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Fluid Dynamics

• Now turn to fluid dynamics 
–Many particles together acting under conservation of 

mass and momentum 
–Simple cases are incompressible fluids without friction 

(“Newtonian fluids”) 

• Consider a volume V inside a fluid. The mass m inside that 
volume is the integral of the density rho :
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Fluid Dynamics

• The change in mass is determined 
by the rate of change at the surface 

• Then apply the divergence theorem: 

• So we then obtain the continuity 
 equation:
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Fluid Dynamics

• Now we can apply Newton’s second law (conservation of 
momentum):  

• and then we have: 
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Fluid Dynamics

• What about friction? 
–Add force of gravity g 

• Introduce viscous forces: 
–Dynamic viscosity coefficient 
–Bulk viscosity coefficient 
–Pressure p 

• Then total force is:  

• Then we get the Navier-Stokes equation with dynamic 
viscosity 
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Fluid Dynamics

• If we look at this in 1-d, this is :  

• If g = 0 and pressure p = 0 (or gradient = 0), this is 
Burgers’ equation! 

• So shock propagation is a special case of the Navier-
Stokes dynamics
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Fluid Dynamics

• What about the full case?  
–It’s a $1M question 

–(No, really, it’s a Millennium Prize question).  
–http://www.claymath.org/millennium-problems 
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Fluid Dynamics

• OK, well, what about simple-ish solutions? 
–Even then, still pretty hard 
–Commercial software in abundance: 

–Open source examples: 
• https://people.sc.fsu.edu/~jburkardt/py_src/

navier_stokes_2d_exact/navier_stokes_2d_exact.html  
• http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/ 
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Fluid Dynamics

• Let’s look at one special case of flow through a long tube 
with constant pressure, like the flow in a river. 
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Jupyter!

• Let’s play with some Jupyter now.  

• We will use the example from here :  
–http://lorenabarba.com/blog/cfd-python-12-steps-to-

navier-stokes/  

• We will walk through it. 
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Fluid Dynamics

• The flow in the center is highest, and the flow at the edges 
is lowest: 
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Recall: General Relativity

• http://en.wikipedia.org/wiki/General_relativity 

• Relates gravity to the curvature of space-time! 

• Objects with mass or energy distort space-time, and this 
induces a gravitational field
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Recall: General Relativity

• Space-time is a tensor 
• So gravity is a tensor  

• Einstein’s equations :
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Recall: General Relativity

• That’s a huge set of nonlinear partial differential equations, 
and can be arbitrarily complicated (       has no constraint 
to its format) 

• A few simple cases can be derived :  
– If spacetime is homogeneous and isotropic, this is the 

Robertson-Walker metric :  

–Assuming that the matter+radiation behave like a 
uniform perfect fluid with density     and pressure p, this 
is the Friedmann-Lamaitre equations:
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Recall: Hubble’s Law

• Hubble used this equation to determine a linear 
relationship :  

• Plotting the data : 
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General Relativity

• Now in a position to calculate some GR numerically 
instead of just analyzing the data 

• Some approaches approximate matter as perfect fluid 
evolving according to GR 
–Morally equivalent equations to Navier-Stokes, so similar 

techniques can be used for solutions 

• We will investigate inflation 
• For an overview : arXiv:astro-ph/9901124
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General Relativity

• Cosmic inflation
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General Relativity

• Go back to our equations: 

• Values of k: 
–k = 1: closed 3-sphere 
–k = 0: flat 
–k = -1: open 3-hyperboloid
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General Relativity

• Eliminate Lambda, use conservation of mass+energy, and 
combine the two equations, you get: 

• Further simplify the math by scaling mass density and 
pressure to include all of the constants in the system:
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General Relativity

• If we consider a perfect fluid, the pressure is linearly 
dependent on the density, so you get 
for some constant w 

• If space is completely flat, and we set c=1, we have k = 0, 
so 

• You will solve this for your homework problem!
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N-body simulations

• Consider N interacting particles with long range force 
acting between them (i.e. gravity) 
–Structure formation of galaxies, stars, superclusters, etc 

• Recall our previous attempts at the 3-body problem 
–Will now extend to N bodies
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N-body simulations

• Long-range interaction very inconvenient here 
• Force goes like 

• But surface area goes like 

• Thus the number of particles 
at distance r times the 
strength of the force is 
basically constant  
–Cannot truncate!
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N-body simulations

• If we calculate the forces between N bodies, we therefore 
need to compute N(N-1)/2 forces each iteration
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N-body simulations

• Try the next level of sophistication in our ODE solvers 
–Currently evolve position and velocity (according to 

velocity and acceleration, respectively) 

–How about evolving acceleration!? 

–Use the JERK!
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N-body simulations

• Try the next level of sophistication in our ODE solvers 
–Currently evolve position and velocity (according to 

velocity and acceleration, respectively) 

–How about evolving acceleration!? 

–Use the JERK!
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N-body simulations

• First let’s look at simple systems where we actually solve 
the ODEs for all particles 

• Going to use third-party software: 
–https://www.ids.ias.edu/~piet/act/comp/algorithms/starter 
–Instructions:  
–https://github.com/rappoccio/PHY410/blob/master/

Lecture35/README.md  

• Can’t animate and solve the ODEs in real time for any 
large-ish number of N (like, 30). 
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N-body simulations

• Code uses a “predictor-corrector” algorithm: 
–Predicts position and velocity at next time steps 

–Computes acceleration and jerk for those predictions 
using Taylor series
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N-body simulation

• Then corrects position and velocity with the acceleration 
and jerk: 

• Their code also calculates the “least collision time”, i.e. the 
smallest time between interactions of two objects.  
–Used to adjust the time step, similar to ARK4
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N-body simulations

• We need some kind of 
approximation then: 
–Particle mesh 

• Create a 3-d lattice, approximate 
forces from them 

• Good for uniform configurations 
• O(M log(M)) (M = num grid points) 

–Trees 
• Partition space into a hierarchy of 

cubes 
• Compute particle-particle interactions 

for close interactions 
• Compute particle-cell or cell-cell 

interactions for far interactions 
• O(N log(N)) (N = num particles)
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N-body simulations

• Fast multipole methods 
–Expands Green’s function in a 

multipole 
–O(N) (N = num particles) 

• Fluid dynamic approximations 
–Approximate by PDEs, not 

individual particles 
–Only applicable in certain 

situations 
•
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N-body simulations

• Lots of codes out there! 
–AREPO:  

• http://wwwmpa.mpa-garching.mpg.de/
~volker/arepo/ 

–GADGET: 
• http://wwwmpa.mpa-garching.mpg.de/

gadget/ 

• Example of simulation from 
GADGET from a former Comp. 
Phys. student (Leigh Korbel) for his 
Master’s project
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