
PY411 / 506
Computational Physics 2

Salvatore Rappoccio

1

Fluid Dynamics

• Now turn to fluid dynamics
–Many particles together acting under conservation of

mass and momentum
–Simple cases are incompressible fluids without friction

(“Newtonian fluids”)

• Consider a volume V inside a fluid. The mass m inside that
volume is the integral of the density rho :

2

m =

Z
⇢ dV

Fluid Dynamics

• The change in mass is determined
by the rate of change at the surface

• Then apply the divergence theorem:

• So we then obtain the continuity
 equation:

3

d

dt

Z
⇢ dV = �

Z
d~S · ⇢~u

0¥@⇢

@t
+ ~r · ⇢~u = 0

Z
d~S · ⇢~u =

d

dt

Z
⇢ dV =

Z
dV =; ~r · ⇢~u

Fluid Dynamics

• Now we can apply Newton’s second law (conservation of
momentum):

• and then we have:

4

⇢
d~u

dt
= ~F

d~u

dt
=

@~u

@t
+ (~u · ~r)~u

Change in fluid velocity
at a fixed point in space

Change in fluid velocity
due to motion of fluid
from neighboring
points (Advection)

Fluid Dynamics

• What about friction?
–Add force of gravity g

• Introduce viscous forces:
–Dynamic viscosity coefficient
–Bulk viscosity coefficient
–Pressure p

• Then total force is:

• Then we get the Navier-Stokes equation with dynamic
viscosity

5

µ

⇠

~F = µr2~u+ (µ+ ⇠)~r(~r · ~u)

@~u

@t
+ (~u · ~r)~u = ~g � 1

⇢
~rp+ ⌫r2~u

⌫ = µ/⇢

Fluid Dynamics

• If we look at this in 1-d, this is :

• If g = 0 and pressure p = 0 (or gradient = 0), this is
Burgers’ equation!

• So shock propagation is a special case of the Navier-
Stokes dynamics

6

@u

@t
+ (u

@x

@t
) = g � 1

⇢

@p

@t
+ ⌫

@2u

@x2

@u

@t
+ (u

@x

@t
) = ⌫

@2u

@x2

@u

@t
+

✓
u
@u

@x

◆

@u

@t
+

✓
u
@u

@x

◆

Fluid Dynamics

• What about the full case?
–It’s a $1M question

–(No, really, it’s a Millennium Prize question).
–http://www.claymath.org/millennium-problems

7

http://www.claymath.org/millennium-problems

Fluid Dynamics

• OK, well, what about simple-ish solutions?
–Even then, still pretty hard
–Commercial software in abundance:

–Open source examples:
• https://people.sc.fsu.edu/~jburkardt/py_src/

navier_stokes_2d_exact/navier_stokes_2d_exact.html
• http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/

8

https://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/navier_stokes_2d_exact.html
https://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/navier_stokes_2d_exact.html
http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/

Fluid Dynamics

• Let’s look at one special case of flow through a long tube
with constant pressure, like the flow in a river.

9

Limmat river in Zurich, CH

Grate

Jump
Death (power station)

Swim

Jupyter!

• Let’s play with some Jupyter now.

• We will use the example from here :
–http://lorenabarba.com/blog/cfd-python-12-steps-to-

navier-stokes/

• We will walk through it.

10

http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/

Fluid Dynamics

• The flow in the center is highest, and the flow at the edges
is lowest:

11

Recall: General Relativity

• http://en.wikipedia.org/wiki/General_relativity

• Relates gravity to the curvature of space-time!

• Objects with mass or energy distort space-time, and this
induces a gravitational field

12

arXiv:astro-ph/9901124

http://en.wikipedia.org/wiki/General_relativity

Recall: General Relativity

• Space-time is a tensor
• So gravity is a tensor

• Einstein’s equations :

13

Newton’s constant

Speed of light
Cosmological
constantCurvature scalar

Stress-energy tensor
(energy and momentum
density of matter + radiation)

Ricci tensor
(gravitational force)

Metric tensor

Recall: General Relativity

• That’s a huge set of nonlinear partial differential equations,
and can be arbitrarily complicated (has no constraint
to its format)

• A few simple cases can be derived :
– If spacetime is homogeneous and isotropic, this is the

Robertson-Walker metric :

–Assuming that the matter+radiation behave like a
uniform perfect fluid with density and pressure p, this
is the Friedmann-Lamaitre equations:

14

Tµ⌫

⇢

Hubble parameter : H(t0) = 72 km/s/Mpc at present time

Cosmological scale factor

Recall: Hubble’s Law

• Hubble used this equation to determine a linear
relationship :

• Plotting the data :

15

Distance VelocityLongitude
Latitude

Constants

General Relativity

• Now in a position to calculate some GR numerically
instead of just analyzing the data

• Some approaches approximate matter as perfect fluid
evolving according to GR
–Morally equivalent equations to Navier-Stokes, so similar

techniques can be used for solutions

• We will investigate inflation
• For an overview : arXiv:astro-ph/9901124

16

General Relativity

• Cosmic inflation

17

General Relativity

• Go back to our equations:

• Values of k:
–k = 1: closed 3-sphere
–k = 0: flat
–k = -1: open 3-hyperboloid

18

Hubble parameter : H(t0) = 72 km/s/Mpc at present time

Cosmological scale factor

Density
Constants

Pressure

General Relativity

• Eliminate Lambda, use conservation of mass+energy, and
combine the two equations, you get:

• Further simplify the math by scaling mass density and
pressure to include all of the constants in the system:

19

H
2 =

Ṙ

R

!2

=
8⇡G

3
⇢� kc

2

R2

Ḣ +H
2 =

R̈

R

!2

= �4⇡G

3

✓
⇢+

3p

c2

◆

⇢̇ = �3H(⇢+ 3p)

General Relativity

• If we consider a perfect fluid, the pressure is linearly
dependent on the density, so you get
for some constant w

• If space is completely flat, and we set c=1, we have k = 0,
so

• You will solve this for your homework problem!

20

p = w⇢

H
2 =

Ṙ

R

!2

=
8⇡G

3
⇢

�4⇡G

3
(1 + 3w)⇢Ḣ +H

2 =
R̈

R
=

N-body simulations

• Consider N interacting particles with long range force
acting between them (i.e. gravity)
–Structure formation of galaxies, stars, superclusters, etc

• Recall our previous attempts at the 3-body problem
–Will now extend to N bodies

21
Sloan Digital Sky Survey (NASA)

N-body simulations

• Long-range interaction very inconvenient here
• Force goes like

• But surface area goes like

• Thus the number of particles
at distance r times the
strength of the force is
basically constant
–Cannot truncate!

22

F ⇠ 1

r2

A ⇠ 4⇡r2

N-body simulations

• If we calculate the forces between N bodies, we therefore
need to compute N(N-1)/2 forces each iteration

23

Simple, but computationally intractable

~Fi =
X

j

~Fij = �
X

j

Gmimj

r3
~r

N-body simulations

• Try the next level of sophistication in our ODE solvers
–Currently evolve position and velocity (according to

velocity and acceleration, respectively)

–How about evolving acceleration!?

–Use the JERK!

24

N-body simulations

• Try the next level of sophistication in our ODE solvers
–Currently evolve position and velocity (according to

velocity and acceleration, respectively)

–How about evolving acceleration!?

–Use the JERK!

25

Not this jerk

This jerk

~Jij = ~̇aij =
Mi

r3ij

"
~vij � 3

~vij · ~rij
r2ij

~rij

#

N-body simulations

• First let’s look at simple systems where we actually solve
the ODEs for all particles

• Going to use third-party software:
–https://www.ids.ias.edu/~piet/act/comp/algorithms/starter
–Instructions:
–https://github.com/rappoccio/PHY410/blob/master/

Lecture35/README.md

• Can’t animate and solve the ODEs in real time for any
large-ish number of N (like, 30).

26

Works, but computationally intractable!

https://www.ids.ias.edu/~piet/act/comp/algorithms/starter
https://github.com/rappoccio/PHY410/blob/master/Lecture35/README.md
https://github.com/rappoccio/PHY410/blob/master/Lecture35/README.md

N-body simulations

• Code uses a “predictor-corrector” algorithm:
–Predicts position and velocity at next time steps

–Computes acceleration and jerk for those predictions
using Taylor series

27

~rp = ~r + ~v�t+
1

2
~a�t2 +

1

6
~J �t3

~vp = ~v + ~a�t+
1

2
~j�t2

~k ⌘ 1

2
~a00�t2 = 2(~a� ~ap) + �t(~J � ~Jp)

~l ⌘ 1

2
~a000�t3 = �3(~a� ~ap)� �t(2 ~J � ~Jp)

N-body simulation

• Then corrects position and velocity with the acceleration
and jerk:

• Their code also calculates the “least collision time”, i.e. the
smallest time between interactions of two objects.
–Used to adjust the time step, similar to ARK4

28

~rc = ~rp +

✓
1

12
~k +

1

20
~l

◆
�t2

~vc = ~vp +

✓
1

3
~k +

1

4
~l

◆
�t

N-body simulations

• We need some kind of
approximation then:
–Particle mesh

• Create a 3-d lattice, approximate
forces from them

• Good for uniform configurations
• O(M log(M)) (M = num grid points)

–Trees
• Partition space into a hierarchy of

cubes
• Compute particle-particle interactions

for close interactions
• Compute particle-cell or cell-cell

interactions for far interactions
• O(N log(N)) (N = num particles)

29http://www.new-npac.org/projects/cdroms/cewes-1999-06-vol2/
cps615course/nbody-materials/nbody-simulations.html

Figures from

N-body simulations

• Fast multipole methods
–Expands Green’s function in a

multipole
–O(N) (N = num particles)

• Fluid dynamic approximations
–Approximate by PDEs, not

individual particles
–Only applicable in certain

situations
•

30

N-body simulations

• Lots of codes out there!
–AREPO:

• http://wwwmpa.mpa-garching.mpg.de/
~volker/arepo/

–GADGET:
• http://wwwmpa.mpa-garching.mpg.de/

gadget/

• Example of simulation from
GADGET from a former Comp.
Phys. student (Leigh Korbel) for his
Master’s project

31

32

