PY411 / 506
 Computational Physics 2

Salvatore Rappoccio

Quantum Mechanics

- Quantum mechanics: Describes motion of small things
- Hydrogen atom
- Quantum harmonic oscillator
- Quantize:

$$
\begin{aligned}
& H=\frac{p^{2}}{2 m}+V(x) \\
& \vec{p} \rightarrow-i \hbar \vec{\nabla} \quad E \rightarrow i \hbar \frac{\partial}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
H & =-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x) \\
H \psi & =E \psi \quad i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
\end{aligned}
$$

Quantum Mechanics

- Probability density:

$$
\rho=\psi^{*} \psi=|\psi|^{2}
$$

- Evolves according to the probability "current" vector:

$$
J=-\frac{i \hbar}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
$$

- Conservation equation:

$$
\nabla \cdot J+\frac{\partial \rho}{\partial t}=0
$$

Relativity

- Relativity:
-Describes motion of fast things
- Describes all particles:
-Photons
-Electrons
-Protons
-Etc

$$
\begin{aligned}
& E^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& \begin{aligned}
c & =1 \\
E & = \pm m\left(1+\frac{p^{2}}{m^{2}}\right)^{1 / 2}
\end{aligned} \\
& E \approx \pm m\left(1+\frac{1}{2} \frac{p^{2}}{m^{2}}\right) \\
& K E=\frac{p^{2}}{2 m}
\end{aligned}
$$

Relativistic Quantum Mechanics

- Try Schroedinger's trick:

$$
\vec{p} \rightarrow-i \hbar \vec{\nabla} \quad E \rightarrow i \hbar \frac{\partial}{\partial t}
$$

- We get the Klein-Gordon equation

$$
\left(-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\right) \phi=\frac{m^{2} c^{2}}{\hbar^{2}} \phi
$$

- Problem: Cannot interpret phi as a simple probability density anymore
-Hyperbolic equation can arbitrarily specify ϕ and $\partial \phi / \partial t$
- This describes motion of spin-zero fields

Relativistic Quantum Mechanics

- What about probability density?

$$
\rho=\phi^{*} \phi=|\phi|^{2}
$$

- Doesn't work, because can now arbitrarily specify ϕ and $\partial \phi / \partial t$
- Need a density symmetric in space and time
-Makes sense! Special relativity is!
- Adjust (purposely changing phi to psi):

$$
\rho=\frac{i \hbar}{2 m c^{2}}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)
$$

- Make that zeroth component of 4 -vector:

$$
J^{\mu}=\frac{i \hbar}{2 m}\left(\psi^{*} \partial^{\mu} \psi-\psi \partial^{\mu} \psi^{*}\right)
$$

Relativistic Quantum Mechanics

- Does it work?
- Still no. If we specify the time derivative arbitrarily, can get negative values (i.e. unphysical for a probability density)
- This means : cannot simply generalize Schroedinger equation assuming SCALAR fields

Relativistic Quantum Mechanics

- Dirac came up with solution:
-Expand:

$$
\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\left(A \partial_{x}+B \partial_{y}+C \partial_{z}+\frac{i}{c} D \partial_{t}\right)^{2}
$$

-Cross terms like $\partial_{x} \partial_{y}$ cancel if $\{A, B\}=0$ but $A^{2}=B^{2}=\ldots=1$

- This works if A, B, C, and D are MATRICES, not numbers!
- Arrive at Dirac equation:

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0
$$

where γ^{μ} are special matrices:
$\gamma^{0}=\left(\begin{array}{cc}I_{2} & 0 \\ 0 & -I_{2}\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}0 & \sigma_{x} \\ -\sigma_{x} & 0\end{array}\right), \gamma^{2}=\left(\begin{array}{cc}0 & \sigma_{y} \\ -\sigma_{y} & 0\end{array}\right), \gamma^{3}=\left(\begin{array}{cc}0 & \sigma_{z} \\ -\sigma_{z} & 0\end{array}\right)_{8}$

- These are 4×4 matrices:

$$
\gamma^{0}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}
0 & \sigma_{x} \\
-\sigma_{x} & 0
\end{array}\right), \gamma^{2}=\left(\begin{array}{cc}
0 & \sigma_{y} \\
-\sigma_{y} & 0
\end{array}\right), \gamma^{3}=\left(\begin{array}{cc}
0 & \sigma_{z} \\
-\sigma_{z} & 0
\end{array}\right)
$$

- Where I is the identity matrix and the sigmas are the Pauli matrices:

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x} \\
&=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{z}
\end{aligned}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Relativistic Quantum Mechanics

- What does this MEAN, though?
- There are 4 components of ψ !
-Relativistic spin-1/2 field
-Includes antimatter!
(Geek out about that for a second)
- Define "slash" notation as a sum over these matrices times the components :

$$
\psi=\sum_{i} \gamma_{i} v_{i}
$$

- Set c = 1, and we get the Dirac equation:

$$
(i \not \partial-m) \psi=0
$$

Relativistic Quantum Mechanics

- Now define the adjoint spinor:

$$
\bar{\psi}=\psi^{\dagger} \gamma^{0}
$$

- And Now the current density equation becomes:

$$
\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=0
$$

- The probability density is:

$$
J^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi
$$

Quantum Field Theory

- If you remember $\mathrm{E}+\mathrm{M}$, it is the relationship between CURRENTS and FIELDS
-We have the currents
-What about the fields?
- Recall Maxwell's equations, but now in 4-vector notation:
-Electric and magnetic potentials put to 4-vector:

$$
A^{\mu}=(\phi, \vec{A})
$$

-Then the field strength tensor is:

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

-Maxwell's equations become:

$$
\partial_{\mu} F^{\mu \nu}=4 \pi J^{\mu}
$$

Quantum Field Theory

- But remember from elementary E+M: the potentials are not physical quantities, the fields are
- So we can perform an operation on the potentials:

$$
A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \lambda
$$

and if lambda does not change Maxwell's equations, it is equally fine as a potential

- This is a "Gauge Transformation"

VEGAS Algorithm

- Paper by LePage: J. Comput. Phys. 17, 192-203 (1978)
-Originally in FORTRAN
-PYTHON Github page:
- https://github.com/gplepage/vegas
-C++ Implementations around, for instance in Numerical Recipes

VEGAS Algorithm

- Simplest MC integration: Throw "pseudo-experiments", count the total:

$$
I=\int_{a}^{b} d x f(x) \simeq(b-a)\left[\frac{1}{N} \sum_{n=1}^{N} f\left(x_{i}\right) \pm \frac{\sigma_{f}}{\sqrt{N}}\right]
$$

- Where:

$$
\sigma_{f}^{2}=\left(\frac{1}{b-a} \int_{a}^{b} f^{2}(x) \mathrm{d} x\right)-\left(\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x\right)^{2} \simeq\left(\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(x_{i}\right)\right)-\left(\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)\right)^{2} .
$$

VEGAS Algorithm

- VEGAS has "importance sampling" : samples the space where integrand is largest more often
-Similar to the Metropolis algorithm
- Consider $\mathrm{f}(\mathrm{x})$ and its integral: $I=\int_{0}^{1} d x f(x)$
- If we have PDF $p(x)$:

$$
p(x)>0, \quad \int_{0}^{1} d x p(x)=1
$$

- Optimal variance arrived when: $\quad p(x)=\frac{|f(x)|}{\int_{0}^{1} d x|f(x)|}$

VEGAS Algorithm

- Approximates $p(x)$ with step functions:
-Starts with uniform probability $p(x)=1$
-Adapts $p(x)$ as:

$$
p(x)=\frac{1}{N \Delta x_{i}}, \quad x_{i}-\Delta x_{i} \leq x \leq x_{i}, \quad i=1, \ldots, N, \quad \sum_{i=1}^{N} \Delta x_{i}=1
$$

where Δx_{i} is the width of each step

- Then subdivide each step into further steps:
-Similar to adaptive methods for our PDF evaluation, or adaptive RK

$$
m_{i}=K \frac{\bar{f}_{i} \Delta x_{i}}{\sum_{j} \tilde{f}_{j} \Delta x_{j}}, \quad \bar{f}_{i}=\sum_{x \in \Delta x_{i}}|f(x)| \propto \frac{1}{\Delta x_{i}} \int_{\Delta x_{i}} d x|f(x)|,
$$

-Finer binning where the function is largest

VEGAS Algorithm

- Examples :
-Trivial 1-d integral
-Path integral integral for QHO

Quantum Field Theory

- Similar currents exist for matter (electrons, etc)
- Interactions are then specified in terms of interactions of the currents and the fields
- See Peskin + Schroeder, for instance

Compton Scattering

- Scattering of light off of electrons at rest
-Must be near nucleus to conserve momentum
- Specify polarization of incoming light beams:

$\mathbf{E}(\mathbf{x}, t)=\left(\boldsymbol{\epsilon}_{1} E_{1}+\boldsymbol{\epsilon}_{2} E_{2}\right) e^{i \mathbf{k} \cdot \mathbf{x}-i \omega t}, \quad \mathbf{E}(\mathbf{x}, t)=\left(\boldsymbol{\epsilon}_{+} E_{+}+\boldsymbol{\epsilon}_{-} E_{-}\right) e^{i \mathbf{k} \cdot \mathbf{x}-i \omega t}, \quad \boldsymbol{\epsilon}_{ \pm}=\frac{1}{\sqrt{2}}\left(\boldsymbol{\epsilon}_{1} \pm i \boldsymbol{\epsilon}_{2}\right)$,
$\mathrm{E}+$ and $\mathrm{E}-$ are + and - helicity states

Compton Scattering

- Calculation of matrix element:

- Initial conditions:

$$
p^{\mu}=(m c, 0,0,0), \quad k^{\mu}=(1,0,0,1) \frac{\hbar \omega}{c}, \quad k^{\prime \mu}=(1, \sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \frac{\hbar \omega^{\prime}}{c}
$$

- Kinematics and conservation of 4-momentum gives:

$$
\begin{aligned}
p^{\prime} \cdot p^{\prime} & =m^{2} c^{2}=\left(p+k-k^{\prime}\right) \cdot\left(p+k-k^{\prime}\right)=p^{2}+2 p \cdot\left(k-k^{\prime}\right)+\left(k-k^{\prime}\right)^{2} \\
& =m^{2} c^{2}+2 m \hbar\left(\omega-\omega^{\prime}\right)-2 \hbar^{2} \omega \omega^{\prime}(1-\cos \theta) \\
i \mathcal{M}= & -i e^{2} \epsilon_{\mu}^{*}\left(k^{\prime}\right) \epsilon_{\nu}(k) \bar{u}\left(p^{\prime}\right)\left[\frac{\gamma^{\mu} k k \gamma^{\nu}+2 \gamma^{\mu} p^{\nu}}{2 p \cdot k}+\frac{-\gamma^{\nu} k \gamma^{\mu}+2 \gamma^{\nu} p^{\mu}}{-2 p \cdot k^{\prime}}\right] u(p)
\end{aligned}
$$

Compton Scattering

- Differential cross section:

$$
\frac{d \sigma}{d \Omega}=\frac{\text { Energy radiated/unit time/unit solid angle }}{\text { Incident energy flux/unit area/second }}
$$

Number of photons detected/unit time/unit solid angle
Number of photons incident/unit area/unit time

$$
\begin{array}{r}
\frac{d \sigma}{d \Omega}=\left(\frac{e^{2}}{m c^{2}}\right)^{2}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left[\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}+\frac{\left(\omega-\omega^{\prime}\right)^{2}}{4 \omega \omega^{\prime}}\left\{1+\left(\boldsymbol{\epsilon}^{*} \times \boldsymbol{\epsilon}\right) \cdot\left(\boldsymbol{\epsilon}_{0} \times \boldsymbol{\epsilon}_{0}^{*}\right)\right\}\right] \\
\left(\boldsymbol{\epsilon}^{*} \times \boldsymbol{\epsilon}\right) \cdot\left(\boldsymbol{\epsilon}_{0} \times \boldsymbol{\epsilon}_{0}^{*}\right)=\widehat{\left(\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right)\left(\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}_{0}^{*}\right)-\left(\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}^{*}\right)\left(\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}_{0}\right)=\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}-\left|\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}}
\end{array}
$$

Compton Scattering

- With some convenient units, can work in dimensionless units:

$$
r_{e}=\frac{e^{2}}{m c^{2}}=2.81794033 \times 10^{-13} \mathrm{~cm}, \quad r_{e}^{2}=0.07940787703 \mathrm{~b} \simeq 79.4 \mathrm{mb}
$$

$$
\begin{aligned}
\frac{1}{r_{e}^{2}} \sigma_{T} & =\int_{-1}^{+1} d(\cos \theta) \int_{0}^{2 \pi} d \phi \frac{1}{r_{e}^{2}} \frac{d \sigma}{d \Omega} \\
\frac{1}{r_{e}^{2}} \frac{d \sigma}{d \theta} & =\sin \theta \int_{0}^{2 \pi} d \phi \frac{1}{r_{e}^{2}} \frac{d \sigma}{d \Omega} \\
\frac{1}{r_{e}^{2}} \frac{d \sigma}{d \Omega} & =\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left[\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}+\frac{\left(\omega-\omega^{\prime}\right)^{2}}{4 \omega \omega^{\prime}}\left(1+\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}-\left|\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}\right)\right]
\end{aligned}
$$

Note: Averaged over initial electron spin states, summed over final electron spin states

Quantum Field Theory

- Last time: computed Compton scattering cross section
- Now: Compute Z production cross section

$$
\begin{aligned}
& -\mathrm{e}+\mathrm{e}-\longrightarrow \mathrm{Z} \longrightarrow \mathrm{e}+\mathrm{e}- \\
& -\mathrm{pp} \longrightarrow \mathrm{Z} \longrightarrow>\mathrm{e}+\mathrm{e}-
\end{aligned}
$$

The Standard Model of Particle Interactions

Three Generations of Matter

Quantum Field Theory

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{8} \operatorname{tr}\left(\mathbf{W}_{\mu \nu} \mathbf{W}^{\mu \nu}\right)-\frac{1}{2} \operatorname{tr}\left(\mathbf{G}_{\mu \nu} \mathbf{G}^{\mu \nu}\right) \\
& +\left(\bar{\nu}_{L}, \bar{e}_{L}\right) \bar{\sigma}^{\mu} i D_{\mu}\binom{\nu_{L}}{e_{L}}+\bar{\epsilon}_{R} \sigma^{\mu} i D_{\mu} e_{R}+\bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R}+(\mathrm{h.c.}) \\
& -\frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right) \phi M^{c} e_{R}+\bar{e}_{R} \bar{M}^{e} \bar{\phi}\binom{\nu_{L}}{e_{L}}\right] \\
& -\frac{\sqrt{2}}{v}\left[\left(-\bar{c}_{L}, \bar{\nu}_{L}\right) \phi^{*} M^{\nu} \nu_{R}+\bar{\nu}_{R} \bar{M}^{\nu} \phi^{T}\binom{-e_{L}}{\nu_{L}}\right] \\
& +\left(\bar{u}_{L}, \bar{d}_{L}\right) \bar{\sigma}^{\mu} i D_{\mu}\binom{u_{L}}{d_{L}}+\bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R}+\bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R}+(\mathrm{h.c.}) \\
& -\frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right) \phi M^{d} d_{R}+\bar{d}_{R} \bar{M}^{d} \bar{\phi}\binom{u_{L}}{d_{L}}\right] \\
& -\frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right) \phi^{*} M^{u} u_{R}+\bar{u}_{R} \bar{M}^{u} \phi^{T}\binom{-d_{L}}{u_{L}}\right] \\
& +\frac{\left(D_{\mu} \phi\right)}{} D^{\mu} \phi-m_{h}^{2}\left[\bar{\phi} \phi \bar{v}^{2} / 2\right]^{2} / 2 v^{2}
\end{aligned}
$$

$(\mathrm{U}(1), \mathrm{SU}(2)$ and $\mathrm{SU}(3)$ gange terms)
(lepton dynamical term)
(electron, muon, tauon mass term)
(neutrino mass term)
(quark dynamical term)
(down, strange, bottom mass term)
(up, charmed, top mass term)
(Higgs dynamical and mass term)

Quantum Field Theory

- Electroweak interaction: follows $\mathrm{SU}(2) \times \mathrm{U}(1)$ symmetry

Quantum Field Theory

- Group theory representations:

$$
\begin{aligned}
& \text { "su(1)=u(1): } 1 \underset{\substack{\text { vectield } \\
\text { fiel }}}{\text { vholon }} \\
& \text { Su(2): } 3 \text { vector filds } \cdot \cdots \omega / z \\
& \text { su(3): } 8 \text { vector fells . © , gluons }
\end{aligned}
$$

Quantum Field Theory

- Simplest explanation for EWSB is the "Higgs mechanism"
- Nambu-Goldstone boson for the spontaneously broken symmetry of $\mathrm{SU}(2) \mathrm{XU}(1)$
- Similar to superconductor or ferromagnet!
- Simplest field to do this is a "Sombrero" potential

Nambu-Goldstone boson "generated" by the broken symmetry

Ground state breaks the EW symmetry!

Quantum Field Theory

- Bit of a wrinkle: The eigenbasis of $\mathrm{SU}(2) \times \mathrm{U}(1)$ is not the "mass" eigenbasis of the actual particles
- There is a mixing angle:

$$
\binom{\gamma}{Z^{0}}=\left(\begin{array}{cc}
\cos \theta_{\mathrm{W}} & \sin \theta_{\mathrm{W}} \\
-\sin \theta_{\mathrm{W}} & \cos \theta_{\mathrm{W}}
\end{array}\right)\binom{B^{0}}{W^{0}}
$$

- "Weinberg angle":

$$
\begin{aligned}
\cos \theta_{\mathrm{W}} & =\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} \\
\sin ^{2} \theta_{W} & =0.23126
\end{aligned}
$$

Quantum Field Theory

- You've been told proton looks like this:

- Really looks like this:

Distributions of stuff INSIDE the proton!

Quantum Field Theory

- Parton distribution functions (PDFs):

$x=$ fraction of particle's momentum to proton's momentum

Quantum Field Theory

- Can FACTORIZE the computation into a hard process and the parton distribution function integration:

$$
E_{Q} \frac{\mathrm{~d} \sigma}{\mathrm{~d}^{3} Q}=\sum_{a_{1}, a_{2}} \int_{0}^{1} \mathrm{~d} x_{2} \mathrm{~d} x_{1} f_{a_{1}}^{h_{1}}\left(x_{1}, M^{2}\right) f_{a_{2}}^{f_{2}\left(x_{2}, M^{2}\right)} E_{Q} \frac{\mathrm{~d} \sigma^{a_{1} a_{2}}}{\mathrm{~d}^{3} Q}\left(x_{1} P_{1}, x_{2} P_{2}, M^{2}\right)
$$

- So for production of leptons:

Quantum Field Theory

- Drell-Yan cross section from CMS:
- J. High Energy Phys. 10, 007 (2011)

Quantum Field Theory

- Look at the Drell-Yan matrix element:

- Differential Cross Section is:

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{N_{c}^{\text {final }}}{N_{c}^{\text {initial }}} \times \frac{1}{256 \pi^{2} s} \times \frac{s^{2}}{\left(s-M_{Z}^{2}\right)^{2}+s \Gamma} \\
& \quad \times\left[\left(L^{2}+R^{2}\right)\left(L^{\prime 2}+R^{\prime 2}\right)(1+\cos \theta)+\left(L^{2}-R^{2}\right)\left(L^{\prime 2}-R^{\prime 2}\right) 2 \cos \theta\right], \\
& s=\left(p_{i}+p_{j}\right)^{2}=\left(E_{i}+E_{j}\right)^{2}-\left(\mathbf{p}_{i}+\mathbf{p}_{j}\right)^{2} \\
& \quad L=\sqrt{\frac{8 G_{F} m_{Z}^{2}}{\sqrt{2}}}\left(T_{3}-\sin ^{2} \theta_{W} Q\right), \quad R=-\sqrt{\frac{8 G_{F} m_{Z}^{2}}{\sqrt{2}}} \sin ^{2} \theta_{W} Q,
\end{aligned}
$$

Quantum Field Theory

- So look back at the master formula:

$$
\frac{d \sigma}{d \Omega}=\sum_{a_{1}, a_{2}} \int_{0}^{1} d x_{2} d x_{1} f_{a_{1}}^{h_{1}}\left(x_{1}, M^{2}\right) f_{a_{2}}^{h_{2}}\left(x_{2}, M^{2}\right) E_{Q} \frac{d \sigma^{a_{1} a_{2}}}{d^{3} Q}\left(x_{1} P_{1}, x_{2} P_{2}, M^{2}\right),
$$

- Your homework problem will be to perform a MC simulation of the pp —-> Z \longrightarrow e+e- cross section!
- $u($ total $)=u($ valence $)+u($ sea $)$
- ubar (total) = u(sea)
- $d($ total $)=d($ valence $)+d($ sea $)$
- dbar (total) $=d($ sea $)$
- s(total) = s(sea)
- sbar(total) $=$ s(sea)

