space, so not a “real”
particle solution

• Can instead construct a Gaussian state:

–But, this is stationary :

53

Partial Differential Equations

• To get this to move, multiply by a phase factor:

• then we have:

• Expectation value of the energy is:

• This is close to the classical result if the packet isn’t too
narrow 54

Partial Differential Equations

• Our wavepacket is :

• Moves to the right with speed hbar k0 / m
• Psi is approximated on a lattice by an N-component

complex vector
• If potential is a function of space alone, can precompute

the quantity

• which can be used to speed up computational times

55

Partial Differential Equations

• Also examine finite difference methods
• Start with a forward time-centered scheme (FTCS) :

–Discretized equation :

–This can be solved explicitly for the solution at the next
time step :

– If we introduce the column
vector of values :

–Then the equation is
(in matrix form):

56

Partial Differential Equations

• Problem with this simplest scheme : always unstable
• For instance, for an eigenvector we have:

• Then we’d compute:

• The magnitude of this is :

• Boooooo.
57

Partial Differential Equations

• What about backward time space centered (BTCS) implicit
differencing?

• Can’t be solved exactly.
• Three unknown quantities on the LHS of

• If we solve all N equations at the same time, we get a
matrix form:

• with steps :
58

Partial Differential Equations

• This one, on the other hand, is “stable”, but still wrong:

• Magnitude will be :

• No probability conservation, still booooo.

59

Partial Differential Equations

• Symmetric time space centered (STCS) differencing does
the trick (Crank-Nicolson):

• Matrix solution :

–This is unitary :

–And conserves probability
at each step :

60

Partial Differential Equations

• As you’d naively guess, this is also more accurate than the
forward and backward only versions (by an order of
magnitude)

• To show explicitly, write the exact evolution operator for
one time step:

• Here, we have

• Backward scheme :

• Crank-Nicolson
scheme:

61

Partial Differential Equations

• We have the Schroedinger equation :

• Solved using Crank-Nicolson algorithm :

• And this is basically a matrix inversion problem!
• Is it tractable?

–Incidentally, yes! It’s a sparse matrix!

62

Partial Differential Equations

• For instance, impose Dirichlet BC’s , and we get :

• if N=5 then we get :

63

• Imposing periodic BC’s we get:

• if N=5 then we get :

Partial Differential Equations

64

Partial Differential Equations

• So both of these are tridiagonal, so we can use our Matrix
Methods from earlier in the semester to solve this very
quickly

• Explicitly :
–Note that

–where :

–So, we solve the linear equation:

–We get an intermediate “chi”, which we can use to solve:

65

Partial Differential Equations

• Second : spectral analysis

66

Partial Differential Equations

• To solve this ‘exactly’, can look at the exact solution in the
Fourier domain (and keep in mind that we’re going to do
the FFT later)

• Write the S.E. as

• Here, T is a differential operator and V is a multiplicative
operator in position space

• In Fourier domain :

• then we’d have:

67

Partial Differential Equations

• Here, the kinetic operator T is multiplicative, while the
potential operator V is a convolution
–So, this is an integral equation in the Fourier domain

• Formal solution :

• Where :

• T and V do not commute here, so exponential is not
amenable to numerical evaluation

68

Partial Differential Equations

• To make the discrete time approximation, we use a small
time step delta t :

• In this case, T and V can be disentangled (linear
approximation ===> they commute)

• Can use Baker-Campell-Hausdorff formula :
–http://en.wikipedia.org/wiki/Baker-Campbell-

Hausdorff_formula
–This states that :

– if and only if :
69

http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula

Partial Differential Equations

• Commutator is :

• So, the simplest factorization has an error of :

• The symmetric factorization, however, has an error :

– In addition, this is unitary so preserves the normalization
of the wavefunction

70

Partial Differential Equations

• Split the time evolution operator into a symmetric
factorization

• Evolve by :
–Multiply by first half-step :

(diagonal in position space)

–Fourier transform to p-space :

–Multiply by kinetic evolution
(diagonal in momentum space)

–Fourier transform back to x-space :

–Multiply by the second half step
evolution operator
(diagonal in position space) 71

Hyperbolic PDES

72

Partial differential equations

• We now turn to the final chapter in our investigation of
PDE’s : hyperbolic waves

• This class covers a wide range of physical phenomena :
–Light waves
–Sound waves
–Water waves
–etc

• The wave equation is

73

Wave speed Hyperbolic (+dt^2 - dx^2)

Source term

Partial differential equations

• There is a unique solution if
–the initial values of and are

specified
–the boundary values are specified on a closed region

• So examine the 1-d equation with no source term:

• This factorizes into simpler first-order equations:

74

Partial differential equations

• Solutions to this equation are given by a superposition of
left- and right-moving waves:

• Here, g and f are determined from initial conditions

75

Partial differential equations

• Examine one of the equations (“right-moving” one):

• The analytical solution here is :

• where f0(x) is the initial condition at t=0
• This basically means the initial shape simply propagates

with a velocity c
–This is called “advection”

• Contrast with cases where the wave shape depends on
position
–This is “convection” (hot fluid rising, colder fluid

sinking, for instance) 76

Partial differential equations

• In the advective case, the flux is conserved:

• Here, u(x,t) is a vector of functions, and the vector F is
the conserved flux of u

• Now, suppose that u(x,t) is the density at point x and
time t

• Total amount (mass) of fluid in a boundary is:

• The rate of change of fluid in the region is:

77

Partial differential equations
• This should remind you of your vector calculus (Stoke’s

theorem, etc)
–http://en.wikipedia.org/wiki/Flux
–http://en.wikipedia.org/wiki/Stokes'_theorem

78

http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Stokes'_theorem

Partial differential equations

• In 1-d, should be clear how we may discretize this
• Again can try the forward time-centered solution as we did

last lecture (generalized Euler’s method!)

• So we try the FTCS :

• The spatial derivative was approximated by a symmetric
difference :

• As we saw last class, the
“bare bones” Euler-step-like
solution is unconditionally
unstable

• If : modes amplified by: 79

Partial differential equations

• Instead, try the “Lax” method:

• The mode amplification factor in this case is:

• If we choose then flux is exactly conserved

• Any other choice of delta t will make this either decay or
grow without bound 80

Partial differential equations

• This is the Courant-Freidrichs-Lewy condition:

• Consider the domain of dependency
• For any differencing scheme, the domain consists of the

set of points in the “past cone”
• If the differencing domain is wider in x than the domain

of dependency, then this is stable
• If the differencing domain is narrower, then unstable

81

(CFL number)

Partial differential equations

• Can also add terms of order in the discretization
• Using then we get:

• This is the “Lax-Wendroff” method
• The stability is the same CFL condition as before in the Lax

method
• Note that the added term is a discretized diffusive term

• General feature : diffusive terms in recurrence formulae
have damping effects on the amplitude 82

Partial differential equations
• Can also consider nonlinear wave equations

–Don’t preserve shape in general
–Linear wave equation has linear dispersion!

• Dispersion is the relation between wave number and
frequency.
–Plane wave :

• Here, all the modes move with the same velocity c
• Wave velocity is omega / k

• What if the velocity depends on the wave number?
–Example:

–Plugging in (plane wave), we get a
dispersion:

83
Wave velocity depends on k!

Partial differential equations

• Now let’s go back to advection equation and add a
diffusive term

• From plane wave, we get the dispersion relation:

84

Partial differential equations

• Some nonlinear equations can have traveling waves
• Example is Burgers’ equation:

–http://en.wikipedia.org/wiki/Burgers'_equation

• The last term is nonlinear in the wave amplitude
• Can solve by calculating partial derivatives:

• This is solved if we have a right-moving wave with
function:

• This wave moves with velocity 85

http://en.wikipedia.org/wiki/Burgers'_equation

Partial differential equations

• Here, the velocity depends on the density of the wave!
• This leads to breaking and shock fronts:

86

Partial differential equations

• The Burgers’ equation was introduced in 1948 as a simple
model of shock propagation

• First, set nu = 0 and we get

• Compare to the linear wave equation:

• Schematically the speed is equal to “u”!
• Peaks travel faster than troughs in the wave
• Eventually we get breaking, which we cannot represent as a

function since it is multi-valued
• Passes through a shock front (solution is discontinuous) 87

J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948)

Partial differential equations

• This kind of PDE was studied by Godunov in 1959

• This is a class of “Riemann problem”
– IVP for a PDE which has a piecewise constant initial value

function, with a discontinuity (like a step function)
• Need to find an exact or approximate algorithm for this

– called a “Riemann solver”

• Here, is the average flux on the cells to the left and
right of the lattice point j, respectively

• Solve these from Riemann problems in the cells to the right
and left of j using “upwind” initial data:

88

S.K. Godunov, Mat. Sb. 47, 271 (1959)

Partial differential equations

• The solution in the left cell is :

• and on the right it is :

89

