

-Arnd Behring

Particle physics on long-distance trains

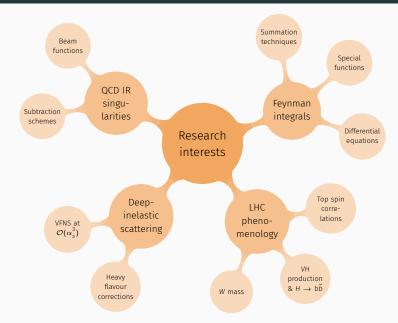
My academic journey so far

Undergrad: TU Dortmund

PhD: DESY Zeuthen

1st postdoc: RWTH Aachen

2nd postdoc: KIT Karlsruhe



3rd postdoc:



My research interests

Variable flavour number scheme at $O(\alpha_s^3)$

massless u, d, s, c and massive b

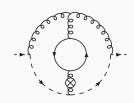
- · u, d, s, c PDFs
- b only produced perturbatively
- potentially large $\ln\left(Q^2/m_b^2\right)$

massless u, d, s, c and b

- · u, d, s, c and b PDFs
- DGLAP equations resum collinear singularities

- Appropriate description depends on relevant scales of the process
- · Match PDFs in both schemes at a matching scale, e.g.,

$$f_{\mathrm{Q}}(n_f+1)+f_{\bar{\mathrm{Q}}}(n_f+1)=\mathsf{A}_{\mathrm{Qq}}^{\mathsf{PS}}\otimes\sum_{k}[f_k(n_f)+f_{\bar{k}}(n_f)]+\mathsf{A}_{\mathrm{Qg}}\otimes G(n_f)$$


Variable flavour number scheme at $O(\alpha_s^3)$ (cont.)

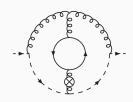
Matching coefficients A_{ij} can be calculated perturbatively: Massive operator matrix elements (OMEs)

$$A_{ij} \sim \langle j|O_i|j\rangle$$

Until recently: 5 of 7 OMEs known to $O(\alpha_s^3)$

→ Important, e.g., for N³LO PDFs

Variable flavour number scheme at $O(\alpha_s^3)$ (cont.)


Matching coefficients A_{ij} can be calculated perturbatively: Massive operator matrix elements (OMEs)

$$A_{ij} \sim \langle j|O_i|j\rangle$$

Until recently: 5 of 7 OMEs known to $O(\alpha_{\rm S}^3)$

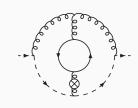
 \rightarrow Important, e.g., for N³LO PDFs

Many of the results in this project were obtained while on the train between Berlin ↔ Dortmund/Bielefeld during my PhD

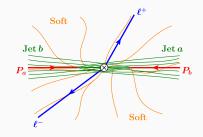
Variable flavour number scheme at $O(\alpha_s^3)$ (cont.)

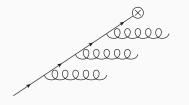
Matching coefficients A_{ij} can be calculated perturbatively: Massive operator matrix elements (OMEs)

$$A_{ij} \sim \langle j|O_i|j\rangle$$

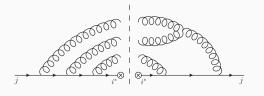

Until recently: 5 of 7 OMEs known to $O(\alpha_s^3)$

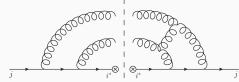
 \rightarrow Important, e.g., for N³LO PDFs




$$G(n_f+1) = A_{gq,Q}(n_f) \otimes \sum_{k} [f_k(n_f) + f_{\bar{k}}(n_f)] + \mathbf{A}_{gg,Q} \otimes G(n_f)$$

Paper (CERN-TH-2022-179) on arXiv later this week: [J. Ablinger, AB, J. Blümlein, A. De Freitas, A. Goedicke, A. von Manteuffel, C. Schneider, K. Schönwald '22]




Long-running project to calculate the beam functions for N-jettiness (τ_N) at N^3LO [Melnikov, Rietkerk, Tancredi, Wever '18] [Melnikov, Rietkerk, Tancredi, Wever '19]

 \cdot Appear in factorisation theorem for $au_0 o 0$

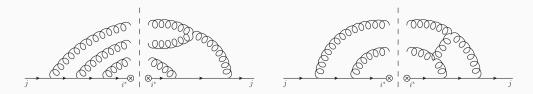
$$\lim_{\tau_{0}\to 0}\sigma=B\otimes B\otimes S\otimes H\otimes \sigma_{LO}+O\left(\tau\right)$$

- · Describe collinear emissions off the initial state
- Building block for
 - Slicing scheme \rightarrow differential description of colour singlet production at N³LO
 - Resummation

Axial gauge calculation

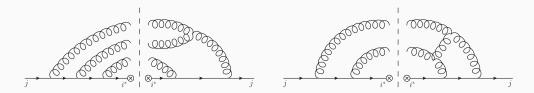
$$D^{\mu\nu}(k) = \frac{1}{k^2} \left(-g^{\mu\nu} + \frac{k^{\mu}\bar{p}^{\nu} + k^{\nu}\bar{p}^{\mu}}{k \cdot \bar{p}} \right) \qquad \frac{1}{(k_1 \cdot \bar{p})(k_2 \cdot \bar{p})} = \frac{2}{s\bar{z}} \left[\frac{1}{k_1 \cdot \bar{p}} + \frac{1}{k_2 \cdot \bar{p}} \right]$$

Partial fraction rel. between MI

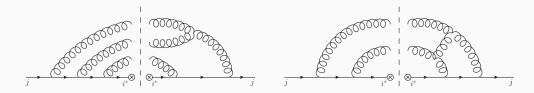

$$\frac{1}{(k_1 \cdot \bar{p})(k_2 \cdot \bar{p})} = \frac{2}{s\bar{z}} \left[\frac{1}{k_1 \cdot \bar{p}} + \frac{1}{k_2 \cdot \bar{p}} \right]$$

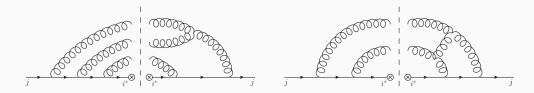
Canonical bases with square roots

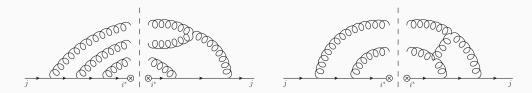
$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \end{pmatrix} = \varepsilon \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \end{pmatrix}$$


Iterated integrals with square roots

$$\int_0^z \frac{dz'}{\sqrt{z'}\sqrt{4-z'}} \int_0^{z'} \frac{dz''}{\sqrt{4+z^2}} \int_0^{z''} \dots$$


- $q_i \rightarrow q_i$: Finished in Karlsruhe
- $g \rightarrow q$:
- $q \rightarrow g$:
- $g \rightarrow g$:
- $\bar{q}_j \rightarrow q_i$:


- $q_j \rightarrow q_i$: Finished in Karlsruhe
- $g \rightarrow q$: Finished on the train
- $q \rightarrow g$: Finished on the train
- $g \rightarrow g$:
- $\bar{q}_j \rightarrow q_i$:


- $q_j \rightarrow q_i$: Finished in Karlsruhe
- $g \rightarrow q$: Finished on the train
- $q \rightarrow g$: Finished on the train
- $g \rightarrow g$: Finished at CERN
- $\bar{q}_j \rightarrow q_i$:

- $q_i \rightarrow q_i$: Finished in Karlsruhe
- $g \rightarrow q$: Finished on the train
- $q \rightarrow g$: Finished on the train
- $g \rightarrow g$: Finished at CERN
- $oldsymbol{\cdot}$ $ar{q}_j
 ightarrow q_i$: Finished on the train in Karlsruhe Hbf

There are 5 independent matching coefficients:

- $q_j \rightarrow q_i$: Finished in Karlsruhe
- $g \rightarrow q$: Finished on the train
- $q \rightarrow g$: Finished on the train
- $g \rightarrow g$: Finished at CERN
- $oldsymbol{\cdot}$ $ar{q}_{j}
 ightarrow q_{j}$: Finished on the train in Karlsruhe Hbf

Paper (CERN-TH-2022-178) on arXiv later this week:

[D. Baranowski, AB, K. Melnikov, L. Tancredi, C. Wever '22]

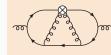
Future directions

VBF & $h \rightarrow b\bar{b}$ @ **NNLO** with $m_b \neq 0$

with K. Asteriadis, F. Caola, K. Melnikov, R. Röntsch

Effects from $m \neq 0$? Flavour jet alg.?

Four-loop ρ parameter


with S. Abreu, A. McLeod, B. Page

Two-mass contributions ($m_b \& m_t$) New functions?

Massive OME $A_{Qg}^{(3)}$

with J. Blümlein, A. De Freitas, C. Schneider, K. Schönwald

Last missing OME New functions?

Local unitarity for the LHC

with V. Hirschi, B. Ruijl, Z. Capatti

Deal with hadronic initial states