PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Partial Differential Equations

- Start looking at PDE's
-http://en.wikipedia.org/wiki/ Partial_differential_equation
- Just like ODE's, only harder! (Kidding)
- You should be familiar with the mathematics of PDE's
-Poisson equation
-Diffusion equation
-Wave equation
- The general strategy is to look at finite derivatives (just like we did in ODE's), but now we have to look in multiple dimensions at once!

Partial Differential Equations

- First example : Elliptic PDEs
- Given an electric charge distribution rho(r), Poisson's equation is :

$$
\nabla^{2} V(\mathbf{r})=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-\frac{\rho(\mathbf{r})}{\epsilon_{0}}
$$

- This determines the potential $\mathrm{V}(\mathrm{r})$ at each point r , provided boundary values are specified
-Dirichlet: V(r) specified on boundary
-Neumann : normal component $\hat{\mathbf{n}} \cdot \nabla V$ specified on boundary
- For electrostatics, this specifies normal component of E-field in a conductor
-Periodic : $V(r)=V(r+d r)$ for some $d r$

Partial Differential Equations

- Why "elliptic"?
- Consider 2-d and let

$$
V(x, y) \sim e^{i k_{x} x+i k_{y} y}
$$

- Then :

$$
-\nabla^{2} V(x, y)=\left(k_{x}^{2}+k_{y}^{2}\right) V(x, y)
$$

- The kx, ky values in k-space of a given eigenvalue satisfy

$$
\left(k_{x}^{2}+k_{y}^{2}\right)=\mathrm{constant}
$$

- This is (of course) a circle, which is an ellipse
- We'll continue this "conic section" terminology, as you probably have done in your other courses

Partial Differential Equations

- Second case : parabolic PDEs
- Given a source $S(r, t)$ and a diffusion coefficient $D(r)$, the diffusion equation is :
$\frac{\partial n(\mathbf{r}, t)}{\partial t}-\nabla \cdot(D(\mathbf{r}) \nabla n(\mathbf{r}, t))=S(\mathbf{r}, t)$
- This determines the concentration " n " in a closed space
-Now need both initial conditions ($\mathrm{t}=\mathrm{t} 0$) AND boundary conditions (Dirichlet, Neumann, periodic)

Partial Differential Equations

-Why "parabolic" ?

- Consider one spatial dimension, and a constant D, with

$$
n(x, t) \sim e^{-\omega t+i k x}
$$

- The differential operator on the LHS has the eigenvalue

$$
-\omega+D k^{2}=\mathrm{constant}
$$

- which is a parabola in omega-k space

Partial Differential Equations

- The time-dependent Schroedinger equation is also a parabolic PDE :

$$
i \hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\mathbf{r}, t)+V(\mathbf{r}) \Psi(\mathbf{r}, t)=\mathcal{H} \Psi(\mathbf{r}, t)
$$

- This can be viewed as a diffusion equation with imaginary diffusion constant $D=i \hbar /(2 m)$, or mathematically as a diffusion equation in imaginary time with real diffusion constant $D=\hbar /(2 m)$

Partial Differential Equations

- Third case : hyperbolic PDE's
- The wave equation is :

$$
\frac{1}{c^{2}} \frac{\partial^{2} u(\mathbf{r}, t)}{\partial t^{2}}-\nabla^{2} u(\mathbf{r}, t)=R(\mathbf{r}, t)
$$

- this is hyperbolic because the eigenvalues of the differential operator are :

$$
-\frac{1}{c^{2}} \omega^{2}+\mathbf{k}^{2}=\text { constant }
$$

- These are hyperboloid surfaces in omega-k space
- Again need initial conditions ($\mathrm{t}=\mathrm{t} 0$) and boundary conditions (Dirichlet, Neumann, Periodic)

Elliptic PDES

Partial Differential Equations

- Let's first take a look at the solution to the elliptic equation for Poisson's equation (solving Gauss's law for electrostatics)
- We have Gauss's law : $\nabla \cdot \mathbf{E}=\frac{\rho(x, y, z)}{\epsilon_{0}}$,
- The static electric field can be written as :

$$
\mathbf{E}=-\nabla V,
$$

- And $V(r)$ satisfies Poisson's equation:

$$
\nabla^{2} V=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) V=-\frac{\rho(x, y, x)}{\epsilon_{0}} .
$$

Partial Differential Equations

- Now, we need to discretize the entire space
- Consider a 2-d space and discretize in 10×10 blocks:

Partial Differential Equations

- The 2-d Poisson's equation is :

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) V(x, y)=-\rho(x, y)
$$

- Let's work in units with epsilon_0 $=1$, and solve in the region of a square with length $A=1.0$
- The grid is :

$$
x_{i}=i h, \quad i=0,1, \ldots L, L+1, \quad y_{j}=j h, \quad j=0,1, \ldots L, L+1 .
$$

- The lattice spacing is $h=1 /(\mathrm{L}+1)$
- Let $V\left(x_{i}, y_{j}\right)=V_{i j}, \quad \rho\left(x_{i}, y_{j}\right)=\rho_{i j}$
- Now we need to discretize this

Partial Differential Equations

- The discretization is to look at an equivalent of Euler's formula, but now we have to do it in two dimensions:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) V\left(x_{i}, y_{j}\right) \simeq \frac{1}{h^{2}}\left[V_{i+1, j}+V_{i-1, j}+V_{i, j+1}+V_{i, j-1}-4 V_{i, j}\right]
$$

$$
=-\rho_{i, j} . \quad, \quad \circ \circ \circ \circ \circ \circ \circ \circ \circ
$$

- Note the following :
-The lattice is only connected to its four nearest neighbors
-We will define "odd" and "even" sites depending on whether $\mathrm{i}+\mathrm{j}$ is odd or even (red/black)

Partial Differential Equations

- First attempt : Jacobi's iterative method
- Suppose we have a solution of the discretized equation
- At each lattice site :

$$
V_{i, j}=\frac{1}{4}\left[V_{i+1, j}+V_{i-1, j}+V_{i, j+1}+V_{i, j-1}+h^{2} \rho_{i, j}\right] .
$$

- If we knew the RHS, then we could compute the LHS
- But, the RHS pieces all have their own equations similar to this one!
- They all need to be solved simultaneously
- Instead of that, we try for a guess at each point, and then iteratively solve :

$$
V_{i, j}^{n+1}=\frac{1}{4}\left[V_{i+1, j}^{n}+V_{i-1, j}^{n}+V_{i, j+1}^{n}+V_{i, j-1}^{n}+h^{2} \rho_{i, j}\right], \quad n=0,1,2, \ldots
$$

Partial Differential Equations

- This should remind you a bit of the relaxation method for our ODE's
-We guess, then iterate until our boundary is solved and the equations are satisfied at the points
- But, all we know for sure are the boundary points
- Can instead iterate until our solution stops changing very much
- Usually "relaxes" to the right solution, but there are of course pathologies that can occur

Partial Differential Equations

- Next example : use the Gauss-Seidel method
- This is almost the same as the Jacobi method, but uses the updated neighbor sites
-Remember the red/black? Red only talks to black, and vice versa
- Then we have :

$$
V_{i, j}^{n+1}=\frac{1}{4}\left[V_{i+1, j}^{n}+V_{i-1, j}^{n+1}+V_{i, j+1}^{n}+V_{i, j-1}^{n+1}+h^{2} \rho_{i, j}\right]
$$

- This converges faster than the Jacobi method

Partial Differential Equations

- Finally, consider the Successive Over-Relaxation (SOR) method
- Jacobi and Gauss-Seidel do not use V_ij at the same lattice point in updating V_ij
- If we use a linear combination of the old and new solutions, we can get better convergence :

$$
V_{i, j}^{n+1}=(1-\omega) V_{i, j}^{n}+\frac{\omega}{4}\left[V_{i+1, j}^{n}+V_{i-1, j}^{n+1}+V_{i, j+1}^{n}+V_{i, j-1}^{n+1}+h^{2} \rho_{i, j}\right]
$$

- Omega is called the "over-relaxation" parameter
-Can be tuned for performance

Partial Differential Equations

- A few notes :
-Converges only if $0<$ omega <2
-Faster than Gauss-Seidel only if $1<$ omega < 2
-It converges fastest on a square lattice if

$$
\omega \simeq \frac{2}{1+\frac{\pi}{L}}
$$

- Here, L is the number of lattice points

Partial Differential Equations

- For our strategy, we will use the red/black splitting to solve the equations faster :
-First update the even sites, then update the odd sites
-Can use the SOR method (or the others) with faster convergence in this case
- In Numerical Recipes 19.5, the iterations required to reduce the overall error by a factor of 10-p for Laplace's equation is :

$$
\begin{aligned}
& r \simeq \begin{cases}\frac{1}{2} p L^{2} & \text { for Jacobi's method } \\
\frac{1}{4} p L^{2} & \text { for the Gauss-Seidel method } \\
\frac{1}{3} p L & \text { for SOR with } \omega \simeq 2 /(1+\pi / L)\end{cases} \\
& \qquad\left(\begin{array}{l}
\frac{1}{2} \times 3 \times 50^{2}=3,750 \\
\frac{1}{4} \times 3 \times 50^{2}=1,875 \\
\frac{1}{3} \times 3 \times 50=50
\end{array}\right)
\end{aligned} .
$$

Partial Differential Equations

- To solve for the convergence rates, let's look at the Poisson equation again:

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=-\frac{1}{\epsilon_{0}} \rho,
$$

- In matrix form, this is :

- Can break A into lower triangular, diagonal and upper triangular bits :

$$
\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}
$$

Partial Differential Equations

- Then, at each step, the Jacobi iteration is

$$
\begin{aligned}
& \mathbf{D} \mathbf{x}^{(n)}=-(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(n-1)}+\mathbf{b} \\
& \mathbf{x}^{(n)}=-\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(n-1)}+\mathbf{D}^{-1} \mathbf{b}
\end{aligned}
$$

- The matrix :

$$
-\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})
$$

- This is the "iteration matrix", and the magnitude of the largest eigenvalue is the "spectral radius" for the relaxation problem

Partial Differential Equations

- Spectral radius " ρ_{s} " should satisfy :
$-0<\rho_{s}<1$ for the method to be stable
-depends on the boundary conditions and the lattice spacing
-approaches 1.0 as the number of lattice points increases
- For LxL square lattice with Dirichlet boundary conditions:

$$
\rho_{s} \simeq 1-\frac{\pi^{2}}{2 L^{2}}
$$

Partial Differential Equations

- How to derive spectral radius ρ_{s} ?
- Let's just do it in 1-d
- The 1-d Laplace equation is :

$$
\frac{d^{2} V}{d x^{2}}=0
$$

- This can be discretized as :

$$
\begin{aligned}
& x=0 \quad x=h \\
& x=i h \\
& \frac{V_{i+1}+V_{i-1}-2 V_{i}}{h^{2}}=0 . \\
& \mathrm{x}=\mathrm{Lh}
\end{aligned}
$$

- The Jacobi iteration is : $V_{i}^{n+1}=\frac{1}{2}\left(V_{i+1}^{n}+V_{i-1}^{n}\right)$.
- With Dirichlet BC's $V(0)=V(L+1)=0$, we see the eigenvectors are:

$$
u_{i}^{(k)}=\sin \left(\frac{\pi k i}{L+1}\right), \quad k=1,2, \ldots, L
$$

Partial Differential Equations

- Eigenvalues are determined by plugging in:

$$
\begin{aligned}
\frac{1}{2}\left(u_{i+1}^{(k)}+u_{i-1}^{(k)}\right) & =\frac{1}{2}\left[\sin \left(\frac{\pi k(i+1)}{L+1}\right)+\sin \left(\frac{\pi k(i-1)}{L+1}\right)\right] \\
& =\cos \left(\frac{\pi k}{L+1}\right) u_{i}^{(k)} .
\end{aligned}
$$

- The spectral radius is given by the largest eigenvalue:

$$
\rho_{s}=\cos \left(\frac{\pi}{L+1}\right) \simeq 1-\frac{\pi^{2}}{2 L^{2}}, \quad(\text { for large } \mathrm{L})
$$

- Similar analysis in 2-D gets the Numerical Recipes version for 2^{-}

$$
\rho_{s}=\frac{h_{y}^{2} \cos \left(\frac{\pi}{L_{x}+1}\right)+h_{x}^{2} \cos \left(\frac{\pi}{L_{y}+1}\right)}{h_{x}^{2}+h_{y}^{2}}
$$

Partial Differential Equations

- How many iterations does it take for the solution to be damped by a factor of 10-p?
- Determined by the spectral radius!
$10^{-p}=\rho_{s}^{n} \quad \Rightarrow \quad n=\frac{p \ln 10}{\left(-\ln \rho_{s}\right)} \simeq \frac{2 p L^{2} \ln 10}{\pi^{2}} \simeq \frac{1}{2} p L^{2}$.
- Jacobi method is not very efficient!
- If $L=1000$, then $n=1 \mathrm{M}$ to improve to 1% of current value

Partial Differential Equations

- Gauss-Seidel does a little better
- Iteration matrix is

$$
-(\mathbf{L}+\mathbf{D})^{-1} \mathbf{U}
$$

- Then the spectral radius for the LxL Dirichlet lattice is :

$$
\rho_{s} \simeq 1-\frac{\pi^{2}}{L^{2}} \quad \Rightarrow \quad n \simeq \frac{1}{4} p L^{2} .
$$

- Only about twice as fast as Jacobi!

Partial Differential Equations

- What about SOR?
- Much better here, we have :

$$
\rho_{s} \simeq 1-\frac{2 \pi}{L} \quad \Rightarrow \quad n \simeq \frac{1}{3} p L
$$

- So, if $\mathrm{L}=1000$, need only $\mathrm{n}=667$ iterations to improve to 1% of current value

Partial Differential Equations

-What about computational complexity?

- Jacobi and Gauss-Seidel update all interior lattice points per iteration
- So, for LxL 2-D lattice, we would have $\mathcal{O}\left(L^{4}\right)$
- For SOR, we would have $\mathcal{O}\left(L^{3}\right)$
- Neither of these are wonderful for very large L

Partial Differential Equations

- Can also use spectral analysis to solve our PDE's, just like you do in your math classes
- Here, "spectral analysis" is the FFT.

$$
-\ln 1 \mathrm{D}: \quad \frac{d^{2} V}{d x^{2}}=\rho(x)
$$

- Then we express \dagger and rho in terms of their Fourier transforms :

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int g(k) e^{i k x} d k, \quad \rho(x)=\frac{1}{\sqrt{2 \pi}} \int \sigma(k) e^{i k x} d k .
$$

- This is diagonalized in k-space :

$$
-k^{2} g(k)=\sigma(k) \quad \Rightarrow \quad g(k)=-\frac{\sigma(k)}{k^{2}} .
$$

- The solution is then the inverse FFT:

$$
f(x)=-\frac{1}{\sqrt{2 \pi}} \int \frac{\sigma(k)}{k^{2}} e^{i k x} d k
$$

- Two problems : 1. boundary conditions, 2. singularity at $k=0$

Partial Differential Equations

- Boundary conditions dictate the type of Fourier transform you want to use
-Sometimes sine transforms are best, sometimes cosine, sometimes exponential
- Consider 1-D lattice $0<x<L$ with N points

$$
x_{n}=n L / N, n=0, \ldots, N-1
$$

- The complex FFT coefficients of $f(x)$ are

$$
g_{k}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} W^{k n} f_{n}, \quad W=e^{2 i \pi / N}
$$

- The inverse will be periodic in xn with period L :

$$
f_{n}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} W^{-n k} g_{k},
$$

- So, if periodic conditions : use the complex FFT

Partial Differential Equations

- For Dirichlet conditions $f(0)=f(L)=0$, then sine Fourier transform is best:

$$
f_{n}=\sqrt{\frac{2}{N}} \sum_{k=1}^{N-1} \sin \left(\frac{\pi n k}{N}\right) g_{k} .
$$

- For Neumann conditions use cosine Fourier transform:

$$
f_{n}=\frac{1}{\sqrt{2 N}}\left[g_{0}+(-1)^{n} g_{N}\right]+\sqrt{\frac{2}{N}} \sum_{k=1}^{N-1} \cos \left(\frac{\pi n k}{N}\right) g_{k} .
$$

- Note : These are not just the real and imaginary parts of the complex exponential transform!
-Sine, Cosine, and $\exp (\mathrm{ikx})$ are all complete sets with different boundary conditions
-Sine/Cosine are real, so also require 2 x as many points

Partial Differential Equations

- Let's go back to Poisson's equation in 2d:

$$
\begin{aligned}
\left(\frac{\partial^{2}}{\partial x^{2}}\right. & \left.+\frac{\partial^{2}}{\partial y^{2}}\right) V(x, y) \\
& \simeq \frac{1}{h^{2}}\left[V_{j+1, k}+V_{j-1, k}+V_{j, k+1}+V_{j, k-1}-4 V_{j, k}\right] \\
& =-\rho_{j, k}
\end{aligned}
$$

- Let's take an NxN grid in region $0<x, y<1$
- Presume there is a point charge at the center
- Impose periodic BCs so we use the exponential FFT
- Since the FFT is linear, we can do it separately in the x and y directions, and it doesn't matter which order!

Partial Differential Equations

- The 2-D FFT coefficients are

$$
\tilde{V}_{m, n}=\frac{1}{N} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} W^{m j+n k} V_{j, k}, \quad \quad \tilde{\rho}_{m, n}=\frac{1}{N} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} W^{m j+n k} \rho_{j, k}
$$

- The inverse transforms are :

$$
V_{j, k}=\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} W^{-j m-k n} \tilde{V}_{m, n}, \quad \rho_{j, k}=\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} W^{-j m-k n} \tilde{\rho}_{m, n}
$$

- So, if we plug these into our discretized equation and equating coefficients $0 W^{-m j-n k}$ we get :

$$
\frac{1}{h^{2}}\left[W^{m}+W^{-m}+W^{n}+W^{-n}-4\right] \tilde{V}_{m, n}=-\tilde{\rho}_{m, n},
$$

- IFFT gives
potential!

$$
\frac{h^{2} \tilde{\rho}_{m, n}}{4-W^{m}-W^{-m}-W^{n}-W_{33}^{-n}}
$$

Partial Differential Equations

- In some sense, this is even easier than relaxation methods
- Take FFT of rows of rho
- Take FFT of columns of rho

$$
\tilde{V}_{m, n}=\frac{h^{2} \tilde{\rho}_{m, n}}{4-W^{m}-W^{-m}-W^{n}-W^{-n}}
$$

- Solve equation in Fourier domain

```
# Solve equation in Fourier space
V = cpt.Matrix (N, N)
W = cmath.exp(1.0j * 2 * math.pi / N)
Wm = Wn = 1.0 + 0.0j
for m}\mathrm{ in range(N) :
    for n in range(N) :
        denom = 4.0 - Wm - 1 / Wm - Wn - 1 / Wn
        if abs(denom) != 0.0:
            V [m][n] = rho[m][n] * h**2 / denom
        Wn *= W
    Wm *= W
```

- Take IFFT of rows of rho
- Take IFFT of columns of rho

Partial Differential Equations

- Since PDE's are done in higher dimensions, it is oftentimes beneficial to use "multigrid methods"
- General gist : start at a coarse scale, get close to the answer, then go to a finer scale
-Similar to adaptive RK4 in philosophy
- For this, need an estimate of the error at each stage
- Described in Chapter 19 Section 6 of Numerical Recipes

Partial Differential Equations

- So let's again consider Poisson's equation in 2 D:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-f(x, y)
$$

- Again let's impose this on a grid with units 0-1 and impose Dirichlet boundary conditions
- As before, the solution obeys :

$$
u_{i, j}=\frac{1}{4}\left[u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}+h^{2} f_{i, j}\right] .
$$

Partial Differential Equations

- Then here is where things get different
- This uses a succession of ℓ lattices / grids
- This is the "multigrid"!
- Here's the trick : define the interior lattice points as a power of 2 so that:

$$
L=2^{\ell}+2
$$

- Thus the lattice spacing is

$$
h=1 /(L-1)
$$

- There are then sequentially coarser lattices with number of interior points as :

$$
2^{\ell-1} \rightarrow 2^{\ell-2} \rightarrow \ldots \rightarrow 2^{0}=1
$$

Partial Differential Equations

- Now to compute the error, we define the solution at any stage in the calculation as $u(x, y)$
- Also define the exact solution $u_{\text {exact }}(x, y)$
- The correction is

$$
v=u_{\text {exact }}-u
$$

- The "residual" or "defect" is defined as

$$
r=\nabla^{2} u+f
$$

- The correction and the residual are related by :

$$
\nabla^{2} v=\left[\nabla^{2} u_{\text {exact }}+f\right]-\left[\nabla^{2} u+f\right]=-r .
$$

- So interestingly, this has the same form as Poisson's equation with v as the function u, and r being a known source function!

Partial Differential Equations

- Now define the "Simple V-Cycle Algorithm"
- Define two grids (coarse and fine) with points:

$$
L=2^{\ell}+2 \quad L=2^{\ell-1}+2
$$

- Need to move from one grid to another
- Given any function on the lattice, we need to :
-restrict the function from fine to coarse
-interpolate the function from coarse to fine

Partial Differential Equations

- If we have those, the multigrid V -cycle can be defined recursively :
$-\ell=0 \quad$, there is only one interior point, so solve exactly:

$$
u_{1,1}=\left(u_{0,1}+u_{2,1}+u_{1,0}+u_{1,2}+h^{2} f_{1,1}\right) / 4
$$

-Otherwise, calculate current $L=2^{\ell}+2$
-Perform pre-smoothing iterations with a local algorithm (GaussSeidel, etc). This will damp out the short wavelength errors in the solution
-Estimate correctio $\bar{v}=u_{\text {exact }}-u$ as:

- Compute residual
$r_{i, j}=\frac{1}{h^{2}}\left[u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right]+f_{i, j}$.
- Restrict residual r r-> R to the coarser grid
- Set the coarser grid correction $\mathrm{V}=0$ and improve it recursively
- Prolongate the correction V-> v onto the finer grid
-Correct u -> u + v
-Perform post-smoothing Gauss-Seidel iterations and return improved u

Partial Differential Equations

- Is this worth it? What's the scaling with L?
- Recall that Jacobi / Gauss-Seidel iterations are the most time-consuming parts of the calculation.
-Single step: $\mathcal{O}\left(L^{2}\right)$
- Now this gets performed on the sequence of grids with :

$$
2^{\ell} \rightarrow 2^{\ell-1} \rightarrow 2^{\ell-2} \rightarrow \ldots \rightarrow 2^{0}=1
$$

- So the total number is of order:

$$
L^{2} \sum_{n=0}^{\ell} \frac{1}{2^{2 n}} \leq L^{2} \frac{1}{1-\frac{1}{4}}
$$

- So in this, the TOTAL is $\mathcal{O}\left(L^{2}\right)$!!!!

Partial Differential Equations

- Details of restricting residual to coarser lattice:
- Define the coarser lattice $\mathrm{H}=2 \mathrm{~h}$
- Set the value to the average of the values on the four corners:

$$
R_{I, J}=\frac{1}{4}\left[r_{i, j}+r_{i+1, j}+r_{i, j+1}+r_{i+1, j+1}\right], i=2 I-1, j=2 J-1
$$

Partial Differential Equations

- Details to prolong the correction to the finer lattice :
- Need to solve the equation

$$
\nabla^{2} V=-R(x, y)
$$

- In the code this will be called "twoGrid"
- Then we copy the value of $\mathrm{V}(\mathrm{I}, \mathrm{J})$ into the four neighboring points on the finer lattice $v(i, j)$:

$$
v_{i, j}=v_{i+1, j}=v_{i, j+1}=v_{i+1, j+1}=V_{I, J}, \quad i=2 I-1, j=2 J-1 .
$$

Partial Differential Equations

- Two possibilities :
-Cell centered : $2^{3}=8 \rightarrow 2^{2}=4 \rightarrow 2^{1}=2 \rightarrow 2^{0}=1$.

-Grid centered : $2^{3}+1=9 \rightarrow 2^{2}+1=5 \rightarrow 2^{1}+1=3$.

- Note : grid-centered needs to one more poit in each dimension ${ }_{44}$

Partial Differential Equations

- The boundary points are specified as follows :
-Cell-centered : Boundary points move in space toward the center of the region at each coarsening (so care must be taken here)
-Vertex-centered : Boundary points do not move when lattice is coarsened
- A little more convenient to use vertex-centered

Partial Differential Equations

- What about restriction (fine->coarse) and prolongation (coarse->fine) operations?
- Cell-centered :
-Prolongation : Set the values on the fine to the value from the coarse
-Restriction : Average fine points to get coarse points
- Vertex-centered :
-Prolongation: use bilinear interpolation at which value at F at a coarse grid point is copied to 9 neighboring fine-grid points with weights : -Restriction : Adjoint of the
prolongation $\quad\left[\begin{array}{ccc}\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16}\end{array}\right]$ -Restriction : Adjoint of the
prolongation $\quad\left[\begin{array}{ccc}\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16}\end{array}\right]$
$\left[\begin{array}{lll}\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right]$

Partial Differential Equations

- Improvements are to use more than one cycle
-Repeat the two-grid iteration more than once
-Full multigrid starts with coarses grid, then proceeds to finer grids
-Numerical Recipes Chapter 19 Section 6 goes over this
-Can look into them at your leisure

Parabolic PDES

Partial Differential Equations

- Let's now turn to parabolic differential equations
-Includes diffusion and time-dependent Schroedinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi+V(x) \psi
$$

-Formal solution is:

$$
\psi(x, t)=e^{-\frac{i}{\hbar} \mathcal{H} t} \psi(x, 0), \quad \mathcal{H} \equiv-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)=\mathcal{H}^{\dagger}
$$

-where H is the hermitian Hamiltonian operator

Partial Differential Equations

- Two separate strategies:
-"Marching" in time
- Similar to ODE technology, but now must account for derivatives in spatial dimension too!
-Spectral analysis
- Just like in your classes, we can also solve the PDE in the Fourier domain, and it is often more convenient

Will examine both solutions

Partial Differential Equations

- First: Marching

Partial Differential Equations

- The time-evolution is unitary, so the total probability is conserved:

$$
\left(e^{-\frac{i}{\hbar} \mathcal{H} t}\right)^{\dagger}=\left(e^{-\frac{i}{\hbar} \mathcal{H} t}\right)^{-1}, \quad \int|\psi(x, t)|^{2} d x=\int|\psi(x, 0)|^{2} d x .
$$

- Diffusion equations, on the other hand, are NOT unitary

$$
\frac{\partial}{\partial t} n(x, t)=D \frac{\partial^{2}}{\partial x^{2}} n(x, t)+C n(x, t) .
$$

- This leads to the characteristic damping
- Schroedinger's equation is mathematically equivalent to diffusion with an imaginary diffusion constant (or a real one, in imaginary time):

$$
\frac{\partial \psi}{\partial(i t)}=\frac{\hbar}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{\hbar} V(x) \psi .
$$

Partial Differential Equations

- We will look at a free particle as an instructive case:

$$
\psi(x, t) \sim e^{i(p x-E t) / \hbar}
$$

- where the momentum is $p= \pm \sqrt{2 m E}$
- Of course, the plane wave is not localized in space -Probability is not =1 over all space, so not a "real" particle solution
- Can instead construct a Gaussian state:

$$
\phi(x)=\left(\frac{1}{\pi \sigma^{2}}\right)^{\frac{1}{4}} e^{-\left(x-x_{0}\right)^{2} /\left(2 \sigma^{2}\right)}
$$

-But, this is stationary :

$$
\langle p\rangle=\int_{-\infty}^{\infty} d x \phi^{*}(x)\left(\frac{\hbar}{i} \frac{d}{d x}\right) \phi(x)=0 .
$$

Partial Differential Equations

- To get this to move, multiply by a phase factor:

$$
\psi(x)=\phi(x) e^{i k x}
$$

- then we have:

$$
\begin{aligned}
\langle\psi| p|\psi\rangle & =\int_{-\infty}^{\infty} d x \phi^{*}(x) e^{-i k x}\left(\frac{\hbar}{i} \frac{d}{d x}\right) e^{i k x} \phi(x) \\
& =\int_{-\infty}^{\infty} d x\left[\hbar k|\phi(x)|^{2}-i \hbar \phi(x) \phi^{\prime}(x)\right] \\
& =\hbar k
\end{aligned}
$$

- Expectation value of the energy is:

$$
\langle\psi| \frac{p^{2}}{2 m}|\psi\rangle=\frac{\hbar^{2}}{2 m}\left(k^{2}+\frac{1}{2 \sigma^{2}}\right)
$$

- This is close to the classical result if the packet isn't too narrow

Partial Differential Equations

- Our wavepacket is :

$$
\psi(x, 0)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{\frac{1}{4}} e^{i k_{0} x-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma^{2}}}
$$

- Moves to the right with speed hbar k0 / m
- Psi is approximated on a lattice by an N -component complex vector
- If potential is a function of space alone, can precompute the quantity

$$
e^{-i \mathcal{V}(\S) \delta_{t} /(2 \hbar)}
$$

- which can be used to speed up computational times

Partial Differential Equations

- Also examine finite difference methods
- Start with a forward time-centered scheme (FTCS) :
-Discretized equation :

$$
i \hbar \frac{\psi_{j}^{n+1}-\psi_{j}^{n}}{\delta_{t}}=-\frac{\hbar^{2}}{2 m} \frac{\psi_{j+1}^{n}+\psi_{j-1}^{n}-2 \psi_{j}^{n}}{\delta_{x}^{2}}+V_{j} \psi_{j}^{n},
$$

-This can be solved explicitly for the solution at the next time step :

$$
\psi_{j}^{n+1}=\psi_{j}^{n}-\frac{i \delta_{t}}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{\psi_{j+1}^{n}+\psi_{j-1}^{n}-2 \psi_{j}^{n}}{\delta_{x}^{2}}+V_{j} \psi_{j}^{n}\right]
$$

-If we introduce the column $\Psi^{n} \equiv\left(\begin{array}{c}\frac{\psi_{n}^{n}}{\psi_{2}^{2}} \\ \text { vector of values : } \\ \vdots \\ \psi_{N}^{n}\end{array}\right)$
-Then the equation is (in matrix form):

$$
\Psi^{n+1}=\left(\mathbf{I}-\frac{i \delta_{t}}{\hbar} \mathbf{H}\right) \Psi^{n}
$$

Partial Differential Equations

- Problem with this simplest scheme : always unstable
- For instance, for an eigenvector we have:

$$
\mathbf{H} \Psi^{1}=E \Psi^{1}
$$

- Then we'd compute:

$$
\Psi^{n+1}=\left(1-\frac{i \delta_{t} E}{\hbar}\right) \Psi^{n}=\left(1-\frac{i \delta_{t} E}{\hbar}\right)^{2} \Psi^{n-1}=\ldots=\left(1-\frac{i \delta_{t} E}{\hbar}\right)^{n} \Psi^{1},
$$

- The magnitude of this is :

$$
\left|\Psi^{n+1}\right|=\left(\sqrt{1+\frac{\delta_{t}^{2} E^{2}}{\hbar^{2}}}\right)^{n}\left|\Psi^{1}\right| \longrightarrow \infty, \quad \text { as } \quad n \rightarrow \infty .
$$

- Boooooo.

Partial Differential Equations

- What about backward time space centered (BTCS) implicit differencing?

$$
i \hbar \frac{\psi_{j}^{n+1}-\psi_{j}^{n}}{\delta_{t}}=-\frac{\hbar^{2}}{2 m} \frac{\psi_{j+1}^{n+1}+\psi_{j-1}^{n+1}-2 \psi_{j}^{n+1}}{\delta_{x}^{2}}+V_{j} \psi_{j}^{n+1}
$$

- Can't be solved exactly.
- Three unknown quantities on the LHS of

$$
\psi_{j}^{n+1}+\frac{i \delta_{t}}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{\psi_{j+1}^{n+1}+\psi_{j-1}^{n+1}-2 \psi_{j}^{n+1}}{\delta_{x}^{2}}+V_{j} \psi_{j}^{n+1}\right]=\psi_{j}^{n} .
$$

- If we solve all N equations at the same time, we get a matrix form:

$$
\left(\mathbf{I}+\frac{i \delta_{t}}{\hbar} \mathbf{H}\right) \Psi^{n+1}=\Psi^{n}
$$

- with steps : $\Psi^{n+1}=\left(\mathbf{I}+\frac{i \delta_{t}}{\hbar} \mathbf{H}\right)^{-1} \Psi^{n}$.

Partial Differential Equations

- This one, on the other hand, is "stable", but still wrong:

$$
\begin{aligned}
\Psi^{n+1} & =\left(1+\frac{i \delta_{t} E}{\hbar}\right)^{-1} \Psi^{n}=\left(1+\frac{i \delta_{t} E}{\hbar}\right)^{-2} \Psi^{n-1} \\
& =\ldots=\left(1+\frac{i \delta_{t} E}{\hbar}\right)^{-n} \Psi^{1}
\end{aligned}
$$

- Magnitude will be :

$$
\left|\Psi^{n+1}\right|=\left(\sqrt{1+\frac{\delta_{t}^{2} E^{2}}{\hbar^{2}}}\right)^{-n}\left|\Psi^{1}\right| \longrightarrow 0, \quad \text { as } \quad n \rightarrow \infty .
$$

- No probability conservation, still booooo.

Partial Differential Equations

- Symmetric time space centered (STCS) differencing does the trick (Crank-Nicolson):

$$
\Psi^{n+1}=\Psi^{n}-\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\left(\Psi^{n}+\Psi^{n+1}\right)
$$

- Matrix solution: $\quad \Psi^{n+1}=\left(\mathbf{I}+\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right)^{-1}\left(\mathbf{I}-\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right) \Psi^{n}$.
-This is unitary :

$$
\Psi^{n+1}=\left[\frac{1-\frac{i \delta_{t} E}{2 \hbar}}{1+\frac{i \delta_{t}}{2 \hbar}}\right]^{n} \Psi^{1},
$$

-And conserves probability at each step :

$$
\left|\Psi^{n+1}\right|=\left|\Psi^{1}\right|
$$

Partial Differential Equations

- As you'd naively guess, this is also more accurate than the forward and backward only versions (by an order of magnitude)
- To show explicitly, write the exact evolution operator for one time step:

$$
e^{-\frac{i}{\hbar} \mathcal{H} \delta_{t}} \equiv e^{-z}=1-z+\frac{z^{2}}{2}-\frac{z^{3}}{6}+\ldots,
$$

- Here, we have $z=\mathcal{O}\left(\delta_{t}\right)$
- Backward scheme : $\frac{1}{1+z}=1-z+z^{2}-z^{3}+\ldots=e^{-z}+\mathcal{O}\left(\delta_{t}^{2}\right)$,
- Crank-Nicolson $\frac{1}{1+\frac{z}{2}}\left(1-\frac{z}{2}\right)=\left(1-\frac{z}{2}+\frac{z^{2}}{4}-\frac{z^{3}}{8}+\ldots\right)\left(1-\frac{z}{2}\right)$ scheme:

$$
=1-z+\frac{z^{2}}{2}-\frac{z^{3}}{4}+\ldots=e^{-z}+\mathcal{O}\left(\delta_{t}^{3}\right) .
$$

Partial Differential Equations

- We have the Schroedinger equation:

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi+V(x) \psi
$$

- Solved using Crank-Nicolson algorithm :

$$
\Psi^{n+1}=\left(\mathbf{I}+\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right)^{-1}\left(\mathbf{I}-\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right) \Psi^{n}
$$

- And this is basically a matrix inversion problem!
- Is it tractable?
-Incidentally, yes! It's a sparse matrix!

Partial Differential Equations

- For instance, impose Dirichlet BC's , and we get :

$$
\left(\frac{\partial^{2} \psi}{\partial x^{2}}\right)_{j}^{n}=\frac{1}{\delta_{x}^{2}}\left\{\begin{array}{ll}
\psi_{2}^{n}-2 \psi_{1}^{n}, & \text { for } j=1 \\
\psi_{j-1}^{n}+\psi_{j+1}^{n}-2 \psi_{j}^{n}, & \text { for } 1<j<N \\
\psi_{N-1}^{n}-2 \psi_{N}^{n}, & \text { for } j=N
\end{array} .\right.
$$

- if $\mathrm{N}=5$ then we get :

$$
\begin{aligned}
\mathbf{H}_{\text {Dirichlet }}= & -\frac{\hbar^{2}}{2 m \delta_{x}^{2}}\left(\begin{array}{ccccc}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2
\end{array}\right) \\
& +\left(\begin{array}{ccccc}
V_{1} & 0 & 0 & 0 & 0 \\
0 & V_{2} & 0 & 0 & 0 \\
0 & 0 & V_{3} & 0 & 0 \\
0 & 0 & 0 & V_{4} & 0 \\
0 & 0 & 0 & 0 & V_{5}
\end{array}\right) .
\end{aligned}
$$

Partial Differential Equations

- Imposing periodic BC's we get:
$\left(\frac{\partial^{2} \psi}{\partial x^{2}}\right)_{j}^{n}=\frac{1}{\delta_{x}^{2}} \begin{cases}\psi_{N}^{n}+\psi_{2}^{n}-2 \psi_{1}^{n}, & \text { for } j=1 \\ \psi_{j-1}^{n}+\psi_{j+1}^{n}-2 \psi_{j}^{n}, & \text { for } 1<j<N \\ \psi_{N-1}^{n}+\psi_{1}^{n}-2 \psi_{N}^{n}, & \text { for } j=N\end{cases}$
- if $\mathrm{N}=5$ then we get :

$$
\begin{aligned}
& \text { then we get : } \\
& \mathbf{H}_{\text {Periodic }}=-\frac{\hbar^{2}}{2 m \delta_{x}^{2}}\left(\begin{array}{ccccc}
-2 & 1 & 0 & 0 & 1 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
1 & 0 & 0 & 1 & -2
\end{array}\right) \\
&+\left(\begin{array}{ccccc}
V_{1} & 0 & 0 & 0 & 0 \\
0 & V_{2} & 0 & 0 & 0 \\
0 & 0 & V_{3} & 0 & 0 \\
0 & 0 & 0 & V_{4} & 0 \\
0 & 0 & 0 & 0 & V_{5}
\end{array}\right) .
\end{aligned}
$$

Partial Differential Equations

- So both of these are tridiagonal, so we can use our Matrix Methods from earlier in the semester to solve this very quickly
- Explicitly :
- Note that $\left(\mathbf{I}+\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right)^{-1}\left(\mathbf{I}-\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right)=\mathbf{Q}^{-1}-\mathbf{I}$,
-where: $\quad \mathbf{Q}=\frac{1}{2}\left(\mathbf{I}+\frac{i \delta_{t}}{2 \hbar} \mathbf{H}\right)$
- So, we solve the linear equation:

$$
\mathbf{Q} \chi=\Psi^{n}, \quad \chi=\mathbf{Q}^{-1} \Psi^{n}
$$

-We get an intermediate "chi", which we can use to solve:

$$
\Psi^{n+1}=\chi-\Psi^{n} .
$$

Partial Differential Equations

- Second : spectral analysis

Partial Differential Equations

- To solve this 'exactly', can look at the exact solution in the Fourier domain (and keep in mind that we're going to do the FFT later)
- Write the S.E. as

$$
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial^{2} x^{2}}+V(x) \psi(x, t) \equiv(\mathcal{T}+\mathcal{V}) \psi(x, t),
$$

- Here, T is a differential operator and V is a multiplicative operator in position space
- In Fourier domain :

$$
\tilde{\psi}(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-i p x / \hbar} \psi(x, t)
$$

- then we'd have:

$$
i \hbar \frac{\partial \tilde{\psi}(p, t)}{\partial t}=\frac{p^{2}}{2 m} \tilde{\psi}(p, t)+\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d q \tilde{V}(p-q) \tilde{\psi}(q, t) .
$$

Partial Differential Equations

- Here, the kinetic operator T is multiplicative, while the potential operator V is a convolution
-So, this is an integral equation in the Fourier domain
- Formal solution :

$$
\psi(x, t)=e^{-i(\mathcal{T}+\mathcal{V})\left(t-t_{0}\right) / \hbar} \psi\left(x, t_{0}\right)
$$

- Where :

$$
e^{\mathcal{A}} \equiv 1+\mathcal{A}+\frac{1}{2!} \mathcal{A} \mathcal{A}+\frac{1}{3!} \mathcal{A} \mathcal{A} \mathcal{A}+\cdots
$$

- T and V do not commute here, so exponential is not amenable to numerical evaluation

Partial Differential Equations

- To make the discrete time approximation, we use a small time step delta t :

$$
\psi\left(t+\delta_{t}\right)=e^{-i(\mathcal{T}+\mathcal{V}) \delta_{t} / \hbar} \psi(x, t)
$$

- In this case, T and V can be disentangled (linear approximation ===> they commute)
- Can use Baker-Campell-Hausdorff formula :
-http://en.wikipedia.org/wiki/Baker-CampbellHausdorff formula
-This states that :

$$
e^{\mathcal{A}} e^{\mathcal{B}}=e^{\mathcal{C}}
$$

-if and only if :

$$
\mathcal{C}=\mathcal{A}+\mathcal{B}+\frac{1}{2}[\mathcal{A}, \mathcal{B}]+\cdots
$$

Partial Differential Equations

- Commutator is :

$$
[\mathcal{T}, \mathcal{V}]=-\frac{\hbar^{2}}{2 m}\left[\frac{d^{2}}{d x^{2}}, V(x)\right]=-\frac{\hbar^{2}}{2 m} V^{\prime \prime}(x)-\frac{\hbar^{2}}{m} V^{\prime}(x) \frac{d}{d x} \neq 0 .
$$

- So, the simplest factorization has an error of $\mathcal{O}\left(\delta_{t}^{2}\right)$:

$$
e^{-i(\mathcal{T}+\mathcal{V}) \delta_{t} / \hbar} \approx e^{-i \mathcal{T} \delta_{t} / \hbar} e^{-i \mathcal{V} \delta_{t} / \hbar}
$$

- The symmetric factorization, however, has an error $\mathcal{O}\left(\delta_{t}^{3}\right)$:

$$
e^{-i(\mathcal{T}+\mathcal{V}) \delta_{t} / \hbar} \approx e^{-i \mathcal{V} \delta_{t} /(2 \hbar)} e^{-i \mathcal{T} \delta_{t} / \hbar} e^{-i \mathcal{V} \delta_{t} /(2 \hbar)}
$$

-In addition, this is unitary so preserves the normalization of the wavefunction

Partial Differential Equations

- Split the time evolution operator into a symmetric factorization
- Evolve by :
-Multiply by first half-step : $\psi(x, t) \rightarrow \psi_{1}(x)=e^{-i V(x) \delta_{t} /(2 \hbar)} \psi(x, t)$. (diagonal in position space)
-Fourier transform to p-space : $\tilde{\psi}_{1}(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-i p x / h} \psi_{1}(x)$.
-Multiply by kinetic evolution (diagonal in momentum space)

$$
\tilde{\psi}_{1}(p) \rightarrow \tilde{\psi}_{2}(p)=e^{-i p^{2} \delta_{t} /(2 m \hbar)} \tilde{\psi}_{1}(p) .
$$

-Fourier transform back to x-space : $\psi_{2}(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{i p x / \hbar} \tilde{\psi}_{2}(p)$.
-Multiply by the second half step evolution operator (diagonal in position space)

$$
\psi\left(x, t+\delta_{t}\right)=e^{-i V(x) \delta_{t} /(2 \hbar)} \psi_{2}(x)
$$

Hyperbolic PDES

Partial differential equations

- We now turn to the final chapter in our investigation of PDE's : hyperbolic waves
- This class covers a wide range of physical phenomena :
-Light waves
-Sound waves
-Water waves
-etc
- The wave equation is

Source term

Partial differential equations

- There is a unique solution if
-the initial values of $u\left(\mathbf{r}, t_{0}\right)$ and $\partial u(\mathbf{r}, t) /\left.\partial t\right|_{t=t_{0}}$ are specified
-the boundary values are specified on a closed region
- So examine the 1-d equation with no source term:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- This factorizes into simpler first-order equations:

$$
\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) .
$$

Partial differential equations

- Solutions to this equation are given by a superposition of left- and right-moving waves:

$$
\begin{aligned}
& u(x, t)=g(x+c t)+f(x-c t), \\
& \left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) g(x+c t)=0, \quad\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) f(x-c t)=0,
\end{aligned}
$$

- Here, g and f are determined from initial conditions

Partial differential equations

- Examine one of the equations ("right-moving" one):

$$
\frac{\partial u(x, t)}{\partial t}=-c \frac{\partial u(x, t)}{\partial x}
$$

- The analytical solution here is :

$$
u(x, t)=f_{0}(x-c t)
$$

- where $\mathrm{fO}(\mathrm{x})$ is the initial condition at $\mathrm{t}=0$
- This basically means the initial shape simply propagates with a velocity c
-This is called "advection"
- Contrast with cases where the wave shape depends on position
-This is "convection" (hot fluid rising, colder fluid sinking, for instance)

Partial differential equations

- In the advective case, the flux is conserved:

$$
\frac{\partial \vec{u}}{\partial t}=-\frac{\partial \vec{F}(\vec{u})}{\partial x}
$$

- Here, $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is a vector of functions, and the vector F is the conserved flux of u
- Now, suppose that $u(x, t)$ is the density at point x and time t
- Total amount (mass) of fluid in a boundary is:

$$
M(t)=\int_{x_{L}}^{x_{R}} u(x, t) d x
$$

- The rate of change of filuid in the region is:

$$
\begin{aligned}
& \frac{d}{d t} M(t)=\frac{d}{d t} \int_{x_{L}}^{x_{R}} u(x, t) d x=\int_{x_{L}}^{x_{R}} \frac{\partial u(x, t)}{\partial t} d x \\
& =-\int_{x_{L}}^{x_{R}} \frac{\partial F(u(x, t))}{\partial x} d x=F\left(u\left(x_{L}, t\right)\right)-F\left(u\left(x_{R}, t\right)\right),
\end{aligned}
$$

Partial differential equations

- This should remind you of your vector calculus (Stoke's theorem, etc)
-http://en.wikipedia.org/wiki/Flux
-http://en.wikipedia.org/wiki/Stokes' theorem

Partial differential equations

- In 1-d, should be clear how we may discretize this
- Again can try the forward time-centered solution as we did last lecture (generalized Euler's method!)

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{c \delta_{t}}{2 \delta_{x}}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
$$

- So we try the FTCS :

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{c \delta_{t}}{2 \delta_{x}}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
$$

- The spatial derivative was approximated by a symmetric difference :

$$
\frac{\partial u(x, t)}{\partial x} \simeq \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \delta_{x}}
$$

- As we saw last class, the "bare bones" Euler-step-like solution is unconditionally unstable

$$
e^{i k j \delta_{x}}-\frac{c \delta_{t}}{2 \delta_{x}}\left(e^{i k(j+1) \delta_{x}}-e^{i k(j-1) \delta_{x}}\right)
$$

Partial differential equations

- Instead, try the "Lax" method:

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{c \delta_{t}}{2 \delta_{x}}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) .
$$

- The mode amplification factor in this case is:

$$
\begin{aligned}
& \xi=\frac{1}{2}\left(e^{i k \delta_{x}}+e^{-i k \delta_{x}}\right)-\frac{c \delta_{t}}{2 \delta_{x}}\left(e^{i k \delta_{x}}-e^{-i k \delta_{x}}\right), \\
& |\xi|^{2}=\cos ^{2}\left(k \delta_{x}\right)+\left(\frac{c \delta_{t}}{\delta_{x}}\right)^{2} \sin ^{2}\left(k \delta_{x}\right) .
\end{aligned}
$$

- If we choose $\delta_{t}=\delta_{x} / c$ then flux is exactly conserved
- Any other choice of delta t will make this either decay or grow without bound

Partial differential equations

- This is the Courant-Freidrichs-Lewy condition:

$$
\frac{c \delta_{t}}{\delta_{x}} \leq 1
$$

(CFL number)

- Consider the domain of dependency
- For any differencing scheme, the domain consists of the set of points in the "past cone"
- If the differencing domain is wider in x than the domain of dependency, then this is stable
- If the differencing domain is narrower, then unstable

Partial differential equations

- Can also add terms of order δ_{t}^{2} in the discretization
- Using $\partial u / \partial t=-c \partial u / \partial x$ then we get:

$$
\begin{aligned}
u\left(x, t+\delta_{t}\right) & =u(x, t)+\delta_{t} \frac{\partial u}{\partial t}+\frac{\delta_{t}^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}+\ldots \\
& \simeq u(x, t)-c \delta_{t} \frac{\partial u}{\partial x}+\frac{c^{2} \delta_{t}^{2}}{2} \frac{{ }^{2} u}{\partial x^{2}}, \\
u_{j}^{n+1} & =u_{j}^{n}-\frac{c \delta_{t}}{2 \delta_{x}}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+\frac{c^{2} \delta_{t}^{2}}{2 \delta_{x}^{2}}\left(u_{j+1}^{n}+u_{j-1}^{n}-2 u_{j}^{n}\right) .
\end{aligned}
$$

- This is the "Lax-Wendroff" method
- The stability is the same CFL condition as before in the Lax method
- Note that the added term is a discretized diffusive term
$\frac{\partial n(x, t)}{\partial t}=D \frac{\partial^{2} n(x, t)}{\partial x^{2}}, \quad n_{i}^{n+1}=n_{i}^{n}+\frac{D \delta_{t}}{\delta_{x}^{2}}\left(n_{i+1}^{n}+n_{i-1}^{n}-2 n_{i}^{n}\right)$.
- General feature : diffusive terms in recurrence formulae have damping effects on the amplitude

Partial differential equations

- Can also consider nonlinear wave equations
-Don't preserve shape in general
-Linear wave equation has linear dispersion!
- Dispersion is the relation between wave number and frequency.
-Plane wave : $\quad u(x, t) \sim e^{i(k x-\omega t)} \quad \Rightarrow \quad(-i \omega-i c k)(-i \omega+i c k)=0$
$\Rightarrow \quad \omega= \pm c k$.
- Here, all the modes move with the same velocity c
- Wave velocity is omega / k
-What if the velocity depends on the wave number?
-Example: $\frac{\partial u(x, t)}{\partial t}=-c \frac{\partial u(x, t)}{\partial x}-d \frac{\partial^{3} u(x, t)}{\partial x^{3}}$.
-Plugging in $\quad e^{i k x-i \omega t}$ (plane wave), we get a dispersion: $\omega=c k-d k^{3}$. Wave velocity depends on k !

Partial differential equations

- Now let's go back to advection equation and add a diffusive term

$$
\frac{\partial u(x, t)}{\partial t}=-c \frac{\partial u(x, t)}{\partial x}+D \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

- From plane wave, we get the dispersion relation:

$$
\omega=c k-i D k^{2} \Rightarrow e^{i k(x-c t)-D k^{2} t}
$$

Partial differential equations

- Some nonlinear equations can have traveling waves
- Example is Burgers' equation:
-http://en.wikipedia.org/wiki/Burgers'_equation

$$
\frac{\partial u}{\partial t}=-\alpha \frac{\partial u}{\partial x}-\beta u \frac{\partial u}{\partial x}
$$

- The last term is nonlinear in the wave amplitude
- Can solve by calculating partial derivatives:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=-(\alpha+\beta u) f^{\prime}-\beta f^{\prime} t \frac{\partial u}{\partial t} \Rightarrow \frac{\partial u}{\partial t}=-(\alpha+\beta u) f^{\prime} /\left(1+\beta f^{\prime} t\right), \\
\frac{\partial u}{\partial x}=f^{\prime}-\beta f^{\prime} t \frac{\partial u}{\partial x} \Rightarrow \frac{\partial u}{\partial t}=f^{\prime} /\left(1+\beta f^{\prime} t\right) .
\end{gathered}
$$

- This is solved if we have a right-moving wave with functior $u(x, t)=f(x-(\alpha+\beta u) t)$,
- This wave moves with velocity $c=\alpha+\beta u(x, t)$

Partial differential equations

- Here, the velocity depends on the density of the wave!
- This leads to breaking and shock fronts:

Partial differential equations

- The Burgers' equation was introduced in 1948 as a simple model of shock propagation J.m. Burges, Adv. App. Ment. 1,171 (1948)

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}
$$

- First, set nu = 0 and we get

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 .
$$

- Compare to the linear wave equation:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

- Schematically the speed is equal to "u"!
- Peaks travel faster than troughs in the wave
- Eventually we get breaking, which we cannot represent as a function since it is multi-valued
- Passes through a shock front (solution is discontinuous)

Partial differential equations

- This kind of PDE was studied by Godunov in 1959
S.K. Godunov, Mat. Sb. 47, 271 (1959)
- This is a class of "Riemann problem"
- IVP for a PDE which has a piecewise constant initial value function, with a discontinuity (like a step function)
- Need to find an exact or approximate algorithm for this
- called a "Riemann solver"

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{\tau}{h}\left[F_{j+\frac{1}{2}}-F_{j-\frac{1}{2}}\right]+\frac{\nu \tau}{h^{2}}\left[u_{j+1}+u_{j-1}-2 u_{j}\right],
$$

- Here, $F_{j \pm \frac{1}{2}}$ is the average flux on the cells to the left and right of the lattice point j, respectively
- Solve these from Riemann problems in the cells to the right and left of j using "upwind" initial data:

$$
u_{j}^{(+)}=\left\{\begin{array}{ll}
u_{j} & \text { if } u_{j}>0 \\
0 & \text { otherwise }
\end{array} \quad u_{j}^{(-)}= \begin{cases}u_{j} & \text { if } u_{j}<0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Partial differential equations

- The solution in the left cell is :

$$
F_{j-\frac{1}{2}}=\max \left\{\frac{1}{2}\left(u_{j-1}^{(+)}\right)^{2}, \frac{1}{2}\left(u_{j}^{(-)}\right)^{2}\right\}
$$

- and on the right it is :

$$
F_{j+\frac{1}{2}}=\max \left\{\frac{1}{2}\left(u_{j}^{(+)}\right)^{2}, \frac{1}{2}\left(u_{j+1}^{(-)}\right)^{2}\right\} .
$$

