PY410 / 505
 Computational Physics 1

Salvatore Rappoccio

Probabilistic methods

Casino Monte Carlo

- A large number of processes in nature are random
- To some extent, we're all basically familiar with it
-Radioactive decay
-Flipping a coin
- In fact, quantum mechanics inherently is random

Probabilistic methods

- What computational issues can come up with random numbers?
-Computers are, by very nature, NOT random
-So we need to make them LOOK random
-The question is, how random is "random enough"?
- If you want something truly random, you'll need to hook your computer up to a Geiger counter or something, and count decays (say, from atmospheric muons)
- Sounds silly, but it isn't

Probabilistic methods

- Chapter 7 in Numerical Recipes deals with generating random numbers
-"Deviates"
- How to formalize random number generation (RNG)?
-Given a set S of N uniformly distributed random numbers $\times 1 \ldots \mathrm{xN}$, then they must satisfy :
- Given n generated numbers, the next number x_n+1 must be independent and uncorrelated
- $x _n+1$ should be equally likely to be a member of S
-For the example of an unbiased coin toss, S has 1 or 0 (heads or tails)
-Each toss is independent of the previous and so a priori equally likely to be 1 or 0

Probabilistic methods

-Why do computers have trouble here?

- They are inherently deterministic at the present time (that's why they're so great to use!)
- We generate "pseudo" random numbers
-The statistical properties (i.e. equally likely in some region of interest) is "good enough", but "good enough" depends on the situation
- For instance, if we use linear congruential algorithms of the typ $x_{n+1}=\left(a x_{n}+c\right) \quad \underset{\text { "multiplier" }}{c} \bmod \quad$ "increment" $_{m,}$,
-This generates a sequence of random integers in the set $\{0,1, \ldots, m-1\}$

Probabilistic methods

- Why does this help?
-We typically choose a, c, and m to be large(ish) relatively prime numbers
-If we inappropriately choose a,c, or m, we can have repetition
-If any x_n = x_0, then the process will repeat
-We initialize this with a "seed" $x 0$, and away goes the sequence

Source	m	(multiplier) a	(increment) c	output bits of seed in rand()/ Random(L)
Numerical Recipes	2^{32}	1664525	1013904223	
Borland C/C++	2^{32}	22695477	1	bits $30 . .16$ in rand(), $30 . .0$ in /rand()
glibc (used by GCC) ${ }^{[5]}$	2^{31}	1103515245	12345	bits $30 . .0$
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ ${ }^{[6]}$	2^{31}	1103515245	12345	bits $30 . .16$
Borland Delphi, Virtual Pascal	2^{32}	134775813	1	bits $63 . .32$ of (seed ${ }^{*}$ L)
Microsoft Visual/Quick C/C++	2^{32}	214013 (343FD ${ }_{16}$)	2531011 (269EC3 $_{16}$)	bits $30 . .16$
Microsoft Visual Basic (6 and earlier) ${ }^{[7]}$	2^{24}	1140671485 (43FD43FD ${ }_{16}$)	12820163 (C39EC3 ${ }_{16}$)	

Probabilistic methods

- There are several industrial-strength generators on the market
- But, if you need "really really" random numbers, use with extreme care
-C++11, R, Python, Ruby, IDL, Maple, Matlab, GNU MPAL, BOOST, Glib, and NAG :
- http://en.wikipedia.org/wiki/Mersenne twister
- Long period of 2^19937-1
- Passes lots of randomness tests
- NOT suitable for cryptography : observing a certain number of iterations will allow you to predict the rest of the sequence
-Numerical recipes recommends
- http://en.wikipedia.org/wiki/Xorshift
- Period of 2^128-1

Probabilistic methods

- Example: the "sparky" trigger
- In particle physics, we throw away almost all of our data
- Only 1 in 10^{5} is even "remotely interesting
- The really interesting stuff is only 1 in ~ 1016 !
- Given this, we have to often have "REALLY" random numbers to test
- So, we set up a spark chambe to actually generate random numbers so our triggers could perform adequate tests
proton - (anti)proton cross sections

Probabilistic methods

- A few tests will be performed here :
-The period of the generator should be much larger than the length of the generated sequence
-A simple "eyeball test" (plotting ($\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}+1$) as (x, y) pairs) should reveal no structure
- The chi2 statistic should satisf $\frac{\chi^{2}}{\text { d.o.f. }} \simeq 1$.

Probabilistic methods

- Randomness is often used in simulations
- Lots of things are random in nature
- We often know their distribution, but cannot predict individual events :
-Standing a pencil on its side, what is the angle (wrt the desk) when it falls?

-What is the final angle between multiple scatterings of particles off of a lattice?

Probabilistic methods

- So, to simulate these events, we need random (or pseudorandom) generators
- Example : Quantum mechanically, can produce Higgs bosons in several ways

- Can't even ask (quantum mechanically) which will occur before it happens
- They all have a likelihood!
- So, to generate them, you have to randomly sample between these four (with appropriate weights)

Probabilistic methods

- These methods are often called "Monte Carlo" after the Casino Monte Carlo in Monaco
- Much better name than "pseudo-random-number probabilistic event simulator"

Probabilistic methods

- Why does this help?
- Suppose you take a system of 100 electrons in either "spin up" or "spin down" configurations
- Total number of states is $=2^{100}=1.27 \times 10^{30}$
- Already intractable to list them (at one billion / second, would take 4.02×10^{13} years!)
- If you select one at random for any purpose, need to simply find a sufficiently good randomization algorithm!

Probabilistic methods

- Markov-Chain MC (MCMC) :
-Sequence of elements chosen from a fixed set using a probabilistic rule
-Chain is constructed by adding the elements sequentially
-Given the most recently added element, next element only depends on most recent addition
-Formally, suppose x and y are members of a set S
-The transition probability function is

$$
T(x \rightarrow y), \quad \sum_{y} T(x \rightarrow y)=1 .
$$

-Example : Random walks

Probabilistic methods

- Random walks are simple examples of MCMC's
- Suppose a walker can occupy any site on an infinitelylong 1-d lattice
- The walker tosses a coin and decides to go left or right (1 or 0)
- The transition probability is therefore

$$
T(x \rightarrow y)= \begin{cases}\frac{1}{2} & \text { if } y=x-1 \\ \frac{1}{2} & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

- In equilibrium, suppose the lattice is periodic now, with L lattice points on a circle
-Then we can take L->infinity to examine the properties
- Probability i $: P(x)=\frac{1}{L}$:
(walker visits eacn site the same number of times)

Probabilistic methods

- The walker's position after n steps depends on the sequence of tosses in the past, and cannot be predicted

$$
x_{n}=\sum_{i=1}^{n} s_{i}, \quad s_{i}= \pm 1
$$

- Over a large number of n -step walks the average is zero -(From symmetry : left and right are equally likely!)
- However, each xn is not zero, and DOES increase:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\left\langle\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i} s_{j}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} s_{i}^{2}\right\rangle+\left\langle\sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} s_{i} s_{j}\right\rangle \\
& =n,
\end{aligned}
$$

Diffusion equation!

Probabilistic methods

- RMS displacement is

$$
\sqrt{\left\langle x_{n}^{2}\right\rangle}=\sqrt{n} .
$$

- Diffusion constant is

$$
\left\langle x_{n}^{2}\right\rangle=2 D n
$$

- So, for a 1-d walk, D = 1/2

Probabilistic methods

- Another example of MC methods : integration of functions
- Sprinkle the area you're interested with a "dust" of points uniformly distributed
- The fraction "below the curve" (or in N-dim, within the surface) is the integral!

Probabilistic methods

- Formally, the integral is :

$$
I=\int_{V} d^{d} \mathbf{x} f(\mathbf{x})
$$

- Now we choose N uniformly distributed points in V , and estimate $I \simeq \frac{V}{N} \sum_{n=0}^{N-1} f\left(\mathbf{x}_{i}\right)$
- The error of repeating this M times is :

$$
I_{m}=\frac{b-a}{N} \sum_{n=0}^{N-1} f\left(\mathbf{x}_{m, n}\right), \quad m=0 \ldots M-1
$$

- Can just compute the mean and standard deviation:

$$
\begin{aligned}
\bar{f}=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=1}^{N} f\left(\mathbf{x}_{m, n}\right) \quad \sigma_{M} & =\sqrt{\frac{1}{M} \sum_{m=0}^{M-1} I_{m}^{2}-\left(\frac{1}{M} \sum_{m=0}^{M-1} I_{m}\right)^{2}} \\
& =\sqrt{\frac{1}{M} \sum_{m=0}^{M-1}\left(I_{m}-\frac{1}{M} \sum_{m^{\prime}=0}^{M-1} I_{m^{\prime}}\right)^{2}}
\end{aligned}
$$

Probabilistic methods

- If the measurements are independent and randomly distributed about the mean then:

$$
\sigma_{M}^{2}=\frac{(b-a)^{2}}{N} \sigma_{f}^{2}
$$

- where

$$
\sigma_{f}^{2}=\overline{f^{2}}-(\bar{f})^{2}=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=1}^{N} f\left(\mathbf{x}_{m, n}\right)^{2}-\left(\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=1}^{N} f\left(\mathbf{x}_{m, n}\right)\right)^{2}
$$

- Thus for MC integration:

$$
I=\int_{V} d^{d} \mathbf{x} f(\mathbf{x}) \simeq V\left[\frac{1}{N} \sum_{n=1}^{N} f\left(\mathbf{x}_{i}\right) \pm \frac{\sigma_{f}}{\sqrt{N}}\right]
$$

Probabilistic methods

- Compare this with our previous integration methods
- For instance, Midpoint method
- We have

$$
\frac{\sigma_{f}}{\sqrt{N}}<\frac{\overline{f^{\prime \prime}}}{N^{2 / d}}
$$

- MC integration "wins" when $d>4$ (roughly)

Probabilistic methods

-What if you want nonuniform samples?
-Example: Gaussian distribution, exponential distribution, line segment
-Still use the uniformly-distributed "deviates"
-Then change variables $(x->y(x))$ to produce another distribution :

$$
P(y)=P(x)\left|\frac{d x}{d y}\right|, \quad \int d y P(y)=\int d x P(x)=1
$$

Probabilistic methods

- Uniform line segment :
-Basically trivial, you just redefine $(0,1)$ to (a, b) and you're done:

$$
y(x)=a+(b-a) x, \quad\left|\frac{d x}{d y}\right|=\frac{1}{|b-a|}
$$

$P(x)=\left\{\begin{array}{ll}1 & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{array} \quad \Rightarrow \quad P(y)= \begin{cases}\frac{1}{|b-a|} & \text { for } a<y<b \\ 0 & \text { otherwise }\end{cases}\right.$

Probabilistic methods

- Exponential distribution :

$$
P(y)=\frac{1}{\lambda} e^{-y / \lambda}, \quad 0<y<\infty
$$

- Then we have

$$
\begin{gathered}
y(x)=-\lambda \log (x), \quad\left|\frac{d x}{d y}\right|=\frac{x}{\lambda}=\frac{e^{-y / \lambda}}{\lambda}=P(y) . \\
P(x)= \begin{cases}1 & \text { for } 0<x<1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- so the distribution is

$$
P(y)=\left\{\begin{array}{ll}
\frac{e^{-y / \lambda}}{0^{\lambda}} & \text { for } 0<y<\infty \\
\text { otherwise }
\end{array} .\right.
$$

Probabilistic methods

- Gaussian distribution ("normal" distribution)

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

- Cannot convert with elementary functions
- However, consider the product of TWO Gaussian distributions in x and y :

$$
\begin{aligned}
\int d x \int d y P(x) P(y) & =\frac{1}{2 \pi \sigma^{2}} \int d x \int d y e^{-\left[(x-\mu)^{2}+(y-\mu)^{2}\right] /\left(2 \sigma^{2}\right)} \\
& =\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \int_{0}^{\infty} \frac{d r^{2}}{2 \sigma^{2}} e^{-r^{2} /\left(2 \sigma^{2}\right)}
\end{aligned}
$$

- We have switched to polar coordinates:

$$
x-\mu=r \cos \theta, \quad y-\mu=r \sin \theta .
$$

Probabilistic methods

- This is the product of a uniform distribution on [0,2pi] with an exponential distribution in r^{2} !
- So we can generate theta and r, convert to x, y !

$$
\theta=2 \pi r_{1}, \quad r=\sqrt{-2 \sigma^{2} \log r_{2}}
$$

-"Box-Muller" algorithm

Probabilistic methods

- General version of transformation method:

-Can be used even if you only know $F(y)$ numerically

Probabilistic methods

- To generate this kind of sequence, though, the Metropolis-Hastings algorithm works well
-http://en.wikipedia.org/wiki/MetropolisHastings_algorithm
-Type of Markov Chain Monte Carlo (MCMC)
-One major advantage : it does not require the overall normalization of a distribution to be known to draw a random sequence from it!
- Advantageous when using Bayesian statistics
- Original papers are from Metropolis et al and Hastings :
- J. Chem. Phys. 21, 1087 (1953)
-Biometrika 57, 97 (1970)

Probabilistic methods

- This is a Markov Chain MC so the "next" step depends only on the "current" step
-This is a type of random walk, similar to other MCMC methods
- Suppose we want to generate a sequence from a probability distributic $P(\vec{x})$
- If we visualize this in d-dimensions, then $P(x)$ is a mountainous terrain and the sequence is the steps of a hiker

Probabilistic methods

- Heuristically :
-Explore the "terrain" a bit
- Find peaks, valleys
-Then generate the steps for the MC application
-Record steps every so often
- As more and more sample values are produced, the distribution more closely approximates the desired distribution $\mathrm{P}(\mathrm{x})$

Probabilistic methods

- More specifically, we have steps :
"thermalization" steps to find the peaks
$\begin{aligned} & x_{0} \rightarrow x_{1_{t}} \rightarrow x_{2_{t}} \rightarrow \ldots \rightarrow x_{N_{t}} \\ & \rightarrow\left(\begin{array}{c}x_{1_{1}} \\ x_{2_{1}} \\ x_{3_{1}} \\ \\ \\ \\ \\ \end{array} \rightarrow x_{1_{2}} \rightarrow x_{2_{2}} \rightarrow \ldots \rightarrow x_{1_{\nu}} \rightarrow \ldots \rightarrow x_{2_{\nu}}\right. \\ & \text { Discard all but every "nu" iterations "Sampling frequency" nu }\end{aligned}$

Probabilistic methods

-Why sample?
-Individual steps may be correlated

- If walker's step size is much smaller than typical distances between "peaks" in the terrain
- To emulate a "truly" random sequence, we don't want to get "stuck" between peaks

Probabilistic methods

- Walking algorithm :
- Suppose we have the walker at a point $\vec{x}_{\text {current }}$
- Then the next step $\vec{x}_{\text {next }}$ is determined by
-Choose a "rrial" point randomly in the neighborhood of current x ($\left.\vec{x}_{\text {trial }}\right)$
- 1-d : maximum step size (delta) may be used, and choose trial x in a uniform interval $\left[x_{\text {current }}-\delta, x_{\text {current }}+\delta\right]$
- n -d : could try a fixed sphere of radius delta
-Requirement is that the probability $P_{\text {try }}\left(\vec{x}_{\text {current }} \rightarrow \vec{x}_{\text {trial }}\right)$ should be SYMMETRIC: $P_{\text {try }}(\vec{x} \rightarrow \vec{y})=P_{\text {try }}(\vec{y} \rightarrow \vec{x})$
- In other language, the conditional probabilities must be equal :

$$
P(x \mid y)=P(y \mid x)
$$

-Calculate the next step by the ratio of probabilities (or "likelihoods") $r=P\left(\vec{x}_{\text {trial }}\right) / P\left(\vec{x}_{\text {current }}\right)$

Probabilistic methods

- Given $r=P\left(\vec{x}_{\text {trial }}\right) / P\left(\vec{x}_{\text {current }}\right)$
- If r >=1, walker is moving "uphill" (toward higher probability)
-Trial step is accepted, iterate
-The "acceptance probability" is 1 by definition (it's accepted, $\left.P_{\text {accept }}\left(\vec{x}_{\text {current }} \rightarrow \vec{x}_{\text {trial }}\right)=1\right)$
- If $r<1$, walker is moving "downhill" (toward lower probability)
-Accept only if displacement is not too large :
- Generate uniform deviate $n_{\text {random }}$
- Accept if $r>n_{\text {random }}$, iterate
- Reject otherwise, remain at current "step"
- "Acceptance probability" in this case is r

Probabilistic methods

- What about those thermalization steps? Do they really thermalize?
- Imagine a large ensemble of walkers distributed with density $\rho(\vec{x})$
- Want to show that the ensemble density becomes proportional to $\mathrm{P}(\mathrm{x})$ and then remain invariant
- According to the ergodic hypothesis, the average properties of an ensemble of systems should be the same as the average over time in a single system in thermal equilibrium
-http://en.wikipedia.org/wiki/Ergodic hypothesis
- So, we'll use the former to demonstrate the latter

Probabilistic methods

- Recall the transition probability for a walker to move from x to y is determined by two consecutive and independent decisions:

$$
T(\vec{x} \rightarrow \vec{y})=P_{\mathrm{try}}(\vec{x} \rightarrow \vec{y}) \times P_{\mathrm{accept}}(\vec{x} \rightarrow \vec{y})
$$

- If these $T(x->y)$ are symmetric, then:

$$
\frac{T(\vec{x} \rightarrow \vec{y})}{T(\vec{y} \rightarrow \vec{x})}=\frac{P_{\text {accept }}(\vec{x} \rightarrow \vec{y})}{P_{\text {accept }}(\vec{y} \rightarrow \vec{x})}=\frac{P(\vec{y})}{P(\vec{x})} .
$$

- Second equality can just be verified directly:

$$
\begin{aligned}
& \text {-if } \mathrm{P}(\mathrm{y})>\mathrm{P}(\mathrm{x}), P_{\text {accept }}(\vec{x} \rightarrow \vec{y})=1, \\
& P_{\text {accept }}(\vec{y} \rightarrow \vec{x})=P(\vec{x}) / P(\vec{y}) \\
& \text {-if } \mathrm{P}(\mathrm{y})<\mathrm{P}(\mathrm{x}), P_{\text {accept }}(\vec{x} \rightarrow \vec{y})=P(\vec{y}) / P(\vec{x}),
\end{aligned}
$$

$$
P_{\text {accept }}(\vec{y} \rightarrow \vec{x})=1_{6}
$$

Probabilistic methods

- The change in number density of walkers at x when all the walkers in the ensemble take a step:

$$
\begin{aligned}
\Delta \rho(\vec{x}) & =\int d^{d} y[\rho(\vec{y}) T(\vec{y} \rightarrow \vec{x})-\rho(\vec{x}) T(\vec{x} \rightarrow \vec{y})] \\
& =\rho(\vec{x}) \int d^{d} y T(\vec{y} \rightarrow \vec{x})\left[\frac{\rho(\vec{y})}{\rho(\vec{x})}-\frac{P(\vec{y})}{P(\vec{x})}\right] .
\end{aligned}
$$

- If rho(y)/rho(x) exceeds "equilibrium value" $P(y) / P(x)$:
- will get a + correction
- If rho(y)/rho(x) is too small :
-will get a - correction
- If rho is proportional to P, we'll have "detailed balance":

$$
\rho(\vec{y}) T(\vec{y} \rightarrow \vec{x})=\rho(\vec{x}) T(\vec{x} \rightarrow \vec{y})
$$

Probabilistic methods

- Choices to make :
-Number of walkers
-Step size
-Thermalization steps
-Sampling frequency
- All of these depend on the problem at hand
- You have to generally use trial and error to make sure there aren't large dependencies on the parameters

Probabilistic methods

- An excellent example of using probabilistic methods is in statistical mechanics
- Makes sense : it's all about probability and statistics!
- A few definitions :
-Microstates: configuration of a system
-Probability of ith microstate is

$$
p_{i}=\lim _{\mathcal{N} \rightarrow \infty} \frac{n_{i}}{\mathcal{N}} \stackrel{\text { Number of systems in the ith }}{\text { microstate }}
$$

-Average value (e.g. for energy) $\mathrm{i}\langle E\rangle=\sum_{i} p_{i} E_{i}$.
-Variance is $\left\langle(E-\langle E\rangle)^{2}\right\rangle=\sum_{i} p_{i} E_{i}^{2}-\left(\sum_{i} p_{i} E_{i}\right)^{2}$.

Probabilistic methods

- Examine the canonical and microcanonical ensembles:
-Canonical :
- fixed number of constituents (N), fixed volume (V)
- exchange energy with thermal reservoir at temperature T
- Probability of a microstate with energy E is Bolzmann distribution:

$$
p_{i}=\frac{e^{-E_{i} /\left(k_{\mathrm{B}} T\right)}}{Z}
$$

- Partition function is:

$$
Z(N, V, T)=\sum_{i} e^{-E_{i} /\left(k_{\mathrm{B}} T\right)},
$$

-Microcanonical :

- fixed number of constituents (N). fixed total enerav (E). fixed volume (V)
- Probability of a microstate $p_{i}=\left\{\begin{array}{ll}\frac{1}{\mathcal{N}} & \text { if } E=E_{i} \\ 0 & .\end{array}\right.$. with energy E is :

Probabilistic methods

- Example of a system we can investigate is the hard-disk gas in two dimensions
-Investigated by Metropolis et al with the MC methods above
-J. Chem. Phys. 21, 1087 (1953)
-"Equation of State Calculations by Fast Computing Machines"
- "Fast" here meaning it could multiply two 40-bit ints in 1 millisecond (1 kHz)
- For contrast, one core on your phone is 2.4 million times faster

Probabilistic methods

- Look at the system as a Maxwell-Boltzmann gas at fixed volume and temperature
- Energy is

$$
E=\text { K.E. }+ \text { P.E. }=\frac{m}{2} \sum_{i} \mathbf{v}_{i}^{2}+\sum_{\text {pairs } i j} U\left(r_{i j}\right),
$$

- Pairwise potential energy function :

$$
U(r)=\left\{\begin{array}{ll}
0 & \text { if } r>\sigma \\
\infty & \text { if } r \leq \sigma
\end{array},\right.
$$

- In an ensemble of systems, at temperature T , probability that the system has energy E is a Boltzmann distribution

Number of
microstates
ser of

$$
-]=\exp \left[-\frac{E-T S}{k_{\mathrm{B}} T} \uparrow\right]=\exp \left[-\frac{F_{\mathrm{k}}}{k_{\mathrm{B}} T}\right]
$$

Entropy

Probabilistic methods

- Partition function is

$$
Z=\sum_{E} W(E) \exp \left[-\frac{E}{k_{\mathrm{B}} T}\right]
$$

- The equation of state relates pressure p, volume V and temperature T :

$$
p V=\left.N k_{\mathrm{B}} T \frac{\partial \log Z}{\partial \log V}\right|_{T, N} .
$$

Probabilistic methods

- MC simulation of hard disks from Metropolis et al:
-Close-pack N=224 disks of diameter d0 as follows
1090 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Fig. 2. Initial trigonal lattice.

Ftg. 3. The close-packed arrangement for determining A_{0}.

- Fix $A_{0}=\sqrt{3} d_{0}^{2} N / 2=1$ and vary d0, hence number is N
- Apply periodic boundary conditions

Probabilistic methods

- Radial distribution function measures correlations between particles separated at distance r
- Can be used to distinguish solid, liquid, gases
-See Gould-Tobochnik Chapter 8 Section 8.5
- Equation of state is deduced from the radial distribution function:

Fig. 4. A plot of $(P A / N k T)-1$ versus $\left(A / A_{0}\right)-1$. Curve A (solid line) gives the results of this paper. Curves B and C (dashed and dot-dashed lines) give the results of the free volume theory and of the first four virial coefficients, respectively.

FIG. 5. The radial distribution function N_{m} for $\nu=5,\left(A / A_{0}\right)$ $=1.31966, K=1.5$. The average of the extrapolated values of N_{t} in $\bar{N}_{\mathrm{i}}=6301$. The resultant value of $(P A / N k T)-1$ is
$64 \bar{N} / \bar{t}_{\mathrm{t}} / N^{2}\left(K^{2}-1\right)$ or 6.43 . Values after 16 cycles, \bullet after 32 , \times and after 48,0 .

Probabilistic methods

- They showed

$$
P A=N k_{\mathrm{B}} T\left(1+\frac{\pi d_{0}^{2} \bar{n}}{2}\right), \quad \text { where } \quad \bar{n}=n(d)
$$

- Using the Virial Theorem :
- States that ${ }_{\text {K.E. }}=N \times \frac{1}{2} m \bar{v}^{2}=p A+\frac{1}{2}\left\langle\sum_{i} \mathbf{r}_{i} \cdot \mathbf{X}_{i}^{\text {int }}\right\rangle$.
- Derivation is based on this figure, defines variables involved in a collision betweer two disks:

Probabilistic methods

- They showed

$$
\left\langle\sum_{i} \mathbf{r}_{i} \cdot \mathbf{X}_{i}^{\mathrm{int}}\right\rangle=-\frac{1}{2} \sum_{i} \sum_{j \neq i} r_{i j} F_{i j}=N \times \frac{1}{2} m \bar{v}^{2} \times \pi d_{0}^{2} \bar{n} .
$$

- MC simulation measured the radial distribution function as a histogram:
-For each MC configuration
- For each disk:
- Divide region from $r=d$ to $r=r m a x$ into 64 annular zones of equal area
- Count disks in each zone, store in histogram
-Average over configurations
-Fit histogram to model function and extrapolate to $r=d$

Probabilistic methods

- Another very popular application of probabilistic methods is the simulation of idealized magnetic materials
- We use the Ising Model
-http://en.wikipedia.org/wiki/lsing_model
- William Lenz assigned this to his student Ernst Ising as a PhD thesis problem
- This was solved by Ising exactly for 1-d
-Didn't exhibit ferromagnetism
-Details of 1-d Ising model : Gould-Tobochnik Chapter 5.
- Kramers, Wannier, Onsanger, et al worked on the 2-d model
-Richer phenomenology : ferromagnetic phase at low temperatures, \downarrow paramagnetic phase at high temperatures
-Second order phase transition at the Curie temperature Tc

Probabilistic methods

- Recall : magnetism caused by charged particles "spinning" in closed orbits or about their axes
- For elementary particles, of course, we mean "spinning" in the quantum mechanical sense, not the rotational Newtonian sense
- So atoms will have both an "L" and and " S " contribution to the magnetic properties

Probabilistic methods

- We'll take a simple classical approximation called the "Ising spin" which has two values:

$$
s_{i}= \begin{cases}+1, & \text { represents "spin up" } \uparrow \\ -1, & \text { represents "spin down" } \downarrow\end{cases}
$$

- 2-d magnet is a set of Ns spins on a lattice

Probabilistic methods

- The force between magnets falls of like r^{-3}
- So, approximate that the spins only interact with their nearest neighbors :

Probabilistic methods

- The interaction energy is proportional to the alignment of the spins:

$$
E=-J \sum_{\langle i j\rangle} s_{i} s_{j}-H \sum_{i} s_{i}
$$

- If J > 0 : ferromagnetic
-Energy is minimized if the spins point in the same direction
- If $\mathrm{J}<0$: antiferromagnetic
-Energy is minimized if spins locally point in the opposite direction
- "H" is an external field which couples to the total magnetization: $M=\sum_{i} s_{i}$,
- Spins will align to this external magnetization

Probabilistic methods

- For $\mathrm{H}=0$, the system will be in one of two states :
-Low temp (below Curie temperature) : magnetized
-High temp (above Curie temperature) : sum of magnetization is zero
- Critical value is the second-order phase transition between ferromagnetic to paramagnetic phases

Probabilistic methods

- We want to compute the observables (averages over the samples)
- Define a state as a specific set of spin values (up or down)

$$
s_{1}=+1, s_{2}=-1, s_{3}=+1, \ldots, s_{N_{s}}=+1
$$

- Avg. of an observable calculated by weighting configurations by the Boltzmann factor
- Example : average magnetization :

$$
\langle M\rangle=\frac{\sum_{\text {configs }} M e^{-E / k_{\mathrm{B}} T}}{\sum_{\mathrm{configs}} e^{-E / k_{\mathrm{B}} T}}
$$

Probabilistic methods

- Total number of configurations is very large
- If we have N spins, we have 2^{N} configurations
- If $\mathrm{L}=20, \mathrm{~N}=20^{*} 20=400$, so 2^{400} configurations (2.6e120 !!!)
- That's completely intractable to even list them, much less compute the total magnetization
- So instead, we use Monte Carlo methods
-We generate a reasonable number of configurations at random
-Use the Boltzmann factors to define the probability of each
-Perfect for MC methods!

Probabilistic methods

- The probability for each state is :

$$
p\left(s_{1}, s_{2}, \ldots, s_{N_{s}}\right)=\frac{e^{-E\left(s_{1}, s_{2}, \ldots, s_{N_{s}}\right) / k_{\mathrm{B}} T}}{\sum_{\mathrm{configs}} e^{-E / k_{\mathrm{B}} T}} .
$$

- Now, we need to generate N statistically independent configurations according to this probability
- The average magnetization and energy are :

$$
\begin{aligned}
\langle M\rangle & =\frac{1}{N} \sum_{i=1}^{N} M\left(s_{1}^{(i)}, s_{2}^{(i)}, \ldots, s_{N_{s}}^{(i)}\right) \\
\langle E\rangle & =\frac{1}{N} \sum_{i=1}^{N} E\left(s_{1}^{(i)}, s_{2}^{(i)}, \ldots, s_{N_{s}}^{(i)}\right) .
\end{aligned}
$$

Probabilistic methods

- Now use the Metropolis algorithm from last class to "map out" the configuration space
-Choose initial configuration
-For all spins :
- Trial flip (+1 --> -1 or vice versa)
- Compute change in energy
- If $w=e^{-\Delta E / k_{\mathrm{B}} T}>r$, flip the spin (where r is a uniform deviate)
- Make sure to pick out the thermalization and skip steps

Probabilistic methods

- IT is expensive to compute all of the Boltzmann factors at each step
- Instead, we can realize that for a simulation at fixed T and H , there are only 10 distinct values
- Can precompute them and then just refer to that
- First, consider the sum of the 4 neighboring spins:

$$
\sum s_{j}=s_{\left(i_{x}+1, i_{y}\right)}+s_{\left(i_{x}-1, i_{y}\right)}+s_{\left(i_{x}, i_{y}-1\right)}+s_{\left(i_{x}, i_{y}+1\right)}
$$ neighbors j

- The value is
- $\sum_{\text {neighbors }} s_{j}=+4$ if all four neighbors point up,
- $\sum_{\text {neighbors } j} s_{j}=+2$ if three neighbors point up and one down,
- $\sum_{\text {neighbors }} j s_{j}=0$ if two neighbors point up and two down,
- $\sum_{\text {neighbors } j} s_{j}=-2$ if one neighbor points up and three down,
- $\sum_{\text {neighbors } j} s_{j}=-4$ if all four neighbors point down.
- Product can only have one of these five values! $s_{i} \quad \sum s_{j}=+4,+2,0,-2,-4$.

Probabilistic methods

- Now, consider H != 0
- Have terms like $\mathrm{H}^{*} \mathrm{~s}_{\mathrm{i}}$
- For those we get the other 5 terms
- Can store this as a 2 -d array of 5 rows and 2 columns
-First index :

$$
2+\frac{1}{2} s_{i} \sum_{\text {neighbors } j} s_{j}=0,1,2,3,4,
$$

-Second index: $\frac{1+s_{i}}{2}=0,1$.

Probabilistic methods

- Metropolis step :
-Choose a spin at random
-Take the metropolis step
-If the spin is at the boundary, use periodic boundary conditions
- Because the MC step of a single spin-flip will be highlycorrelated with "this" step, we need to make sure to choose sufficiently high sampling factors
-Typically need AT LEAST N steps
-Each spin has a chance to flip

Probabilistic methods

- Below the Curie temperature, Kramers and Wannier showed that there is a duality argument to compute the exact value : Phys. Rev. 60, 252 (1941),

$$
\frac{k_{\mathrm{B}} T_{\mathrm{c}}}{J}=\frac{2}{\log (1+\sqrt{2})}=2.269 \ldots
$$

- Osnager showed the same model in the thermodynamic limit N-> infinity with $\mathrm{H}=0$ (Phys. Rev. 65, 117 (1944))

$$
m=\lim _{N \rightarrow \infty} \frac{\left\langle\sum_{i} s_{i}\right\rangle}{N}= \begin{cases}{\left[1-\left\{\sinh \left(\frac{2 J}{k_{\mathrm{B}} T}\right)\right\}^{-4}\right]^{1 / 8},} & \text { for } T \leq T_{\mathrm{c}} \\ 0, & \text { for } T>T_{\mathrm{c}}\end{cases}
$$

- Near the Curie temperature

$$
m \sim\left(T_{c}-T\right)^{\beta}
$$

- Beta $=1 / 8$ for the 2-d Ising model

Probabilistic methods

- Here are some numerical results for $\mathrm{T}=2.2$, below Tc

- Note : for finite systems, spins can flip from time to time!

Probabilistic methods

- And now for T=3.0, above Tc:
$10 \times 10 \operatorname{lath} \mathrm{ca}, \mathrm{T}=3.0 \mathrm{H}=0$

