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Probabilistic methods

• A large number of processes in nature are random 
• To some extent, we’re all basically familiar with it 

–Radioactive decay 
–Flipping a coin 

• In fact, quantum mechanics inherently is random
2

Casino Monte Carlo



Probabilistic methods

• What computational issues can come up with random 
numbers? 
–Computers are, by very nature, NOT random 
–So we need to make them LOOK random 
–The question is, how random is “random enough”?  

• If you want something truly random, you’ll need to hook 
your computer up to a Geiger counter or something, and 
count decays (say, from atmospheric muons) 

• Sounds silly, but it isn’t
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Probabilistic methods

• Chapter 7 in Numerical Recipes deals with generating 
random numbers 
–“Deviates” 

• How to formalize random number generation (RNG)? 
–Given a set S of N uniformly distributed random 

numbers x1...xN, then they must satisfy :  
• Given n generated numbers, the next number x_n+1 must be 

independent and uncorrelated 
• x_n+1 should be equally likely to be a member of S 

–For the example of an unbiased coin toss, S has 1 or 
0 (heads or tails) 

–Each toss is independent of the previous and so a 
priori equally likely to be 1 or 0
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Probabilistic methods

• Why do computers have trouble here? 

• They are inherently deterministic at the present time 
(that’s why they’re so great to use!) 

• We generate “pseudo” random numbers 
–The statistical properties (i.e. equally likely in some 

region of interest) is “good enough”, but “good 
enough” depends on the situation 

• For instance, if we use linear congruential algorithms of 
the type :  

–This generates a sequence of random integers in the 
set {0,1,...,m-1} 5

“multiplier” “increment” “modulus”

http://en.wikipedia.org/wiki/Linear_congruential_generator


Probabilistic methods

• Why does this help?  
–We typically choose a, c, and m to be large(ish) 

relatively prime numbers 
–If we inappropriately choose a,c, or m, we can have 

repetition 
–If any x_n = x_0, then the process will repeat 
–We initialize this with a “seed” x0, and away goes the 

sequence
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Probabilistic methods

• There are several industrial-strength generators on the 
market 

• But, if you need “really really” random numbers, use with 
extreme care 
–C++11, R, Python, Ruby, IDL, Maple, Matlab, GNU 

MPAL, BOOST, Glib, and NAG :  
• http://en.wikipedia.org/wiki/Mersenne_twister  
• Long period of 2^19937 - 1 
• Passes lots of randomness tests 
• NOT suitable for cryptography : observing a certain number of 

iterations will allow you to predict the rest of the sequence 

–Numerical recipes recommends  
• http://en.wikipedia.org/wiki/Xorshift  
• Period of 2^128 - 1
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http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Xorshift


Probabilistic methods

• Example: the “sparky” trigger 
• In particle physics, we throw  

away almost all of our data 
• Only 1 in 105 is even “remotely” 

interesting 
• The really interesting stuff 

is only 1 in ~1016!  

• Given this, we have to often 
have “REALLY” random  
numbers to test 

• So, we set up a spark chamber 
to actually generate random 
numbers so our triggers could 
perform adequate tests
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Probabilistic methods

• A few tests will be performed here :  
–The period of the generator should be much larger 

than the length of the generated sequence 
–A simple “eyeball test” (plotting (xn,xn+1) as (x,y) pairs) 

should reveal no structure 
–The chi2 statistic should satisfy
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Probabilistic methods

• Randomness is often used in simulations 

• Lots of things are random in nature 
• We often know their distribution, but cannot predict 

individual events :  
–Standing a pencil on its  

side, what is the angle  
(wrt the desk) when it falls? 

–What is the final angle between multiple scatterings of 
particles off of a lattice?
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Probabilistic methods
• So, to simulate these events, we need random (or pseudorandom) 

generators 
• Example : Quantum mechanically, can produce Higgs bosons in several 

ways :  

• Can’t even ask (quantum mechanically) which will occur before it 
happens 

• They all have a likelihood! 
• So, to generate them, you have to randomly sample between these four 

(with appropriate weights) 11



Probabilistic methods

• These methods are often called “Monte Carlo” after the 
Casino Monte Carlo in Monaco 

• Much better name than  
“pseudo-random-number 
probabilistic event  
simulator”
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Probabilistic methods

• Why does this help? 
• Suppose you take a system of 100 electrons in either 

“spin up” or “spin down” configurations 
• Total number of states is 
• Already intractable to list them (at one billion / second, 

would take                    years!) 

• If you select one at random for any purpose, need to 
simply find a sufficiently good randomization algorithm!
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Probabilistic methods

• Markov-Chain MC (MCMC) : 
–Sequence of elements chosen from a fixed set using a 

probabilistic rule 
–Chain is constructed by adding the elements 

sequentially 
–Given the most recently added element, next element 

only depends on most recent addition 

–Formally, suppose x and y are members of a set S 
–The transition probability function is 

–Example : Random walks
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Probabilistic methods

• Random walks are simple examples of MCMC’s 
• Suppose a walker can occupy any site on an infinitely-

long 1-d lattice 
• The walker tosses a coin and decides to go left or right 

(1 or 0) 
• The transition probability is therefore  

• In equilibrium, suppose the lattice is periodic now, with L 
lattice points on a circle 
–Then we can take L->infinity to examine the properties 

• Probability is                   : 
  (walker visits each site the same number of times)

15



Probabilistic methods

• The walker’s position after n steps depends on the 
sequence of tosses in the past, and cannot be predicted 

• Over a large number of n-step walks the average is zero 
–(From symmetry : left and right are equally likely!) 

• However, each xn is not zero, and DOES increase:
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Diffusion equation!



Probabilistic methods

• RMS displacement is 

• Diffusion constant is 

• So, for a 1-d walk, D = 1/2
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Probabilistic methods

• Another example of MC methods : integration of 
functions 

• Sprinkle the area you’re interested with a “dust” of points 
uniformly distributed 

• The fraction “below the curve” (or in N-dim, within the 
surface) is the integral!
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Probabilistic methods

• Formally, the integral is :  

• Now we choose N uniformly distributed points in V, and 
estimate :  

• The error of repeating this M times is : 

• Can just compute the mean and standard deviation:
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Probabilistic methods

• If the measurements are independent and randomly 
distributed about the mean then: 

• where 

• Thus for MC integration:
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Probabilistic methods

• Compare this with our previous integration methods 
• For instance, Midpoint method 

• We have 

• MC integration “wins” when d > 4 (roughly)
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Probabilistic methods

• What if you want nonuniform samples? 
–Example : Gaussian distribution, exponential 

distribution, line segment 

–Still use the uniformly-distributed “deviates” 
–Then change variables (x ->y(x) ) to produce another 

distribution :
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Probabilistic methods
• Uniform line segment : 

–Basically trivial, you just redefine (0,1) to (a,b) and 
you’re done:
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Probabilistic methods

• Exponential distribution :  

• Then we have 

• so the distribution is
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Probabilistic methods

• Gaussian distribution (“normal” distribution) 

• Cannot convert with elementary functions 
• However, consider the product of TWO Gaussian 

distributions in x and y :  

• We have switched to polar coordinates:
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Probabilistic methods

• This is the product of a uniform distribution on [0,2pi] 
with an exponential distribution in r2! 

• So we can generate theta and r, convert to x,y! 

–“Box-Muller” algorithm
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Probabilistic methods

• General version of transformation method: 

–Can be used even if you only know F(y) numerically
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Probabilistic methods

• To generate this kind of sequence, though, the 
Metropolis-Hastings algorithm works well 
–http://en.wikipedia.org/wiki/Metropolis–

Hastings_algorithm  
–Type of Markov Chain Monte Carlo (MCMC) 

–One major advantage : it does not require the overall 
normalization of a distribution to be known to draw a 
random sequence from it! 
• Advantageous when using Bayesian statistics 

• Original papers are from Metropolis et al and Hastings :  
–J. Chem. Phys. 21, 1087 (1953) 
–Biometrika 57, 97 (1970)
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http://en.wikipedia.org/wiki/Metropolis
http://link.aip.org/link/?JCPSA6/21/1087/1
http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97


Probabilistic methods

• This is a Markov Chain MC so the “next” step depends 
only on the “current” step 
–This is a type of random walk, similar to other MCMC 

methods 

• Suppose we want to generate a sequence from a 
probability distribution 

• If we visualize this in  
d-dimensions, then P(x)  
is a mountainous terrain  
and the sequence is the  
steps of a hiker
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Probabilistic methods

• Heuristically :  
–Explore the “terrain” a bit 

• Find peaks, valleys 
–Then generate the steps for the MC application 
–Record steps every so often 

• As more and more sample values are produced, the 
distribution more closely approximates the desired 
distribution P(x)
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x0 ! x1t ! x2t ! . . . ! xNt

! x11 ! x12 ! . . . ! x1⌫

! x21 ! x22 ! . . . ! x2⌫

! x31 ! x32 ! . . . ! x3⌫

! xN

Probabilistic methods

• More specifically, we have steps : 
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“thermalization” steps to find the peaks

“Sampling frequency” nuDiscard all but every “nu” iterations



Probabilistic methods

• Why sample?  
–Individual steps may be correlated 

• If walker’s step size is much smaller than typical distances 
between “peaks” in the terrain 

• To emulate a “truly” random sequence, we don’t want to get 
“stuck” between peaks
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Probabilistic methods

• Walking algorithm : 
• Suppose we have the walker at a point  
• Then the next step                 is determined by 

–Choose a “trial” point randomly in the neighborhood of 
current x (               ) 
• 1-d : maximum step size (delta) may be used, and choose trial 

x in a uniform interval 
• n-d : could try a fixed sphere of radius delta 

–Requirement is that the probability 
 should be SYMMETRIC: 
• In other language, the conditional probabilities must be equal :  

–Calculate the next step by the ratio of probabilities (or 
“likelihoods”) :
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P (x|y) = P (y|x)



Probabilistic methods

• Given  

• If r >=1, walker is moving “uphill” (toward higher 
probability) 
–Trial step is accepted, iterate 
–The “acceptance probability” is 1 by definition (it’s 

accepted,                                              ) 

• If r < 1, walker is moving “downhill” (toward lower 
probability) 
–Accept only if displacement is not too large : 

• Generate uniform deviate 
• Accept if                        , iterate 
• Reject otherwise, remain at current “step” 
• “Acceptance probability” in this case is r 34



Probabilistic methods

• What about those thermalization steps? Do they really 
thermalize? 

• Imagine a large ensemble of walkers distributed with 
density  

• Want to show that the ensemble density becomes 
proportional to P(x) and then remain invariant 

• According to the ergodic hypothesis, the average properties 
of an ensemble of systems should be the same as the 
average over time in a single system in thermal equilibrium 
–http://en.wikipedia.org/wiki/Ergodic_hypothesis  

• So, we’ll use the former to demonstrate the latter
35

http://en.wikipedia.org/wiki/Ergodic_hypothesis


Probabilistic methods

• Recall the transition probability for a walker to move from 
x to y is determined by two consecutive and independent 
decisions: 

• If these T(x->y) are symmetric, then: 

• Second equality can just be verified directly: 
–if P(y) > P(x),                                , 

–if P(y) < P(x),                                                , 
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Probabilistic methods

• The change in number density of walkers at x when all 
the walkers in the ensemble take a step: 

• If rho(y)/rho(x) exceeds “equilibrium value” P(y)/P(x): 
–will get a + correction 

• If rho(y)/rho(x) is too small :  
–will get a - correction 

• If rho is proportional to P, we’ll have “detailed balance”:
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Probabilistic methods

• Choices to make :  
–Number of walkers 
–Step size 
–Thermalization steps 
–Sampling frequency 

• All of these depend on the problem at hand 
• You have to generally use trial and error to make sure 

there aren’t large dependencies on the parameters
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Probabilistic methods

• An excellent example of using probabilistic methods is in 
statistical mechanics 

• Makes sense : it’s all about probability and statistics! 

• A few definitions :  
–Microstates : configuration of a system 
–Probability of ith microstate is  

–Average value (e.g. for energy) is 

–Variance is 39

Number of systems in the ith 
microstate



Probabilistic methods

• Examine the canonical and microcanonical ensembles: 
–Canonical :  

• fixed number of constituents (N), fixed volume (V) 
• exchange energy with thermal reservoir at temperature T 
• Probability of a microstate with energy E is Bolzmann 

distribution: 

• Partition function is: 

–Microcanonical :  
• fixed number of constituents (N), fixed total energy (E), fixed 

volume (V) 
• Probability of a microstate  

with energy E is : 40



Probabilistic methods

• Example of a system we can investigate is the hard-disk 
gas in two dimensions  
–Investigated by Metropolis et al with the MC methods 

above 
–J. Chem. Phys. 21, 1087 (1953)  
–“Equation of State Calculations by Fast Computing 

Machines” 
• “Fast” here meaning it could multiply two 40-bit ints in 1 

millisecond (1 kHz) 
• For contrast, one core on your phone is 2.4 million times faster 
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http://dx.doi.org/10.1063/1.1699114


Probabilistic methods

• Look at the system as a Maxwell-Boltzmann gas at fixed 
volume and temperature 

• Energy is 

• Pairwise potential energy function :  

• In an ensemble of systems, at temperature T, probability 
that the system has energy E is a Boltzmann distribution
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Number of 
microstates Entropy

Free  
energy



Probabilistic methods

• Partition function is 

• The equation of state relates pressure p, volume V and 
temperature T:
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Probabilistic methods

• MC simulation of hard disks from Metropolis et al: 
–Close-pack N=224 disks of diameter d0 as follows 

• Fix                             and vary d0, hence number is N 

• Apply periodic boundary conditions 44



Probabilistic methods

• Radial distribution function measures correlations 
between particles separated at distance r 

• Can be used to distinguish solid,  
liquid, gases 
–See Gould-Tobochnik Chapter 8  

Section 8.5  
• Equation of state is deduced from 

the radial distribution function:
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http://www.compadre.org/STP/document/ServeFile.cfm?ID=7946&DocID=685
http://www.compadre.org/STP/document/ServeFile.cfm?ID=7946&DocID=685
http://www.compadre.org/STP/document/ServeFile.cfm?ID=7946&DocID=685


Probabilistic methods

• They showed 

• Using the Virial Theorem : 
–States that 

• Derivation is based on this  
figure, defines variables  
involved in a collision between  
two disks:
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Probabilistic methods

• They showed 

• MC simulation measured the radial distribution function 
as a histogram: 
–For each MC configuration 

• For each disk: 
– Divide region from r=d to r=rmax into 64 annular zones of equal area 
– Count disks in each zone, store in histogram 

–Average over configurations 
–Fit histogram to model function and extrapolate to r=d
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Probabilistic methods
• Another very popular application of probabilistic methods is the simulation of 

idealized magnetic materials 
• We use the Ising Model 

–http://en.wikipedia.org/wiki/Ising_model  
• William Lenz assigned this to his student Ernst Ising as a PhD thesis problem  
• This was solved by Ising exactly for 1-d 

–Didn’t exhibit ferromagnetism 
–Details of 1-d Ising model :  

Gould-Tobochnik Chapter 5.  

• Kramers, Wannier, Onsanger, et al  
worked on the 2-d model 
–Richer phenomenology :  

ferromagnetic phase at low temperatures,  
paramagnetic phase at high temperatures 

–Second order phase transition at the  
Curie temperature TC
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http://en.wikipedia.org/wiki/Ising_model
http://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_intr.html
http://www.compadre.org/STP/document/ServeFile.cfm?ID=7274&DocID=448


Probabilistic methods

• Recall : magnetism caused by charged particles “spinning” 
in closed orbits or about their axes 

• For elementary particles, of course, we mean “spinning” in 
the quantum mechanical sense, not the rotational 
Newtonian sense 

• So atoms will have 
both an “L” and 
and “S” contribution 
to the magnetic 
properties

49



Probabilistic methods

• We’ll take a simple classical approximation called the 
“Ising spin” which has two values :  

• 2-d magnet is a set of Ns spins on a lattice
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Probabilistic methods

• The force between magnets falls of like  

• So, approximate that the spins only interact with their 
nearest neighbors :
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Probabilistic methods

• The interaction energy is proportional to the alignment of 
the spins : 

• If J > 0 : ferromagnetic 
–Energy is minimized if the spins point in the same 

direction 
• If J < 0 : antiferromagnetic  

–Energy is minimized if spins locally point in the opposite 
direction 

• “H” is an external field which couples to the total 
magnetization:  

• Spins will align to this external magnetization 52



Probabilistic methods

• For H=0, the system will be in one of two states :  
–Low temp (below Curie temperature) : magnetized 
–High temp (above Curie temperature) : sum of 

magnetization is zero 

• Critical value is the second-order phase transition between 
ferromagnetic to paramagnetic phases
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Probabilistic methods

• We want to compute the observables (averages over the 
samples) 

• Define a state as a specific set of spin values (up or down) 

• Avg. of an observable calculated by weighting 
configurations by the Boltzmann factor 

• Example : average magnetization : 
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Probabilistic methods

• Total number of configurations is very large 
• If we have N spins, we have 2N configurations 
• If L=20, N=20*20 = 400, so 2400 configurations (2.6e120 !!!) 
• That’s completely intractable to even list them, much less 

compute the total magnetization 

• So instead, we use Monte Carlo methods 
–We generate a reasonable number of configurations at 

random 
–Use the Boltzmann factors to define the probability of 

each 
–Perfect for MC methods!
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Probabilistic methods

• The probability for each state is :  

• Now, we need to generate N statistically independent 
configurations according to this probability 

• The average magnetization and energy are : 
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Probabilistic methods

• Now use the Metropolis algorithm from last class to “map 
out” the configuration space 
–Choose initial configuration  
–For all spins :  

• Trial flip (+1 --> -1 or vice versa) 
• Compute change in energy  
• If                                         flip the spin (where r is a uniform 

deviate) 

• Make sure to pick out the thermalization and skip steps
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Probabilistic methods

• IT is expensive to compute all of the Boltzmann factors at 
each step 

• Instead, we can realize that for a simulation at fixed T and 
H, there are only 10 distinct values 

• Can precompute them and then just refer to that 
• First, consider the sum of the 4 neighboring spins: 

• The value is 

• Product can only have one of these five values!
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Probabilistic methods

• Now, consider H != 0 
• Have terms like H*si  
• For those we get the other 5 terms 
• Can store this as a 2-d array of 5 rows and 2 columns 

–First index :  

–Second index : 
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Probabilistic methods

• Metropolis step :  
–Choose a spin at random 
–Take the metropolis step 
–If the spin is at the boundary, use periodic boundary 

conditions 

• Because the MC step of a single spin-flip will be highly-
correlated with “this” step, we need to make sure to 
choose sufficiently high sampling factors 
–Typically need AT LEAST N steps 
–Each spin has a chance to flip
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Probabilistic methods

• Below the Curie temperature, Kramers and Wannier 
showed that there is a duality argument to compute the 
exact value : Phys. Rev. 60, 252 (1941),  

• Osnager showed the same model in the thermodynamic 
limit N-> infinity with H=0 (Phys. Rev. 65, 117 (1944) )  

• Near the Curie temperature 

• Beta = 1/8 for the 2-d Ising model
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http://dx.doi.org/10.1103/PhysRev.60.252
http://dx.doi.org/10.1103/PhysRev.65.117


Probabilistic methods
• Here are some numerical results for T = 2.2, below Tc  

• Note : for finite systems, spins can flip from time to time!
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Probabilistic methods

• And now for T=3.0, above Tc: 

63


