
PY411 / 506
Computational Physics 2

Salvatore Rappoccio

1

Biophysics and Neurons

• Now moving toward some methodologies involving proteins
and neurons

• This will also segue into artificial neural networks for the data
analysis and machine learning section later in the semester

2

Model of Bovine Cytochrome C

Biophys. J. 100, 1058-1065 (2011)

Biophysics and Neurons

• Protein folding MC methods
–Example: Bovine Cytochrome C
–Biophys. J. 100, 1058-1065 (2011) (Markelz group + Zheng)
–THz spectroscopy and molecular simuation

3

Model of Bovine Cytochrome C

Biophysics and Neurons

• Polymers can range from 20 amino acids (Glycine) up to
30,000 (Titin)

• 6 degrees of freedom for each amino acid, so this
becomes quickly intractable

4

Biophysics and Neurons

• Shape of the protein impacts the interactions, so look into
that

• Investigate protein folding in a simpler way first
• Model as n+1 monomers joined by n strong covalent

bonds
• But! The monomers cannot occupy the same place in

space:
–Self-avoiding!

• So this means it is not a Markov chain

5

Self-avoiding Walk

• 1d: Trivial. Everything on a line, and you walk the entire
chain left or right.
–Ballistic transport:

• 1d simple walk:
–Diffusive motion:

• 2-d Self-avoiding walk:
–“Flory exponent”:

6

|x| = n ⇠ t

p
< x2

n > =
p
n ⇠

p
t

p
< r2 > ⇠ At⌫

1

2
< ⌫ < 1

Self-avoiding Walk

• How to generate a SAW?

• Try trivial example: N walkers, if you collide, discard

• Look at “sawalk.py” in Lecture 41

7

Self-avoiding Walk

• Extremely inefficient! Nstep = 10, Nwalk = 10 tractable,
move to Nstep = 100, Nwalk = 100, extremely long!

• Fraction of discarded walks increases exponentially!
(Whoa! Awful!)

8

Attrition constant

Self-avoiding Walk

• To enumerate this:

9

Self-avoiding Walk

• Instead, use the reptation method
–Developed by Pierre-Gilles de Gennes

(Nobel Prize in 1991)
–Assumes polymers are confined to a

tube
–Tube “snakes” through the tunnel
–Thermal fluctuations cause polymer to

“reptate” (like a snake)
• Slight adaption: Wall and Mandel, J.

Chem. Phys. 63, 4592 (1975)
–“Slithering snake” model instead
–Uses MC techniques

10

Enemies of the
heir, beware

bad computational
efficiency!

Self-avoiding Walk

• Start with chain of n links
• Iterate:

– Choose an end of the chain at random
– Choose 3 reptation directions (forward,

left, right)
– If site in randomly chosen direction is not

one of interior sites of chain:
• Remove the site at the other end of the

chain
• Add this site to the chain
• Count new config as next in ensemble

– Else:
• Retain config as next in ensemble

11

Self-avoiding Walk

• Start with chain of n links
• Iterate:

– Choose an end of the chain at random
– Choose 3 reptation directions (forward,

left, right)
– If site in randomly chosen direction is not

one of interior sites of chain:
• Remove the site at the other end of the

chain
• Add this site to the chain
• Count new config as next in ensemble

– Else:
• Retain config as next in ensemble

12

Self-avoiding Walk

• Start with chain of n links
• Iterate:

– Choose an end of the chain at random
– Choose 3 reptation directions (forward,

left, right)
– If site in randomly chosen direction is not

one of interior sites of chain:
• Remove the site at the other end of the

chain
• Add this site to the chain
• Count new config as next in ensemble

– Else:
• Retain config as next in ensemble

13

Gets “down”

Self-avoiding Walk

• Start with chain of n links
• Iterate:

– Choose an end of the chain at random
– Choose 3 reptation directions (forward,

left, right)
– If site in randomly chosen direction is not

one of interior sites of chain:
• Remove the site at the other end of the

chain
• Add this site to the chain
• Count new config as next in ensemble

– Else:
• Retain config as next in ensemble

14

Remove the end,
add a new node to
front

Genetic Algorithms

• In recent history, genetic algorithms are becoming very
popular, so we can look into them
–http://en.wikipedia.org/wiki/Genetic_algorithm

15

http://en.wikipedia.org/wiki/Genetic_algorithm

Genetic Algorithms

• Based on biological evolution
and natural selection

• Idea is exactly the same
for genetic algorithms

• “Species” “compete” for “resources”
and the “fittest genes” propagate
through the generations

16

Genetic Algorithms

• How does evolution work?
–Have a genome
–Mutations occur
–Some are more beneficial than others
–Organisms with more beneficial genes reproduce more

• Exactly the same way for CS, but the mapping is :

17

Biological evolution Genetic algorithms

Species Parameters for a code (“state”)

Competition for survival in nature Competition for survival against a
fitness function

Death Iteration

Genetic Algorithms

• How to represent “DNA” / chromosomes?

• Lots of ways, but for us we can just use a sequence of bits
(i.e. 100101101)

• We can “evolve” these bitstreams and select the ones that
maximize the fitness function

• Once we’re close enough, we’re done!

18

Genetic Algorithms

• But, be very, very, very careful here.

19

http://xkcd.com/534/

http://xkcd.com/534/

Genetic Algorithms

• All of the intricacies of biological evolution apply here :
–Natural selection (what we want)
–Genetic drift (which can

occur in GA’s and bio. evo.)

• Can’t necessarily always
find a solution!

• Also can’t let it drift forever
• So, we also have to be

practical and put cutoff
conditions
–Too many iterations or

organisms

20

Genetic Algorithms
• Also just like real evolution, you are only able to deal with

“reachable” mutations
–A bacterium growing an arm will never happen in either

bio. evo. or GA’s.
• “Good” solutions are only relatively so given the previous

history
–There may be better ways to get to the end, but you are

only given the immediate organisms to work with

21

Genetic Algorithms

• Example from https://gist.github.com/bellbind/741853
• Basic algorithm :

–Start : generate random population of n chromosomes
–Fitness : evaluate fitness of each
–Get a new population : Mutate or otherwise generate a

new population
–Replace the population
–Test against desired accuracy / etc
–Loop

22

https://gist.github.com/bellbind/741853

Protein Folding

• Unger and Moult, “Genetic algorithms for protein folding
simulations”, J. Mol. Biol. 231, 75-81 (1993)

• Looking for configurations of 2-d proteins hydrophobic
(black) and hydrophilic (white) amino acids

23

Protein Folding

• Energy function:

24

E = -4 E = -9

Protein Folding

• Simulated annealing (Metropolis MC):

• Start from straight line
• Trial: Select monomer at random, rotate
• If new config is self-avoiding, compute

–If negative: accept
–else: accept if

• (u = random deviate)

• If stopping criterion is not met, repeat trial after reducing T
–In original paper, start at T=2K, reduce by 1% every

200,000 steps to a minimum of 0.15K.

25

�E

Protein Folding

• Genetic algorithm:

• Start from straight line
• Make N copies (mutants)
• Trial: For each mutant, select monomer at random, rotate

–Accept if new config is self-avoiding and satisfies
Metropolis Boltzmann condition:

• Compute best two mutants based on lowest energy
• Randomly select point, splice the two together

–If avoiding: replace N copies with new mutant
• Repeat

26

Neurons

• They are what make you, you!
• Form the central nervous system and brain
• ATP drives ion pumps to maintain ~ -70 mV voltage bias
• Excitations cause action potential across the axon

• Biologist view:

27

Neurons

• They are what make you, you!
• Form the central nervous system and brain
• ATP drives ion pumps to maintain ~ -70 mV voltage bias
• Excitations cause action potential across the axon

• Biologist view:

28

Signal out
(to other
neurons)

Signal in
(from other neurons)

Transmitted

Neurons

• They are what make you, you!
• Form the central nervous system and brain
• ATP drives ion pumps to maintain ~ -70 mV voltage bias
• Excitations cause action potential across the axon

• Physicist view:

29

“Spherical cow” approach

Neurons

• Action potential

30
https://en.wikipedia.org/wiki/Action_potential

Neurons
• Above some threshold voltage, potential grows to a pulse

that is propagated as a soliton
• Has a “cooloff” refractory period
• Returns to steady state

31

Hodgkin-Huxley Equations

• Derived in 1952 by two physician / biophysicists :
J. Physiol. 117(4), 500-544 (1952)

• Phenomenological equations for the current and potentials:

32

n

Hodgkin-Huxley Equations

• Experimentally measured values:

33

Hodgkin-Huxley Equations

• Two cases solved in HH paper
–Constant uniform membrane potential
–Propagated action potential

34

Hodgkin-Huxley Equations

• Constant uniform membrane potential
–Inserted a wire through length of axon, held at constant

V
–No current along cylinder axis, so I = 0 except during

stimulus (short shock ~ delta function at t=0)
–Equation has I = 0, V = V0 and m,n,h are at steady state

resting values

35

Hodgkin-Huxley Equations

• Propagated action
potential
–Axons in living organism

excited at junction with
cell body

–Impulse from excitation
propagates down length

–Simulate this with HH
circuit elements
connected in series by
longitudinal resistors

–Continuum limit:

36Length along axon

Hodgkin-Huxley Equations

• There is a soliton solution to this diff. eq.:

• Assuming the shape is independent of x (i.e. wave
propagation) it becomes an ODE:

–H+H found that they could measure theta by requiring V
tend to zero as time goes on (bad solutions go to +-
infinity)
• Used root finder to solve this

37

Propagation speed

Hodgkin-Huxley Equations

• Going to reproduce Fig 12 in their paper
–(first case with I = 0)

38

